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ABSTRACT. We consider the Hamiltonian H of a 3D spinless non-relativistic
quantum particle subject to parallel constant magnetic and non-constant
electric field. The operator H has infinitely many eigenvalues of infinite
multiplicity embedded in its continuous spectrum. We perturb H by ap-
propriate scalar potentials V' and investigate the transformation of these
embedded eigenvalues into resonances. First, we assume that the electric
potentials are dilation-analytic with respect to the variable along the mag-
netic field, and obtain an asymptotic expansion of the resonances as the
coupling constant s of the perturbation tends to zero. Further, under the
assumption that the Fermi Golden Rule holds true, we deduce estimates
for the time evolution of the resonance states with and without analyticity
assumptions; in the second case we obtain these results as a corollary of

2000 Mathematics Subject Classification: 35P25, 35J10, 47F05, 81Q10.
Key words: Magnetic Schrodinger operators, resonances, Mourre estimates, spectral shift
function.



180 M. A. Astaburuaga, Ph. Briet, V. Bruneau, C. Ferndndez, G. Raikov

suitable Mourre estimates and a recent article of Cattaneo, Graf and Hun-
ziker [11]. Next, we describe sets of perturbations V for which the Fermi
Golden Rule is valid at each embedded eigenvalue of H; these sets turn out
to be dense in various suitable topologies. Finally, we assume that V decays
fast enough at infinity and is of definite sign, introduce the Krein spectral
shift function for the operator pair (H + V, H), and study its singularities
at the energies which coincide with eigenvalues of infinite multiplicity of the
unperturbed operator H.

1. Introduction. In the present article we consider a magnetic Schro-
dinger operator H which, from a physics point of view, is the quantum Hamil-
tonian of a 3D non-relativistic spinless quantum particle subject to an electromag-
netic field (E, B) with electric component E = —(0, 0, v(,) where vy is a scalar po-
tential depending only on the variable z3, and magnetic component B = (0,0, b)
where b is a positive constant. From a mathematical point of view this operator
is remarkable because of the generic presence of infinitely many eigenvalues of
infinite multiplicity, embedded in the continuous spectrum of H. These eigenval-
ues have the form 2bg + A\, ¢ € Z; = {0,1,2,...}, where 2bq, ¢ € Z, are the

Landau levels, i.e. the infinite-multiplicity eigenvalues of the (shifted) Landau
2

Hamiltonian, and A is a simple eigenvalue of the 1D operator ——— +vg(z). We
introduce the perturbed operator H + »V where V is a H-compact multiplier
by a real function, and s € R is a coupling constant, and study the transition of
the eigenvalues 2bg + A\, ¢ € Z, into a “cloud” of resonances which converge to
2bq + X as » — 0.

In order to perform this analysis, we assume that V is axisymmetric
so that the operator H + »V commutes with the x3-component of the angular-
momentum operator L. In this case H + »V is unitarily equivalent to the orthog-
onal sum @z (H™ + V) where H™ is unitarily equivalent to the restriction
of H onto Ker (L —m), m € Z. This allows us to reduce the analysis to a pertur-
bation of a simple eigenvalue 2bg + A of the operator H (™ with fixed magnetic
quantum number m.

We apply two different approaches to the definition of resonances. First,
we suppose that vg and V' are analytic in x3, and following the classical approach
of Aguilar and Combes [2], define the resonances as the eigenvalues of the dilated
non-self-adjoint operator H(6) + »Vy. We obtain an asymptotic expansion as
» — 0 of each of these resonances in the spirit of the Fermi Golden Rule (see e.g.
[34, Section XII.6]), and estimate the time decay of the resonance states. A similar
relation between the small-coupling-constant asymptotics of the resonance, and
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the exponential time decay of the resonance state has been established by Herbst
[19] in the case of the Stark Hamiltonian, and later by other authors in the case
of various quantum Hamiltonians (see e.g. [36], [17], [3]).

Our other approach is close to the time dependent methods developed
in [35] and [12], and, above all, to the recent article by Cattaneo, Graf and
Hunziker [11], where the dynamic estimates of the resonance states are based
on appropriate Mourre estimates [25]. We prove Mourre type estimates for the
operators H (™) which might be of independent interest, and formulate a theorem
on the dynamics of the resonance states which can be regarded as an application
of the general abstract result of [11].

Both our approaches are united by the requirement that the perturbation
V satisfies the Fermi Golden Rule for all embedded eigenvalues for the operators
H™) m e Z. We establish several results which show that the set of such per-
turbations is dense in various topologies compatible with the assumptions of our
theorems on the resonances of H + V.
Further, we cancel the restriction that V is axisymmetric but suppose that it de-
cays fast enough at infinity, and has a definite sign, introduce the Krein spectral
shift function (SSF) for the operator pair (H + V, H), and study its singularity
at each energy 2bq + )\, ¢ € Z,, which, as before, is an eigenvalue of infinite
multiplicity of the unperturbed operator H. We show that the leading term of
this singularity can be expressed via the eigenvalue counting function for compact
Berezin-Toeplitz operators. Using the well-known results on the spectral asymp-
totics for such operators (see [29], [32]), we obtain explicitly the main asymptotic
term of the SSF as the energy approaches the fixed point 2bg + A for several
classes of perturbations with prescribed decay rate with respect to the variables
on the plane perpendicular to the magnetic field.

It is natural to associate these singularities of the SSF to the accumulation
of resonances to these points because it is conjectured that the resonances are the
poles of the SSF. This conjecture is justified by the Breit-Wigner approximation
which is mathematically proved in other cases (see for instance [26], [27], [10],
7).

The article is organized as follows. In Section 2 we summarize some well-known
spectral properties of the operators H and H (™) and their perturbations, which
are systematically exploited in the sequel. Section 3 is devoted to our approach
based on the dilation analyticity, while Section 4 contains our results obtained as
corollaries of appropriate Mourre estimates. In Section 5 we discuss the density
in suitable topologies of the sets of perturbations V' for which the Fermi Golden
Rule holds true for every embedded eigenvalue 2bg + A of the operator H (™,
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m € Z. Finally, the asymptotic analysis of the SSF near the points 2bg + A can
be found in Section 6.

We dedicate the article to Vesselin Petkov with genuine admiration for
his most significant contributions to the spectral and scattering theory for par-
tial differential operators. In particular, we would like to mention his keystone
results on the distribution of resonances, and the Breit-Wigner approximation of
the spectral shift function for various quantum Hamiltonians (see [26], [27], [10]),
and, especially, his recent works on magnetic Stark operators (see [13], [14]).
These articles as well as many other works of Vesselin have strongly influenced
and stimulated our own research.

2. Preliminaries.

2.1. In this subsection we summarize some well-known facts on the
spectral properties of the 3D Schrodinger operator with constant magnetic field
B = (0,0,b), b = const. > 0. More details could be found, for example, in [4] or
[9, Section 9.

Let

Hy = HO’J_ ®I” + 1, ®H07||

where I and I are the identity operators in L*(R,,) and L*(RZ, ,,) respectively,

Z1,T2

. (9 bxg 2 . (9 bxl 2 2
Hoy = (iz—— =2 —+ ) —b R
0,1 (laxl 5 ) + (lax2 + 5 , ($1,$2) € ,

is the Landau Hamiltonian shifted by the constant b, and

2

H(),” = —w, I3 S R.

