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Abstract. In this paper we study an ODE in the complex plane. This is a
key step in the search of new necessary conditions for the well posedness of
the Cauchy Problem for hyperbolic operators with double characteristics.

1. Introduction and statements. The purpose of this paper is
to study the existence of solutions, bounded on the real axis, for an ordinary
differential equation (ode). It is a well known fact that many problems in the
theory of PDEs reduce to the study of an ode; the problem that motivates us here
is the well posedness of the Cauchy problem for a class of hyperbolic operators
with double characteristics.
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More specifically it is known, see e.g. [3] and [1], that the Cauchy problem
in the presence of double characteristics is not well posed if there are bicharacter-
istic curves issuing from a simple characteristic point and tending to some double
characteristic point. We say that in this case the Hamilton field gives rise to an
unstable dynamical system.

In order to show that the Cauchy problem in such a case is not well
posed in C∞ one has to construct an asymptotic solution violating the a priori
estimates implied by the well posedness of the Cauchy problem. This is done
by showing that a certain ode has a solution which is bounded on the real axis
(actually exponentially decreasing at infinity) if the complex parameter appearing
in the equation is suitably chosen. Sometimes this parameter is called a nonlinear
eigenvalue.

From a geometrical point of view we know that the Hamilton system is
unstable if the principal symbol of the operator is transversally non degenerate
and there is a Jordan block of size 4 in the canonical form of the Hamilton matrix,
which can roughly be thought of as dHp, where p is the principal symbol and Hp

its Hamilton field. There are though other more complex situations where one
may have an unstable Hamilton vector field, exhibiting higher degeneracies or a
non constant rank of the symplectic form.

In this paper we study the equation

(1.1) u′′(x) = (x2k+1 + zxk)u(x),

where z ∈ C and k = 1, 2. The case k = 1 corresponds to a neat transversally
non degenerate situation, while k > 1 corresponds to higher order degeneracies.

It is a striking phenomenon that the proof for k > 1, actually k = 2,
is much more difficult than that where k = 1. The whole proof boils down
to showing that the Wronskian of two linearly independent solutions—an entire
function of z—vanishes. In the k = 1 case some simple complex analysis is
enough, while if k = 2 we must estimate the order of the entire function and use
some supplementary arguments. This is done following an idea of Christ [6] (see
also [8]).

The statement of our result is given in Theorem 3.2.2 at the end of the
paper. We have no doubts that an analogous result should hold for arbitrary k,
but as of now the proof seems to be much longer and difficult.

2. An upper bound for the order of an entire function. Aim
of this section is to study the exponential order of growth of the Wronskian of
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equation (1.1), which can be written as

(2.1) Pz(u) =

(

−
d2

dx2
+ pz(x)

)

u(x),

with pz(x) = x2k+1 + zxk. We define:

(2.2) φz(x) =
2

2k + 3
x

2k+3
2 + zx

1
2 .

Then φ′z(x) = x
2k+1

2 +
1

2
zx−

1
2 . To keep the notation simple we omit the z

parameter and write just u, P, p, φ. We see that p(x) = φ′2(x) −
1

4
z2x−1. Let

G(x) =
1

φ′1/2(x)
e−φ(x)

and
A = A(z) = |z|

2
1−δ ,

where δ < 1 and will be chosen suitably later. Let ψ = logG = −φ −
1

2
log φ′

and D =
d

dx
+ ψ′, D̃ = −

d

dx
+ ψ′, where we choose the principal branch of the

complex logarithm. Then we have:

(2.3) DD̃ =

(

d

dx
+ ψ′

)(

−
d

dx
+ ψ′

)

= −
d2

dx2
+ ψ′′ + ψ′2,

where ψ′ = −φ′ −
1

2

φ′′

φ′
, ψ′′ = −φ′′ −

1

2

(

φ′′

φ′

)′

.

So that:

(2.4) ψ′′ + ψ′2 = −φ′′ −
1

2

(

φ′′

φ′

)′

+

(

φ′ +
1

2

φ′′

φ′

)2

= E + φ′2 = E + p(x) +
1

4
z2x−1,

where we put E = −
1

2

(

φ′′

φ′

)′

+
1

4

(

φ′′

φ′

)2

.