3
The operator Hy | is self-adjoint in L?(R?), the operator Hy ) is self-adjoint in
L?(R), and hence the operator Hj is self-adjoint in L?(R3). Moreover, we have
o(Ho,1) = UyZo{2bq}, and every eigenvalue 2bg of Hy | has infinite multiplicity
(see e.g. [4]). Denote by p, the orthogonal projection onto Ker (Hp | — 2bg),
q € Z4. Since o(Hy,|) = [0, 00), we have o(Hg) = U2[2bg, 00) = [0, 00).
Let now m € Z, o0 = (z? + 23)'/2. Put

2
(m) 10 0 m  bo
gm.— 22,2 L (D2}
0,1 980959+<9 2
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The operator H, (m L) is self-adjoint in L%(R,;odp), and we have O'(Hérj_)) =

U 120q} Where m_ = max{0, —m} (see e.g. [4]). In contrast to the operator
Hy |, every eigenvalue 2bq of Hé L) is simple. Denote by p,,, the orthogonal

projection onto Ker (Hérﬁ) —2bq), q € Z4,q>m_. Put

! b m+1 -
(2.1) pqm(0) = \/m <§> QmL((Zm) (bo?/2) e be*/4,

Q€R+7 quv qszv

(a+m)!  (=s)
(m+Dg—0! 17

s €R,

—~
(\V)
\V)
~
.Qu

2
—~
»
~—

l=m_

are the generalized Laguerre polynomials. Then we have

H(SZL_) Pgm = 2bq(Pq,m:

”@q,m||L2(R+;gdg) =1, and @gm = Pgm (see e.g. [9, Section 9]). Moreover,
Pg,m = ’Soq,m><90q,m‘~
Set

H(gm) ( )®I”+IL®H0”

where I, is the identity operator in L2(R. ; odp). Evidently, O'(Hém)) = [2m_b, 0).
Let (o, ¢, 73) be the cylindrical coordinates in R3. The operator Hém), m € 7, is
unitarily equivalent to the restriction of Hy onto Ker (L — m) where

Lo i 2 9\ __, 0
‘_ Yo, P0r) 06

is the x3-component of the angular-momentum operator, which commutes with
Hy.
Moreover, the operator Hy is unitarily equivalent to the orthogonal sum

EBmeZHém). More precisely, if we pass to cylindrical coordinates, and decompose
u € Dom(Hj) into a Fourier series with respect to ¢, i.e. if we write

u(ocos ¢, sind,z3) = 3 €™u, (0, 23),

meZ
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we have
(Hou)(gcos ¢, osin g, z3) = Y ™ (H{u)(0,73)-
mEZ

2.2. In this subsection we perturb the operators H ém) and Hy by a scalar
potential vy which depends only on the variable x3.
Let vg : R — R be a measurable function. Throughout the paper we assume
that the multiplier by vg is Hg -compact, which is ensured, for instance, by
vp € L2(R) + L (R). Set

HH = H07H + vg.

Then we have
Uess(H||) = O'ess(HO,H) = [Oa OO)

For simplicity, throughout the article we suppose also that
(2.3) infU(H”) > —2b.

Evidently, (2.3) holds true if the negative part v _ of the function vy is bounded,
and we have [|vg || oo () < 2b.

Assume now that the discrete spectrum of H) is not empty; this would fol-
low, for example, from the additional conditions vg € L'(R) and [, vo(z)dz < 0
(see e.g. [34, Theorem XIII.110]). Occasionally, we will impose also the assump-
tion that the discrete spectrum of H| consists of a unique eigenvalue; this would
be implied, for instance, by the inequality [ |z|vo —(z)dz < 1 (see e.g. [5, Chaper
II, Theorem 5.1]).

Let A be a discrete eigenvalue of the operator H| which necessarily is
simple. Then A € (—2b,0) by (2.3). Let ¢ be an eigenfunction satisfying

(2.4) Hyp =M, |[Wllzm =1, ¢ =1

Denote by p; = p()) the spectral projection onto Ker(H — A). We have p| =
[} (W]

Suppose now that vy satisfies
(25) 00@)| = O ((@)™™), zeR my>1.

where (z) = (1 + ]33|2)% Then the multiplier by vy is a relatively trace-class
perturbation of Hy |, and by the Birman-Kuroda theorem (see e.g. [33, Theorem
X1.9]) we have

O’aC(H”) = UaC(H(),”) = [0,00).
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Moreover, by the Kato theorem (see e.g. [34, Theorem XIII.58]) the operator
H| has no strictly positive eigenvalues. In fact, for all £ > 0 and s > 1/2 the
operator-norm limit

(26) (o) = B) @) = () (H — B i) (@)

exists in £(L?(R)), and for each compact subset J of Ry = (0,00) and each
s > 1/2 there exists a constant Cj, such that for each £ € J we have

(2.7) ()= (Hy — B)™H2)~°[| < Cus
(see [1]).

Suppose again that (2.5) holds true, and let us consider the differential
equation

(2.8) —y" +ooy =K%y, keR.

It is well-known that (2.8) admits the so-called Jost solutions yi(x; k) and ya(z; k)
which obey ‘
(k) = %= (1 +o(1), - o0,
ya(w;k) = e M (14 0(1)), x— —oo,
uniformly with respect to k € R (see e.g. [5, Chapter II, Section 6] or [37]). The
pairs {y;(; k), yi(; —k)}, k € R, I = 1,2, form fundamental sets of solutions of

(2.8). Define the transition coefficient T (k) and the reflection coefficient R(k),
kEeR, k+#0, by

yo(z; k) = T (k)y1(z; —k) + R(k)y1(z; k), =z €R.

It is well known that 7' (k) # 0, k € R\ {0}. On the other hand, the Wronskian of
the solutions 1 (+; k) and ya(-; k) is equal to —2ik7 (k), and hence these solutions
are linearly independent for £ € R\ {0}. For E > 0 set
1
Uy (z; F) == y(z:VE), 1=1,2.
4nVET (VE)

Evidently, ¥;(:; E) € C*(R) N L>®(R), E > 0, | = 1,2. Moreover, the real and
the imaginary part of both functions ¥,(+; E), [ = 1,2 with £ > 0 do not vanish
identically. Further, Im (z) *(Hy — E) " *(z)™* with E > 0 and s > 1/2 is a
rank-two operator with an integral kernel

K(x, 2’ —WZ 5 (2 B (2 E) ()78, x,2" €R.
1=1,2
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2.3. Fix now m € Z, and set

H™ = Hém) +1, ®vp.
Since vy is Hy,||-compact and the spectrum of H, é"j_) is discrete, the operator I, ®v

is Hém)—compact. Therefore, the operator H(™) is well-defined on Dom(I-I(gm))7

and we have
UesS(H(m)) = Uess(H(gm)) = [Qbm_, OO)

Further, if A is a discrete eigenvalue of H\|, then 2bg + A is a simple eigenvalue of
H™) for each integer ¢ > m_. If ¢ = m_, then this eigenvalue is isolated, but
if ¢ > m_, then due to (2.3), it is embedded in the essential spectrum of H (m),
Moreover,

(2.9) H™® = (2bg + Nqm, ¢ >m_,
Dy m = Pgm @V, @qm being defined in (2.1), and v in (2.4). Set
(2.10) Pq,m = ﬁqﬂn ® D

Then we have Py = [Py m) (Pg.m |-
Finally, introduce the operator

H:=Hy+ 1, ®vg.

Even though the operator I| ® vy is not Hp-compact (unless vy = 0), it is
Hy-bounded with zero relative bound so that the operator H is well-defined on
Dom(Hj). Evidently, the operator H is unitarily equivalent to the orthogonal
sum @,z H (M) Up to the additive constant b, the operator H is the Hamiltonian
of a quantum non-relativistic spinless particle in an electromagnetic field (E, B)
with parallel electric component E = —(0,0, v((23)), and magnetic component
B = (0,0,b).

Note that if A is a discrete eigenvalue of H\|, then 2bg + A, ¢ € Z is an
eigenvalue of infinite multiplicity of H. If ¢ = 0, this eigenvalue is isolated, and
if ¢ > 1, it lies on the interval [0,00) which constitutes a part of the essential
spectrum of H. Moreover, if (2.5) holds, then o,.(H) = [0,00), so that in this
case 2bq + A, ¢ € Z,., is embedded in the absolutely continuous spectrum of H.

2.4. In this subsection we introduce appropriate perturbations of the
operators H and H™ m € Z,..

Let V : R? — R be a measurable function. Assume that V is H-bounded
with zero relative bound. By the diamagnetic inequality (see e.g. [4]) this would
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follow, for instance, from V' € L?(R?)+ L>°(R3). On Dom(H) = Dom(Hj) define
the operator H + »V, »x € R.

Remark. We impose the condition that the relative Hgp-bound is zero
just for the sake of simplicity. If V is Hg-bounded with arbitrary finite relative
bound, then we could again define H + 3>V but only for sufficiently small |s|.

Occasionally, we will impose the more restrictive assumption that V is
Hy-compact; this would follow from V € L*(R3) + LP(R3). In particular, V is
Hy-compact if it satisfies the estimate

211)  [V(x)] =0 ((X1)™™ (s) ™), x = (X, 23), my >0, mg > 0.

Further, assume that V is axisymmetric, i.e. V depends only on the
variables (g,x3). Fix m € Z and assume that the multiplier by V is Hém)—
bounded with zero relative bound. Then the operator H (™ + V is well defined
on Dom(H (™)) = Dom(Hém)). Define the operator H(™) + 5V, » € R.

For z € C4 :={( € C|Im( > 0}, m € Z, ¢ > m_, introduce the quantity
Fym(2) = <(H(m) - 2)71(1 = Pam)V @qm: V ®qm)

where (-, -) denotes the scalar product in L?(R x R; ododz3), which we define to
be linear with respect to the first factor. If A is a discrete eigenvalue of H| we
will say that the Fermi Golden Rule Fg,, » is valid if the limit

(2.12) Foym(2bg + A) = 1im Fy o (2bg + A+ i),

exists and is finite, and

(2.13) Im F,, ., (2bg + X) > 0.

3. Resonances via dilation analyticity.
3.1. In this subsection we will perturb H, ém) by an axisymmetric potential
V (0, x3) so that the simple eigenvalue 2bq+ A of H ém) becomes a resonance of the
perturbed operator. In order to use complex scaling, we impose an analyticity
assumption. We assume that the potential vy extends to an analytic function in
the sector
Sp, = {z € C| |Argz| < 09, or |z| < 1o}
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with 6y € (0,7/2), which satisfies (2.5). As already used in similar situations
(see e.g. [4], [38]) we introduce complex deformation in the longitudinal variable,
UO)f)(0,x3) = €2 f(0,e%x3), f € L>(Ry x R; pdodzs), # € R. For § € R we
have
H(0) = UO)H™U(0) = BS™ @ T+ T ® H(9),

2
with H|(0) = —e*QQW + vo,p(x3), and v g(x3) = vo(e? 23). By assumption,

3
the family of operators {H|(¢), [Im 6] < 6o}, form a type (A) analytic family
of m-sectorial operators in the sense of Kato (see for instance [20, Section 15.4],
[2]). Then the discrete spectrum of Hy (¢) is independent of 6 and we have

o(H™(0)) = |J {2bg +o(H;(6)},

gzm—

o(Hy(0)) = e ¥R, U odise(Hy) U{z1,22,... }

where ogisc(H)) denotes the discrete spectrum of H|, and z1, 22, .... are (complex)
eigenvalues of H|(f) in {0 > Argz > —2Im 0}, Im 6 > 0. In the sequel, we
assume that ogisc(H|) = {\}.

Further, we assume that V' is axisymmetric, and admits an analytic ex-
tension with respect to x3 € Sp,, which is Hém)—compact (see e.g. [34, Chapter
XII]. Let

Vi(o,23) := V(0. ¢"x3).
Then the family of operators {H ™ (0) + »%Vp, [Im 6| < g, |5| < 1}, form also

an analytic family of type (A) for sufficiently small .
By definition, the resonances of H(™) + 5V in

Sm_(0) = |J {z € C; 2bg < Rez < 2b(¢ + 1), —2Imf < Arg(z — 2bq) < 0}

gzm—

are the eigenvalues of H(™ () + 5V,, Imf > 0.

For V axisymmetric and Hy-compact, we define the set of the resonances
Res(H + 5V, S¢(0)) of the operator H + sV in Sy(0) by

Res(H + »#V,8y(0)) := U {eigenvalues of H™ (0) + 5V} N Sy(6).
meZ

In other words, the set of resonances of H + sV is the union with respect to
m € Z of the resonances of H™ + V. This definition is correct since the
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restriction of H + »V onto Ker(L — m) is unitarily equivalent to H (™ + 5V,
Moreover using a standard deformation argument (see, for instance, [20, Chapter
16]), we can prove that these resonances coincide with singularities of the function
2z ((H+ 3V —2)7L f, f), for f in a dense subset of L?(R3).

Theorem 3.1. Fizm € Z, ¢ > m_. Assume that:
o vy admits an analytic extension in S, which satisfies (2.5);
o inequality (2.3) holds true, and H) has a unique discrete eigenvalue \;

o V is axisymmetric, and admits an analytic extension with respect to x3 in
S, which is Hém)—compact.

Then for sufficiently small |5|, the operator H™ 4 3V has a resonance wem,(3)
which obeys the asymptotics

(3.1) wgm(22) = 2bg+A+3c(V Py, ¢q7m>—%2 Fq’m(qu+)\)+Oq7m7V(%3), » — 0,
the eigenfunction @4, being defined in (2.9), and the quantity Fy ,,(2bg+ ) being
defined in (2.12).
Proof. Fix 6 such that 65 > Im 6 > 0 and assume that z € C is in the
resolvent set of the operator H (™ (#) + »Vj. Put
R (2) := (H™(0) + 5V — 2)" L.

2,0

By the resolvent identity, we have

(32) RU)(2) = R{(2) — = RJY (:)VoRSY ()
1+ 522 RSP (2)VaRY (2)Va R () + O (%),

as » — 0, uniformly with respect to z in a compact subset of the resolvent sets
of H™ () 4 5V and H(™ ().

Now note that the simple embedded eigenvalue 2bq+ X of H (™) is a simple
isolated eigenvalue of H(™ (0). According to the Kato perturbation theory (see
[22, Section VIIIL.2]), for sufficiently small s there exists a simple eigenvalue
Wy.m () of H™(0) + 5Vj such that lim,, .o wym(3) = wym(0) = 2bg + . For
|7¢| sufficiently small, define the eigenprojector

_ _ 1 [ pm
(3.3) P(0) = Pogm(0) = 2im ) R, g (2)dz
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where I' is a small positively oriented circle centered at 2bg + A. Evidently,
for u € RanP,(f) we have (H™ () + »Vo)u = wym(s)u; in particular, if
u € Ran Py(6), then H™ (0)u = (2bg+ N)u. Since wg, ., (3) is a simple eigenvalue,
we have

(3.4) Wom () :Tr<_1 /F 2RI (2)da )

2

for I and s as above. Inserting (3.2) into (3.4), we get

(3.5)  wqm(2) = 2bg + A+ 3 Tr(Po(6) Ve Po(0))
2
B < /F 2Ry (2) Vo R (2) Vo R (2) dz) + 0

A%

as » — 0. Next, we have
(36) TI(PO(G) ‘/9 PO(G)) = TI‘(Pq’m VPq,m) = <V(I>q,m» (I)q,m>L2(R+ xR;ododzx3)>

the orthogonal projection Py ,, being defined in (2.10). For 6 € R the relation is
obvious since the operators Pg g m(0) Vo Po,gm(0) and Py, V Py are unitarily
equivalent. For general complex 6 identity (3.6) follows from the fact the function
0 +— Tr(Po qm(0) Vo Poqm(0)) is analytic.
Set
Qo(6) := T —Po(6), H™(6):= H™ (6)Qo(6).

By the cyclicity of the trace, we have
37 Tr ( / 2RI (2) Vo RO (2) Vi Rg’j;)(z)dz) T 4T+ Ty 4+ T
r

where

T = /F 2(2bq + X — 2) 72 Tr (Po(0) Vo Po(0) Ve Po(6)) dz,
Tyi= [ 22+ 227 T (Po(0) Vo (1(0) = )" Qu(6) Vo Po(0)) =
o= ( /F 2(H™(0) = 2) 71 Qo(O) Vo (H™ (6) — 2) !

< QuO)Va(H™(0) ~ ) Qul6)a: )

Ty := /F 2(2bg+ A —2) ' Tr (790(9) Vo(H™ (6) — 2)72 Qy(0) Vp Po(t‘)))d2~



Resonances and SSF singularities for a magnetic Schrodinger operator 191

Since [;.2(2bg+A—2)"3dz = 0, and the function z — (H(™)(9)—z)~! is analytic
inside I', we have

(3.8) T, = T3 = 0.