Thus

(2.5) DD̃ = −
d2

dx2
+ p(x) + E +

1

4
z2x−1 = P + E +

1

4
z2x−1.
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Let us compute

PG =

(

−
d2

dx2
+ p

)(

1

φ′1/2(x)
e−φ(x)

)

.

We have:

−
d2

dx2

(

1

φ′1/2(x)
e−φ(x)

)

= −

(

1

(φ′)1/2

)′′

e−φ + 2φ′
(

1

(φ′)1/2

)′

e−φ −
e−φ

(φ′)1/2
(φ′2 − φ′′)

And thus

(2.6)

(

−
d2

dx2
+ p(x)

)

G

= −

(

1

(φ′)1/2

)′′

e−φ + 2φ′
(

1

(φ′)1/2

)′

e−φ −
e−φ

(φ′)1/2
(φ′2 − φ′′)

+ φ′2
1

(φ′)1/2
e−φ −

1

4
z2x−1 1

(φ′)1/2
e−φ

= −

(

1

(φ′)1/2

)′′

e−φ −
1

4
z2x−1 1

(φ′)1/2
e−φ

= −(φ′)1/2(
1

(φ′)1/2
)′′G−−

1

4
z2x−1G

Now
(

1

(φ′)1/2

)′′

(

1

(φ′)1/2

) = (φ′)1/2
(

1

(φ′)1/2

)

= O(x−2).

So that

|PG| ≤ C|x|−2|G(x) +
1

4
|z|2|x|−1|G(x).

Let A < x < y and denote by uy(x)(= u(x)) the solution of:

(2.7)

{

Pu = PG, A < x < y

u(y) = u′(y) = 0.
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Set

v = D̃u

e−ψ
d

dx
eψv = Dv = DD̃u

= Pu+Eu+
1

4
z2x−1u,

then, because v(y) = 0, for A ≤ s ≤ y we may write:

(2.8) eψ(s)v(s) =

∫ s

y
eψ(t)(PG(t) +Eu+

1

4
z2t−1u)dt.

From (2.8) we then deduce that

|v(s)| ≤ |e−ψ(s)|

∫ s

y
|eψ(t)|[|PG(t)| + |Eu| +

1

4
|z2|t−1|u|]dt.

Lemma 2.1. If x ≥ |z|
2

1−δ we have

|φ′(x)| ∼ x
2k+1

2 .

The proof is straightforward and is left to the reader. Thus, due to Lemma
2.1 we have that:

|e−ψ| = |
1

G
| = |(φ′)1/2||eφ| . x

2k+1
4 |eφ|

|eψ| = |G| . x−
2k+1

4 |e−φ|,

with suitable constants.

The function v can be then estimated as follows:

(2.9) |v(s)| ≤ s
2k+1

4 |eφ|

∫ y

s
t−

2k+1
4 |e−φ(t)|[Ct−2|G(t)

+
1

4
|z|2t−1|G(t)| +Ct−2|u(t)| +

1

4
|z|2t−1|u(t)|]dt =

4
∑

1

Ij ,
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and

I1 = Cs
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
4 |e−φ(t)|Ct−2|G(t)dt

≤ Cs
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
4 |e−φ(t)|t−

2k+1
4

−2|e−φ(t)|dt

≤ Cs
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
2

−2|e−2φ(t)|dt

≤ Cs
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
2

−2 1

(−2Reφ)′
(−2Reφ(t))′e−2 Reφ(t)dt.

As above (Reφ)′ ∼ Reφ′ ∼ x
2k+1

2 , so that

I1 ≤ Cs
2k+1

4 |eφ(s)|

∫ y

s
t−(2k+1)−2(−2Reφ(t))′e−2 Reφ(t)dt

≤ Cs
2k+1

4 |eφ(s)|s−(2k+1)−2|e−2φ(s)|

= s−
3(2k+1)

4
−2|e−φ(s)|.

I2 = C|z|2s
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
4 |e−φ(t)|t−1|G(t)dt

≤ C|z|2s
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
2

−1|e−2φ(t)|dt

≤ C|z|2s
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
2

−1 1

(−2Reφ)′
(−2Reφ)′e−2 Reφ(t)dt

≤ C|z|2s
2k+1

4 |eφ(s)|s−(2k+1)−1|e−2φ(s)|

= C|z|2s−
3(2k+1)

4
−1|e−φ(s)|.