Further, using the identity
(2bq + A — 2) "> Po(6) Vo (H"™(0) — 2) " Qo(6) Vo Po(6)+
(2bg + X — 2) ' Po(0) Vo (H™ () — 2)7% Qo(6) Va Po(6) =

2 (t2ba+ 2= =) Po(0) Vi (O (9) — =) ©0(0) Vo Pol0))

integrating by parts, and applying the Cauchy theorem, we obtain
(8:9) To+ Ty = 2im Tr (Po(0) Vo (H™)(0) — 2bg — N)™ (1 = Po(0)) Vo Po(0) )
Arguing as in the proof of (3.6), we get

(3.10) T (Po(0) Va (H™)(0) — 2bg — A = i0) ™ Qo(0) Vo Po(0))
= Fym(20g + A +i6), §>0.

For 6 fixed such that Im 6 > 0, the point 2bg+\ is not in the spectrum of H ™) (0).
Taking the limit 6 | 0 in (3.10), we find that (3.9) implies

(3.11) Ty + Ty = 2im Fyp(2bg + N).

Putting together (3.5) — (3.8) and (3.11), we deduce (3.1). O

Remarks. (i) We will see in Section 4 that generically Im F, ., (2bg+\) >
0 for all m € Z, and g > m_.

(ii) Taking into account the above remark, we find that Theorem 3.1
implies that generically near 2bg + A, ¢ > 1, there are infinitely many resonances
of H + »V with sufficiently small s, namely the resonances of the operators
H™ 4 5V with m > —q.

3.2. In this subsection we consider the dynamical aspect of resonances.
We prove the following proposition which will be extended to non-analytic per-
turbations in Section 4.
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Proposition 3.1. Under the assumptions of Theorem 3.1 there exists a
function g € C°(R;R) such that g = 1 near 2bq + A\, and
(3.12)
<67i(H(m>+%V)tg(H(m) + %V)(I)q,my (I)q,m> _ a<%)efiwq,m(z)t + b(%, t), t>0,

with a and b satisfying the asymptotic estimates
la(s) = 1] = 0(%),

b, ) = OG2(1+1)7"), Vn € Zy,
as » — 0 uniformly with respect to t > 0.
In order to prove the proposition, we will need the following

Lemma 3.1. Set

Qu0) i= I = Pulf), R () 1= ((H™(0) + 54V5) Q(0) - z>_1Q%(9),

22,0

the projection P,.(0) being defined in (3.3). Then for |s| small enough, there

exists a finite-rank operator ]—"LT';), uniformly bounded with respect to s, such that

(3.13) Py(0) = P..(0)
(B (W () VaPol ) + Pocl O)Va R (14, () ) + 52 F L.

2,0

Proof. By the resolvent identity, we have

(3.14) BT (v) = R () + R () VyRTY (v)
1 a2 Rime) (v)VaR" (V)VeR(()TZ) (v).

22,0

Moreover by definition of Rime) and of H™ := H(™) Q,. we have:

(3.15) R (1) = (wym(3) — v) " Po(0) + RTY (1),

) 22,0
R (1) = (2bg + A — 1)~ Po(6) + (H™(6) — 1) "1 Qo (6),

where v — R(m)(y) and v — (H™(9) — v)~1Qy(#) are analytic near 2bg + .

22,0

Then, from the Cauchy formula, the integration of (3.14) on a small positively



Resonances and SSF singularities for a magnetic Schrodinger operator 193

oriented circle centered at 2bg+ A, yields (3.13) with F (m 9) a linear combination of
finite-rank operators of the form Py Vy P, Vy P3, where {730( ), Pu(O)}N{P;, j =
1,2,3} # 0, and

Py € {Po(9), Po(6), R (v), (H™(6) — 1)1 Q0(8),
with v = wg () or v = 2bg + A}.

(m)

Since these operators are uniformly bounded in s with || small enough, F_ ,
is a finite-rank operator which also is uniformly bounded in > with || small
enough. O

Proof of Proposition 3.1. Pick at first any g € C§°(R; R) such that
g = 1 near 2bq + A\. We have
<€—i(H(7n>+%V)tg(H(m) + %V>(I)q,ma (I)q,m> - Tr (e—i(H(m)—i-%V)tg(H(m) + %V)Pq,m)-

By the Helffer-Sjostrand formula,

(3.16) e i HM A g(gm Loy P
1 89

== | Z)e #F(H™ 432V - 2)7 P, udady
R2 82

where z = x+1iy, Z = x —1y, g is a compactly supported, quasi-analytic extension
of g, and the convergence of the integral is understood in the operator-norm sense
(see e.g. [15, Chapter 8]).

Consider the functions

0 (2) =T (H™ 45V — 2)7 P, ), +Imz > 0.
Following the arguments of the previous subsection, we find that
(3.17) 01(2) = Tr (RU) (2) Pogm (), Tmz >0, 6 >Imé > 0.

Inserting (3.13) into (3.17), and using the cyclicity of the trace, and the elemen-
tary identities

Poc(8) RUY (2) RS (wqm () = 0 = R (wgm(52)) Po(6) RTY (2),

)

we get
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Applying (3.15), we obtain
(3.18) oi(2) = (1 n %27«(%>) (o (5) — 2) "1 + 362G (32, 2),

where 7 () := Tr (P,.(6) .7-"3(2(3)), and G4 (s, z) is analytic near 2bg + A and uni-
formly bounded with respect to |s| small enough. Similarly,

(3.19) o_(2) = (1 + KQT(%)) (Wam () — 2) L + 322G (52, 2),

where G_ (5, z) is analytic near 2bg + A and uniformly bounded with respect to
|| small enough. Now, assume that the support of g is such that we can choose
g supported on a neighborhood of 2bq + A where the functions z — G4 (s, 2) are
holomorphic. Combining (3.16) with the Green formula, we get

—i(HM) 43¢ m
(3.20) Tr(e (Hm™+ V)tg(H( )—&-%V)Pq,m)

= o [ o™ (o () o ()i
R

Making use of (3.18)—(3.19), we get

2 .
s | 9l @4 )0 = 2 [ gy (G e 1)~ G (e, )

R R
721 (s ,
AT [ ) e (g o) )

1+ 52r(x) it -1
i /Rg(u) e (wqm (52) — ) dp.
Pick € > 0 so small that g(u) =1 for u € [2bg + A — 2¢,2bq + A + 2¢]. Set
C. := (—00,2bg + X\ — €] U {2bg + A + ee™, t € [—7,0]} U [2bg + X + €, +-00),
g =1, peC\R

Taking into account (3.20), bearing in mind that Im wg,,(2) < 0, and applying
the Cauchy theorem, we easily find that

—i(HM) 43¢ m
(3.21) Tr (e MH™ A o(HM) Loy P, L)
=1+ %zr(%))efiwq*m(”)t + 32 I(t; )
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where
N(t:59) 1= 5= [ )€™ (G- Geup) = G- (),
ot 1= g [ g() 7 0 ) ) = 1)~ =700 65) = 1)
Byt ) = — 22D [ ) e ) — ) ) — )7

5

Integrating by parts, we find that
(3.22) |Li(t;0)| =0((1+t)™"™), t>0, j=1,2,3, VneZy,

uniformly with respect to s, provided that |s| is small enough; in the estimate of
I5(t; ») we have taken into account that by Theorem 3.1 we have |Im(wq m,(»))| =
O(5?). Putting together (3.21) and (3.22), we get (3.12).

4. Mourre estimates and dynamical resonances. In this sec-
tion we obtain Mourre estimates for the operator H (™ and apply them combined
with a recent result of Cattaneo, Graf, and Hunziker (see [11]) in order to investi-
gate the dynamics of the resonance states of the operator H ™) without analytic
assumptions.

4.1. Let vy : R — R. Set
(4.1) vj(x3) = :L'?);U(()j)(wg), JjE Ly,

provided that the corresponding derivative v(()j ) of vg is well-defined.

Let » J J
1
A==3 (x?’d—xg + d—xﬁ)

be the self-adjoint operator defined initially on C§°(R) and then closed in L3(R).
Set A:=1, ® A. Let T be an operator self-adjoint in L?(R, x R; ododx3) such
that e*AD(T) C D(T), s € R. Define the commutator [T,iA] in the sense of [21]

and [11], and set adill)(T) := —i[T,iA]. Define recursively
ad ¥ (T) = —i[ad®(T),i4), k>1,

provided that the higher order commutators are well-defined. Evidently, for each
m € Z we have

k
(4.2) i*ad(H™) = 2T @ Hoy + > enjuj, k€ Zy,
j=1
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with some constants ¢y, ; independent of m; in particular, ¢y, = (=1)k. Therefore
the Hy |-boundedness of the multipliers v;, j = 1,...,k, guarantees the H (m)_

boundedness of all the operators adg)(H(m)) ,7=1,... k.
Let J C R be a Borel set, and T be a self-adjoint operator. Denote by
P;(T') the spectral projection of the operator T" associated with .J.

Proposition 4.1. Fixm € Z. Let A € (—2b,0), g € Z, ¢ > m_. Put
(4.3) J=(2bg+ X —0,2bg + X+ 9)

where § >0, 6 < —\/2, and 6 < (2b+ \)/2. Assume that the operators v;(Ho ) +
)71, j = 0,1, are compact. Then there exist a positive constant C > 0 and a
compact operator K such that

(4.4) P, (H™)H™ iAP;(H™) > CP;(H™) + K.

Proof. Let x € C§°(R;R) be such that supp x = [2bg + X — 26, 2bg + X +
26, x(t) € [0,1], Vt € R, x(t) = 1, V¢t € J. In order to prove (4.4), it suffices to
show that

(4.5) XH")H™ AN (H™) = Cx(H™)? + K

with a compact operator K. Indeed, if inequality (4.5) holds true, we can multiply
it from the left and from the right by P ;(H(™)) obtaining thus (4.4) with K =
Py (H™)KP;(H™).
Next (4.2) yields
[H(m),’LA] = ZfL X H()’” — V1.

Therefore,

XHMYH™ Al (H™) = 2x(H™) (Il ® Ho,||> X(H ™) —x (H™ oy (H™)

(4.6) = 2x(H{™) (1L ® Ho,p) X(H™) + 2K = K,

K| = X(H(m)) <I~J_ ® H()’”) X(H(m)) _ X(Hém)) <I~J_ ® H()’”) X(H(gm))’
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Ky = x(H™)v x (H™).

Since the operator vl(Hém) + 1)~! is compact, the operators vy (H™ + 1)~1,
vix(H (m)), and Ky are compact as well. Let us show that K is also compact.
We have

Ky = (x(H™) = x(H™)) (ﬁ ® Ho,||) X(H ™)+

(4.7) X(HE™) (10 @ Hoy) (o(H™) = x(H™)),
By the Helffer-Sjostrand formula and the resolvent identity,

m 1 ox
(H) = x(H™) = —— | 2z

7 s 2 Y(H™ — z)*lvo(Hém) — 2) " tdxdy.

0
Since the support of ¥ is compact in R?, and the operator 8—>_<(H(m) —z)_lvo(Hém)
z

— 2)71 is compact for every (x,y) € R? with y # 0, and is uniformly norm-

bounded for every (z,7) € R?, we find that the operator x(H (™)) — X(Hém)) is
compact. On the other hand, it is easy to see that the operators

(2 ) ) = (1 ) 002700+ )

(fL ® H07||> (H™ 1)1 — v(H™ + 1)~ (H™ + 1)x(H™)

and
(™) (T @ Hoy) = (™)™ + 0" + 17 (Fee Hoy)

are bounded. Taking into account (4.7), and bearing in mind the compact-
ness of the operator y(H ™)) — X(Hém)), and the boundedness of the operators
<I~L ® Ho,u) x(H™) and X(Hém)) (Il ® Ho,\\)» we conclude that the operator
K is compact.

Further, since § < —\/2, and hence 2bj > 2bq + A + 24 for all j > ¢, we
have

X(Ho, +2bj) =0, j=>gq.
Therefore,
q—1

XHT) = 3" B x(Hoy +2b) = > Bim ® X(Ho, + 2bj),

j=m_ j=m_
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and
(48)  x(e{™) (1L Hyy) x(H }: Bim © (x(Hoy +2b§)*Ho ) -
Jj=m_
By the spectral theorem,
j=m_
q—1
> Z q—17 +)‘_25)pjm®X(HO||+2b])
j=m_
q—1
(4.9) (2b+A—=20) > Pjom © X(Hoy +265)° = Crx(Hy™)?
Jj=m_

with Cy :=2b+ A — 2§ > 0. Combining (4.6), (4.8), and (4.9), we get
(410)  x(H™)[H™ (A (H™) > 20, (H™)? + 20, K3 + 2K, — K

where K3 := )((H(gm))2 —x(H™)? is a compact operator by the Helffer-Sjostrand
formula. Now we find that (4.10) is equivalent to (4.5) with ¢' = 2C; and
K =2C1K3+2K, — Ky. O

Remark. Mourre estimates for various magnetic quantum Hamiltonians
can be found in [18, Chapter 3.

4.2. By analogy with (4.1) set

07V (0,x3)

. jezZ..
8x§

V}(Qa .133) = 333

We have .
i*ad® )(V) = ch,jvj

j=1
with the same constants cy, ; as in (4.2).
We will say that the condition O,, v € Z., holds true if the multipliers
by vj, j = 0,1, are Hp-compact, and the multipliers by v;, j < v, are Hy -
bounded. Also, for a fixed m € Z we will say that the condition C, ,,, v € Z,
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holds true if the condition O,, is valid, the multiplier by V is H{™-bounded with

zero relative bound, and the multipliers by V;, j =1,...,v, are Hém)—bounded.
By Proposition 4.1 and [11, Lemma 3.1], the validity of condition C, ,
with v > 5 and a given m € Z guarantees the existence of a finite limit F ,,,(2bg+
A) with ¢ > m_ in (2.12), provided that (2.3) holds true, and A is a discrete
eigenvalue of Hy | + vo.
Combining the results of Proposition 4.1 and [11, Theorem 1.2], we obtain
the following

Theorem 4.1. Fixm € Z, n € Z,. Assume that:
e the condition C, p, holds with v > n +5;
e inequality (2.3) holds true, and X is a discrete eigenvalue of H ;

o inequality (2.13) holds true, and hence the Fermi Golden Rule Fq., x is
valid.

Then there exists a function g € C§°(R;R) such that suppg = J (see (4.3)),
g =1 near 2bq + A, and

—i(H(™) 45 m
(4.11) (e HH AN G (HM) L 5 V)Dy 0, By )
= a(%)eii)‘q’m(%)t +b(s,t), t>0,

where

(4.12) Agm(s) =2bg + A+ 2V @y 1, Py )
— 32 Fy i (2bq + ) + 0g.m. v (3¢2), 5 — 0.

In particular, we have Im Ay, (22) < O for || small enough. Moreover, a and b
satisfy the asymptotic estimates

la(s) - 1] = 0(2),
b, t)] = 0G| In 5#l|(1 + £) ™),
b, )] = OGA(1 + 1)~ D),

as » — 0 uniformly with respect to t > 0.

We will say that the condition C,, v € Z,, holds true if the condition O,
is valid, the multiplier by V is Hp-bounded with zero relative bound, and the
multipliers by V;, j = 1,...,v, are Hp-bounded.
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For m € Z and ¢ > m_ denote by éq’m : R? — C the function written in
cylindrical coordinates (g, ¢, x3) as ®ym (0, ¢, 3) = (27r)7éeim¢<1>qym(g,az3).

Corollary 4.1. Fizn € Z,. Assume that:
e the condition C, holds with v > n + 5;

e inequality (2.3) is fulfilled, and X is a discrete eigenvalue of Hg | + vo;

e for each m € Z, ¢ > m_, inequality (2.13) holds true, and hence the Fermi
Golden Rule Fypm x is valid.

Then for every fized q € Zy, and each m € {—q+ 1,...,0} UN with N :=
{1,2,...}, we have

(e HG(H + 5V) By im, Bym) 12(me) = a(3)e Pom I 4 (5 1), >0,

where g, Agm(3), a, and b are the same as in Theorem 4.1.

Remarks. (i) If ¢ > 1, then Corollary 4.1 tells us that typically the
eigenvalue 2bg+ A of the operator H, which has an infinite multiplicity, generates
under the perturbation >V infinitely many resonances with non-zero imaginary
part. Note however that 2bq + A is a discrete simple eigenvalue of the operator
H(9 and therefore the operator H(~9 + 5V has a simple discrete eigenvalue
provided that |s| is small enough. Generically, this eigenvalue is an embedded
eigenvalue for the operator H + »V.