But |z|2 ≤ s1−δ, so that

I2 ≤ Cs−
3(2k+1)

4
−δ|e−φ(s)|.

Let us now estimate I3:

I3 = Cs
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
4 |e−φ(t)|t−2|u(t)|dt

= Cs
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
4

−2|e−φ(t)u(t)|dt.
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Finally:

I4 = Cs
2k+1

4 |eφ(s)|

∫ y

s
|z|2t−

2k+1
4

−1|e−φ(t)u(t)|dt.

As above |z|2 ≤ s1−δ so that:

I4 ≤ Cs
2k+1

4
+1−δ|eφ(s)|

∫ y

s
t−

2k+1
4

−1|e−φ(t)u(t)|dt.

Altogether:

4
∑

1

Ij ≤ Cs−
3(2k+1)

4
−δ|e−φ(s)|

+ Cs
2k+1

4 |eφ(s)|

∫ y

s
t−

2k+1
4

−2|e−φ(t)u(t)|dt

+ Cs
2k+1

4
+1−δ|eφ(s)|

∫ y

s
t−

2k+1
4

−1|e−φ(t)u(t)|dt.

Since |z| ≥ 1 and hence s ≥ 1 the third quantity dominates the second:

|v(s)| ≤
∑4

1 Ij ≤ C

{

s−
3(2k+1)

4
−δ|e−φ(s)|(2.10)

+ s
2k+1

4
+1−δ|eφ(s)|

∫ y

s
t−

2k+1
4

−1|e−φ(t)u(t)|dt

}

.

Let us estimate the function u for A ≤ x ≤ y:

|u(x)| ≤ |eψ(x)|

∫ y

x
|e−ψ(s)v(s)|ds

≤ x−
2k+1

4 |e−φ(x)|

∫ y

x
s

2k+1
4 |eφ(s)||v(s)|ds

≤ Cx−
2k+1

4 |e−φ(x)|

∫ y

x
s

2k+1
4

−
3(2k+1)

4
−δds

+ Cx−
2k+1

4 |e−φ(x)|

∫ y

x
s

2k+1
4

+ 2k+1
4

+1−δ|e2φ(s)|ds

·

∫ y

s
t−

2k+1
4

−1|e−φ(t)u(t)|dtds

= J1 + J2.
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J1 ≤ C|
1

(φ′)1/2
e−φ|

∫ y

x
s−

2k+1
2

−δds

≤ Cx−
2k+1

2
+1−δ|G(x)|.

J2 = Cx−
2k+1

4 |e−φ(x)|

∫ y

x
ds s

2k+1
2

+1−δ|e2φ(s)| ·

·

∫ y

s
t−

2k+1
4

−1|e−φ(t)u(t)|

≤ C|G(x)|

∫ y

x
dt

(

∫ y

x
ds s

2k+1
2

+1−δ|e2φ(s)|

)

·t−
2k+1

4
−1|e−φ(t)|.

Since φ′(s) ∼ s
2k+1

2 the inner integral can be estimated by

t1−δ|e2φ(t),

so that

J2 ≤ C|G(x)|

∫ y

x
t−

2k+1
4

−1+1−δ|eφ(t)||u(t)|dt.

Hence, defining

Bα = sup
[A,y]

|u(x)|

x−α|G(x)|
,

for a suitable α > 0, we have

|u(x)| ≤ J1 + J2 ≤ C

{

x−
2k+1

4
−δ|G(x)|

+|G(x)|

∫ y

x
t−

2k+1
4

−δ|eφ(t)||u(t)|dt

}

= C|G(x)|

{

x−
2k+1

2
+1−δ

+

∫ y

x
t−

2k+1
4

−δ |u(t)|

t−α| 1
(φ′)1/2 e

−φ(t)|
t−αt−

2k+1
4 dt

}
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≤ C|G(x)|

{

x−
2k+1

2
+1−δ +

∫ y

x
t−

2k+1
2

−α−δBdt

}

≤ C|G(x)|

{

x−
2k+1

2
+1−δ +Bαx

− 2k+1
2

−α−δ+1

}

= C|G(x)|x−
2k+1

2
+1−δ[1 +Bαx

−α].