(ii) If ¢ = 0, then X is an isolated eigenvalue of infinite multiplicity for
H. By Theorem 6.1 below, in this case there exists an infinite series of discrete
eigenvalues of the operator H + V which accumulate at A, provided that the
perturbation V has a definite sign.

5. Sufficient conditions for the validity of the Fermi Golden
Rule. In this section we describe certain classes of perturbations V' compatible
with the hypotheses of Theorems 3.1-4.1, for which the Fermi Golden rule F ,,, »
is valid for every m € Z and ¢ > m_. The results included are of two different
types. Those of Subsection 5.1 are less general but they offer a constructive
approximation of V' by potentials for which the Fermi Golden Rule holds. On
the other hand, the results of Subsection 5.2 are more general, but they are more
abstract and less constructive.

5.1. Assume that vg € C*°(R) satisfies the estimates

(5.1) W ()| = 0y ((x)"™ ), zeR, jeZy, my> L
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Then condition O, is valid for every v € Z. Moreover, in this case the eigenfunc-
tion v (see (2.4)) is in the Schwartz class S(R), while the Jost solutions y;(+; k),
j =1,2, belong to C*°(R) N L*(R).

Suppose that (2.3) holds true, and the discrete spectrum of the operator
H) consists of a unique eigenvalue A. Fix m € Z, and g € Z4 such that ¢ > m_.
Then it is easy to check that we have

Tm Fy (20 + A) =

(5.2)
q—1
IO

1=1,2 j=m_

In what follows we denote by L% (R4 ; odo) the set of real functions W € L?(R,;
odo).

2

/0 h /R im0 g (Q)(3) U133 26(q — ) + NV (0, 23)dz30do

Lemma 5.1. The set of functions W € L% (R ; odo) for which

(5.3) /0 T i ()P0 ()W ()ado # 0

for every m € Z, ¢ > m_, is dense in L} (R; odp).

Proof. Since the Laguerre polynomials L((JO), q € Z4, (see (2.2)) form an

orthogonal basis in L?(R ;; e~*ds), the set of polynomials is dense in L2(R; e~*ds).
Pick W € L%_(Ry; odo). Set w(s) := W(1/2s/b)e*/2, s > 0. Evidently, w = @ €
L?(Ry ;e *ds). Pick ¢ > 0 and find a non-zero polynomial P with real coefficients

such that
be?

/0 e (P(s) —w(s))*ds < e

Note that the coefficients of P could be chosen real since the coefficients of the
Laguerre polynomials are real. Changing the variable s = bo?/2, we get

2

(5.4) | (Pore = wie)" sdo < T

Now set Wy (o) := P(bg?/2)e %"/ p € R, o € (0,00), where the real polyno-
mial P is fixed and satisfies (5.4). We will show that the set
(5.5)

A= {Ot € (O, OO) | / @qfl,m(g)cpq,m(@)wa(g)gd@ 7& 0, Vm € Z, Vq > m}
0
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is dense in (0, 00). Actually, for fixed m € Z and g > m_, we have

/0 T rtm(0)Pam(@)Wa()ode = Ty m(v(a))

where I1,, ,, is a real polynomial of degree 2¢+m+1+deg P, and v(a) := (14+a)~*
Note that 7 : (0,00) — (0,1) is a bijection. Denote by Ny, the set of the zeros
of II; , lying on the interval (0,1). Set

N = U U Nym.-

meZ qg=m_—+1

Evidently, the sets A" and v~ !(N) are countable, and A = (0,00) \ v~ }(N).
Therefore, A is dense in (0,00). Now, pick ag € A so close to 1/2 that

2

00 2
(5.6) P(bo?/2)? <e_b@2/4 — e_o‘onQ/Q) odop < gz
0

Assembling (5.4) and (5.6), we obtain

(5.7) IW = Waoll L2 ;0d0) < €-

Denote by K (R) the class of real-valued continuous functions u : [0, 00) —
R such that lims o u(s) = 0. Set [|ul| g gy = maxye(o o) |u(s)]-

Lemma 5.2. The set of functions W € K(R) for which (5.3) holds true
for every m € Z, ¢ > m_, is dense in K(R).

Proof. By the Stone-Weierstrass theorem for locally compact spaces,
we find that the set of functions e **P(s), s > 0 where a € (0,00), and P is a
polynomial, is dense in K (R).

Let W € K(R); then we have u € K(R) where u(s) := W(/2s/b), s > 0.
Pick ¢ > 0 and find o € (0, 00) and a polynomial P such that [W—- W | x®) < £/2
where, as in the proof of Lemma 5.1, Wa(o) = e %2*/2P(bg%/2). Next pick
ap € A (see (5.5)) such that [[Wy — Wa,llx®) < /2. Therefore, similarly to
(5.7) we have ||[W — Wy,llx®)y <e. O

Fix v € Zy. We will write V € D, if

2
;0V (o,
Wit =3 [ (A2 e <
3
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Note that if O, holds, and V € D,, then C, is valid.
Theorem 5.1. Assume that:

o vy € C°(R) satisfies (5.1);
e inequality (2.3) holds true;
e we have agisc(H)) = {A}.

Fix v € Z. Then the set of real perturbations V : Ry x R — R for which the
Fermi Golden Rule Fy, x 1s valid for each m € Z and ¢ > m_, is dense in D,,.

Proof. We will prove that the set of perturbations V for which the
integral
(5.8)

@mwizRg/ /wquam%m@wu@%um%+AW@waww@
0 R

does not vanish for each m € Z and ¢ > m_, is dense in D,. By (5.2) this will
imply the claim of the theorem. Set

w(z) == Y(x)ReVi(z;2b + A), z €R.

Note that 0 # w = w € S(R). Set
Vilo) = [ wlan)V(e.os)drs, o€ Ry
R

Evidently, V| € L (Ry;odo). Fix € > 0. Applying Lemma 5.1, we find V, €
L% (R4; odp) such that

(5.9) Amwlm@%m@%@mw¢o

for every m € Z, ¢ > m_, and

(5.10) HVJ_ — vJ—HL2(R+;QdQ) < €.
Set
- 1% 1%
(511) V(Q7x3) = M + V(Q7x3) - M: o€ R—l—: T3 € R.
||WHL2(R) ”W||L2(R)
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We have

V) = [ 00 1m(@pun(Vs(2)ede £ 0
for every m € Z, ¢ > m_. On the other hand, (5.10) and (5.11) imply

Yo JpwP WV (@) de

IV -V|3, <&
P HWH2L2(R)

Fix again v € Z. We will write V € £, if V : R, — R is continuous and

tends to zero at infinity, and the functions xé%,
X

If O, holds, and V' € &, then C, holds true. For %/ € &, define the norm

j=1,...,v, are bounded.

v

Ve, ==Y sup

=0 (0,z3)€RL xR

j OV (0,73)
6xé

xT

Arguing as in the proof of Theorem 5.1, from Lemma 5.2 we obtain the
following

Theorem 5.2. Assume that vg satisfies the hypotheses of Theorem
5.1. Fixv € Z,. Then the set of perturbations V : Ry x R — R for which
the Fermi Golden Rule Fy ., » s valid for each m € Z and ¢ > m_, is dense
n&,.

5.2. For ‘H a subspace of L"(R), let us introduce the space
(12) H' = {we S(R) | Vx € H, / w(z)x(x)dz = 0}.
R

Clearly, if C°(R) C H then HT = {0}. This property holds yet if H*°(Sy) C
H where H>°(Sp) is the set of smooth bounded functions on R admitting
analytic extension on Sp. It is enough to note that if w(zg) # 0 then for
C sufficiently large, the function x(z3) := e~ Cles—20) ig ip H®(Sp) and
satisfies [ w(x)x(z)dz # 0.

Theorem 5.3. Assume that vg satisfies the hypotheses of Theorem
51. Letp>1,r>1,6 € R.

Let H be a Banach space contained in L"(R) such that the injection
H — L"(R) is continuous, and H' = {0}.

Then the set of real perturbations V : Ry x R — R, for which the
Fermi Golden Rule F ,y, » is valid for each m € Z and ¢ > m_, is dense in

LP(Ry, (0)° odo; H).
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Proof. As in the case of Theorems 5.1-5.2, we will prove that the
set of perturbations V' for which the integral (5.8) does not vanish for each
m € Z and ¢ > m_, is dense in LP(R ., (0)° odo; H).

Let

Mama =V € LP(Ry, (o)’ odos H); Ioma(V) # 0}
Since for 1/p’ +1/p=1and 1/r' +1/r =1 we have
\Iq,m,,\(V)] < H‘Pq—l,m%m\‘Lp’(R+,<g>—5gdg;R) HWHLT'(R) HVHLP(R+,<Q>5gdg;Lr(R))7

the continuity of the injection H — L"(R) implies that M, x is an open
subset of the Banach space LP(R, (0)° odo; H). Then according to the Baire

lemma, we have only to check that each M ,, » is dense in LP(R ., (0)°0do; H).

Let V € LP(Ry, (0)°odo; H) \ Mgm,-

Since 0 # w = W € S(R), the assumptions on H imply the existence
of a ® € H such that

w(xsg)®(x3)dxs # 0.
R

Moreover, ¢ — @q—1,m(0)Pqm(0)o is a product of polynomial and exponen-
tial functions. Then there exists po € Ry such that ¢g—1.m(00)¢q,m(00)00 #
0, and for xo supported near gg, we have

/Ooo @q*l,m(@)wq,m(g)xo(g)gdg £ 0.

Consequently, {V(g, x3) + %Xo(g)é(xg)}neN is a sequence of functions in
Mg m tending to V' in LP(R,, (0)°0do;H). O

6. Singularities of the spectral shift function.

6.1. Suppose that vy satisfies (2.5). Assume moreover that the
perturbation V : R3 — R satisfies (2.11) with m; > 2 and m3 = mgy > 1.
Then the multiplier by V is a relatively trace-class perturbation of H. Hence,
the spectral shift function (SSF) &(-; H + V, H) satisfying the Lifshits-Krein
trace formula

Te(f(H + V) — () = /R F(B)E(E:H + V,H)E, feCE(R),

and normalized by the condition §(E; H +V,H) =0 for E < info(H +V),
is well-defined as an element of L!(R; (E)"2dE) (see [24], [23]).
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If E < info(H), then the spectrum of H + V below E could be at
most discrete, and for almost every E < inf o(H) we have

§(B;H+V,H) = —tankP(_ g)(H + V).

On the other hand, for almost every E € 0,.(H) = [0,00), the SSF &(E; H +
V,H) is related to the scattering determinant det S(E;H + V, H) for the
pair (H 4+ V, H) by the Birman-Krein formula

det S(E; H 4+ V, H) = ¢ 2m&(EHAV.H)

(see [6]).
Set

Z:={E€R|E=2bq+ p, q € Zy, p € ogisc(H)) or p = 0}.

Arguing as in the proof of [9, Proposition 2.5|, we can easily check the
validity of the following

Proposition 6.1. Let vy and V satisfy (2.5), and (2.11) with m; >
2 and mg = mg > 1. Then the SSF &(; H + V, H) is bounded on every
compact subset of R\ Z, and is continuous on R\ (ZU o,(H +V)), where
op(H + V) denotes the set of the eigenvalues of the operator H + V.

In what follows we will assume in addition that
(6.1) 0<V(x), x€eR?

and will consider the operators H + V' which are sign-definite perturbations
of the operator H. The goal of this section is to investigate the asymptotic
behaviour of the SSF &(-; H = V, H) near the energies which are eigenvalues
of H of infinite multiplicity. More precisely, if (2.3) holds true, and A €
odisc(H| ), we will study the asymptotics as n — 0 of {(2bg+A+n; HEV, H),
q € Z4, being fixed.

Let T be a compact self-adjoint operator. For s > 0 denote

nt(s;T) :=rank P, o) (£T), nu(s;T) :=n4(s;T) +n_(s;T).

U(X1) = /RV(XLSUS)T/J(%)QdSU?n X, eR?,

the eigenfunction 1 being defined in (2.4).
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Theorem 6.1. Let vy and V satisfy (2.5), (2.11) with m; > 2 and
mo =m3 > 1, and (6.1). Assume that (2.3) holds true, and \ € oqgisc(H)).
Fiz g € Zy. Then for each ¢ € (0,1) we have

(6.2) ni((1+e)mpgUpq) +O(1) < ££(2bg + AL n; H £V, H)
<ni((1 = e)n;pgUpg) + O(1),

(6.3) £2bg+ AT, H+V,H) =0(1),

asn | 0.

Applying the well known results on the spectral asymptotics for com-
pact Berezin-Toeplitz operators p,Up, (see [29], [32]), we obtain the follow-
ing

Corollary 6.1. Assume the hypotheses of Theorem 6.1.
(i) Suppose that U € C*(R?), and

U(X1) = uo(X1/IXLDIXL[T*(T+0(1)), [Xi]— oo,

IVU(X )| < Ci{X.)™ ™, X, eR?

where o > 2, and ug s a continuous function on S' which is non-negative
and does not vanish identically. Then we have

£(2bg+ A tn;HLV,H) :j:% X eRYU(X)) >n}| (1+0(1) =

ey 2o L [ ug(s)eds (14 0(1)), 710,
4 st

where |.| denotes the Lebesque measure.

(ii) Let U € L™(R?). Assume that
IU(X1) = —alX. (4 o)), [X1| oo,
for some 3 € (0,00), p € (0,00). Then we have

E2bg + A+ H+V, H) = +p5(n) (1+0(1)), 7010, B e(0,00),
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where
b 8
2Ml/b,|ln77| it 0<pB<1,
1 . _
pp(n) = m“m)\ if B=1, ne(0,e ).
ﬁfl(lnlnn\)_l\lnn\ if 1<p8<o0,

(iii) Let U € L™ (R?). Assume that the support of U is compact, and
that there exists a constant C' > 0 such that U > C' on an open non-empty
subset of R?. Then we have

£(2bg + A £ H £V, H) = £(ln|Inn) " Iny|(1 +o(1)), 7] 0.

Remarks. (i) The threshold behaviour of the SSF for various
magnetic quantum Hamiltonians has been studied in [16] (see also [30], [31]),
and recently in [8]. The singularities of the SSF described in Theorem 6.1
and Corollary 6.1 are of somewhat different nature since 2bg+\ is an infinite-
multiplicity eigenvalue, and not a threshold in the continuous spectrum of
the unperturbed operator.

(ii) By the strict mathematical version of the Breit-Wigner repre-
sentation for the SSF (see [26], [27]), the resonances for various quantum
Hamiltonians could be interpreted as the poles of the SSF. In [7] a Breit-
Wigner approximation of the SSF near the Landau level was obtained for
the 3D Schrodinger operator with constant magnetic field, perturbed by a
scalar potential satisfying (2.11) with m > 2 and m3 > 1. Moreover, it was
shown in [7] that typically the resonances accumulate at the Landau levels.
It is conjectured that the singularities of the SSF £(-; H+V, H) at the points
2bg+ A, q € Z, are due to accumulation of resonances to these points. One
simple motivation for this conjecture is the fact that if V' is axisymmetric,
then the eigenvalues of the operators p,Upg, q € Z4, appearing in (6.2) are
equal exactly to the quantities (V®gm, Pgm) 2R, xR;ododas), M = —G; OC-
curring in (3.1) and (4.12). We leave for a future work the detailed analysis
of the relation between the singularities of the SSF at the points 2bg+ A and
the eventual accumulation of resonances at these points. Hopefully, in this
future work we will also extend our results of Sections 3 — 5 to the case of
non-axisymmetric perturbations V.
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(iii) As mentioned above, if A € ogisc(H)), then A is an isolated
eigenvalue of H of infinite multiplicity. Set

. sup{p € o(H), p<A} if X>info(H),
T | —oo if A=info(H),
Ay i=inf{p € o(H), pn>A}

By Pushnitski’s representation of the SSF (see [28]), and the Birman-Schwin-
ger principle for discrete eigenvalues in gaps of the essential spectrum, we
have

§N—mH = ViH) = —no (V2 (H = A 4+) " 'V!/?) =
—rank Py __,)(H =V)+0(1), nl0,
EN+m H 4+ Vi H) = n (LVI2(H = A =)~V =
rank Py 2 (H + V) +0(1), n]0.

Then Theorem 6.1 and Corollary 6.1 imply that the perturbed operator H —
V (resp., H4+V) has an infinite sequence of discrete eigenvalues accumulating
to A from the left (resp., from the right).

6.2. This subsection contains some preliminary results needed for
the proof of Theorem 6.1.

In what follows we denote by S; the trace class, and by S the
Hilbert-Schmidt class of compact operators, and by || - ||; the norm in S,
j=1,2.

Suppose that n € R satisfies

(6.4) 0 < |n| < min {2b + A, %dist (A a(H)\{A}) }

Note that inequalities (6.4) combined with (2.3), imply
A-F?]E(—Qb,()), A+77¢U(HH), diSt()\—Fn,O'(HH)):’n‘.

Set Pj =p;® I, j € Zy. For z € Cy := {¢ € Cllm( > 0}, j € Zy, and
W= V12 put
Ty(=) = WPy (H — 2)7'W.

Proposition 6.2. Assume the hypotheses of Theorem 6.1. Suppose
that (6.4) holds true. Fix q € Z4. Let j € Zy, j < q. Then the operator-
norm limit

(6.5) Tj(zbq+/\+n):lgngj(2bq+>\+n+z‘5)
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exists in L(L*(R3)). Moreover, if j < q, we have Tj(2bq + X+ n) € S1, and

(6.6) |T5(20g + A +n)||1 = O(1), n—0.

Proof. We have

(6.7) Tj(z) = M(tL; @t (2 —2bj))M, zeCy,

M = W (X, z3)(X )™/ (x3)ms/2,
ty o= (X)) T Pp(X ) T2 e Ty,
(Q) i= (w3) ™2 (H) = ()" Hug)™™/%, (€ Cy.

Since the operators M and ¢, are bounded, in order to prove that the limit
(6.5) exists in £L(L%(R3)), it suffices to show that the operator-norm limit

(6.8) l(slﬁ)ltH(Qb(q—]) +)\+77+i(5)

exists in L(L?(R)). If j < g, the limit in (6.8) exists due to the existence of
the limit in (2.6). If j = g, the limit in (6.8) exists just because A\+n € o(H)).
Further, set

t,0(C) = (ag) A (Ho = Q) ws) ™%, (e T\ {0}

For E =2b(q — j) + A + n, from the resolvent equation we deduce

(6.9) ty(B) = tyo(E)(I| — Mt(E))

where M := vg(z3)(x3)™ is a bounded multiplier. By [9, Section 4.1], the
operator t| o(E£) with £ € R\ {0} is trace-class, and we have

(6.10) (1+ EYY

[),0(E)I < \/—

with ¢ independent of E.
Assume j < g. Then (6.9), (6.10), and (2.7) imply #(2b(q — j) + A+
n) € S1, and

(6.11) 1£)(20(q = 4) + A+ n)lL = O(1), n—0.
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Finally, for any [ € Z; we have t; ; € 51, and

b —m
(6.12) It all = 2—/ (Xp)™mdXy
™ JR2

(see e.g. [9, Subsection 4.1]). Bearing in mind the structure of the operator
Tj (see (6.7)) and the boundedness of the operator M, we find that T’;(2b(q—
J)+A+mn) €Sy, and due to (6.11) and (6.12), estimate (6.6) holds true. O

Now set P := >372 .1 pj, ¢ € Ly, the convergence of the series
being understood in the strong sense. For z € C set

— -1p+
T (z):=W(H —2)" ' P/W.

Proposition 6.3. Assume that vg, V, and \, satisfy the hypotheses
of Theorem 6.1, and n € R satisfies (6.4). Fiz q € Z4. Then the operator-
norm limit

(6.13) TF(2bg+ X +1) = l(siﬁ)quJr(qu—i-)\—i-n—f—i(S)

exists in L(L*(R?)). Moreover, T, (2bq + X +1) € Sa, and

(6.14) T (26 + A+ n)ll2 = O(1), n—0.

Proof. Due to (2.3), the operator-valued function
Cyoz+— (H - Z)flqur — L(L*(R?))

admits an analytic continuation in {¢ € C|Re( < 2bq}. Since A+n < 0, and
W is bounded, we immediately find that the limit in (6.13) exists. Evidently,
the operator-valued function Cy 3 z — (Ho — 2)"'P;f — L(L*(R?)) also
admits an analytic continuation in {¢ € C|Re( < 2bq}, and for F = 2bq +
A -+ n we have

(6.15) T (E) =W(Ho— E)"'P/(W —wo(H — E)"'PW).

Arguing as in the proof of [16, Proposition 4.2], we obtain
W(Ho—2bqg— A —n)"' P} €S,

and

(6.16) IW (Ho —2bg = X —=m) "' B2 =O(1), n—0.
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Since A < 0, we have
(6.17) HW—UO(H—qu—)\—n)_lP;'WH =0(1), n—0.

Putting together (6.15) and (6.16)-(6.17), we obtain (6.14). O
6.3. In this subsection we prove Theorem 6.1.
Suppose that 1 € R satisfies (6.4). Fix ¢ € Z. Set
T(2bq + A +n) := T, (2bg+ X +n) + Ty(2bg + XA +n) + T,7 (2bg + X + 1),

where
T, (2bg+ A +n) =D T;(2bg + A+ ).
J<q
Note that the operators T, (2bg + A +1) and T." (2bq + X +n) are self-adjoint.

By Pushnitski’s representation of the SSF for sign-definite perturba-
tions (see [28]), we have

(6.18) €(2bg+ A+ H £V, H)
1 ds
= j:;/anF(l, ReT'(2bq + XA+ 1) + sImT'(2bq 4+ X + n))m
By (6.18) and the well-known Weyl inequalities, for each € € (0,1) we have

ng(l+Ty(2bg + A +1)) — Re(n) < £E£2bg + A +n; H+V, H) <

(6.19) ny(1—e;T,(2bg + A+ 1)) + Re(n)

where

Re(n) =

3
ns(e/3; Re Tq’(2bq+k+n))+n*(6/3;TJ(2bq+A+n))+gIITJ(qu+A+77)II1 <

6 9
(6:20) 27 IT5(2ba + A+ )l + 5Ty (2ba + A+ m)lf = O(1), 17— 0,

Jj<q

due to Propositions 6.1-6.2.
Next, set

7o =Wipg@p)W, T,(A+n):=W(pg® (Hj—X—n)"" (I —p))W,
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provided that n € R satisfies (6.4). Evidently,
Ty(2bg + A +n) = =074+ Ty(\ + 1)
Applying again the Weyl inequalities, we get

n(s(1+ e)lnl; (signn)7q) — nu(se; Ty(A +n)) < n(s; Ty(2bg + A + 1)) <

(6.21) nx(s(1 = €)|nl; (sign n)7q) + na(se; Ty(A + 1))

for each s > 0, € € (0,1), and 7 satisfying (6.4). Note that since p,Up, > 0
we have

(s _ [ ni(slnlspgUpq) if 1 >0,
02 nalolal i 7 = { o+ GPIETE

for every s > 0. Further,
(6.23) Ty +m) = M(t1q @ (A +n)M
where
B A+ 1) = () T2 (Hy = A=) 7N (I — py)(ws) T
Obviously,
(6.24) [Ey A+ < EHy = A=)~ Ty —ppll = O01), 7 — 0.

On the other hand, similarly to (6.9) we have
(6.25) ]
t(A+m) = ¢ 0(Am) (1) — MIy(A+n)) = (@s) "3/ 2(Hy = A—n) ~'p) (z3) ~™/2.

—mg/2

Since pj (73) is a rank-one operator, we have

() "3/ (Ho — X — ) py(as) =™/ |ly
< |[(ws) ™™/ (Hy = A — )~ llpy (w3)~™/2|| <

(6.26) /R<x>m3¢(x)2da; A+n"t=0(1), n—o.

213
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Putting together (6.25), (6.10), (6.24), and (6.26), we get

(6.27) ey A+ )l =0(1), n—0,

which combined with (6.23) and (6.12) yields

(6.28) ne(s; Ty +n) < s7HT,(A+0)] = 0(1), n—0.

Now (6.2) — (6.3) follow from estimates (6.19) — (6.22), and (6.28).
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