By choosing

α =
2k + 1

2
+ δ − 1 > 0

we obtained that Bα ≤ C 1
1−cx−α . Thus we proved the following result:

Proposition 2.1. Let δ > −
2k + 1

2
+ 1. For |z|

2
1−δ ≤ x ≤ y we have the

estimate:

(2.11) |uy(x)| ≤ Cx−α|G(x)|,

with a constant C independent of z and y.

Define uy to be such that:

{

Pzuy(x) = PzG(x)

uy(y) = u′y(y) = 0

As before define α =
2k + 1

2
+ δ − 1 > 0, k = 1, 2, . . ..

For A ≤ x ≤ y1 ≤ y2 we want to find an upper bound for

|uy1(x) − uy2(x)|

It has already been proved in Proposition 2.1 that

|uy2(y1)| ≤ Cy−α1 |G(y1)|.
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Furthermore, from the estimate (2.10) we have:

|D̃uy2(s)| ≤ Cs−
3(2k+1

4
−δ|e−φ(s)| + Cs

2k+1
4

+1−δ|eφ(s)|

·

∫ y2

s
t−

2k+1
4

−1|e−φ(t)uy2(t)|dt

≤ Cs−
2k+1

2
−δ|G(s)| + Cs

2k+1
4

+1−δ|eφ(s)|

·

∫ y2

s
t−(2k+1)−δ|e−2φ(t)|dt

≤ Cs−
2k+1

2
−δ|G(s)| + Cs−

5(2k+1)
4

+1−2δ|e−φ(s)|

≤ Cs−
2k+1

2
−δ|G(s)|,

since 0 ≥ −
3(2k + 1)

4
+ 1 − δ, for k = 1, 2, . . ..

Set
w1 = uy1 − uy2 v = D̃w1.

Since uy1(y1) = u′y1(y1) = 0, we have:

|w1(y1)| = |u2(y1)| ≤ Cy−α1 |G(y1)|

≤ Cy−α−
2k+1

4 |e−φ(y1)|

|v(y1)| = |D̃uy2(y1)| ≤ Cy
− 2k+1

2
−δ

1 |G(y1)|

≤ y
− 3(2k+1)

4
−δ

1 |e−φ(y1)|.

Now:

e−ψ
d

ds
eψv = Dv = DD̃w1

= Pw1 +Ew1 +
1

4
z2x−1w1

= Ew1 +
1

4
z2x−1w1,

so that, for A ≤ s ≤ y1,

|eψ(s)v(s)| ≤ |eψ(y1)v(y1)| +

∫ y1

s
|eψ(t)(Ew1 +

1

4
z2t−1w1)|dt

≤ Cy
−(2k+1)−δ
1 |e−2φ(y1)| +

∫ y1

s
t−

2k+1
4

−2|e−φ(t)||w1|dt

+
1

4
z2

∫ y1

s
t−

2k+1
4

−1|e−φ(t)||w1|dt



Remark on an ODE 321

On the other hand, since −eψdxe
−ψw1 = v, we have:

|e−ψ(x)w1(x)| ≤ |e−ψ(y1)w1(y1)|

+

∫ y1

x
|e−ψ(s)v(s)|ds

= |e−ψ(y1)w1(y1)| +

∫ y1

x
|e−2ψ(s)||eψ(s)v(s)|ds.

We estimate the two pieces of the above expression:

|e−ψ(y1)w1(y1)| ≤
1

|G(y1)|
Cy−α1 |G(y1)| = Cy−α1 .

∫ y1

x
|e−2ψ(s)||eψ(s)v(s)|ds ≤ C

∫ y1

x
|e−2ψ(s)|y

−(2k+1)−δ
1 |e−2φ(y1)|ds

+ C

∫ y1

x
|e−2ψ(s)|

∫ y1

s
t−

2k+1
4

−2|e−φ(t)w1(t)|dtds

+ C|z|2
∫ y1

x
|e−2ψ(s)|

∫ y1

s
t−

2k+1
4

−1|e−φ(t)w1(t)|dtds =

3
∑

1

Hj.

Let us consider the different terms Hj:

H1 ≤ Cy
−(2k+1)−δ
1 |e−2φ(y1)|

∫ y1

x
s

2k+1
2 |e2φ(s)|ds

≤ Cy
−(2k+1)−δ
1 |e−2φ(y1)||e2φ(y1)|

= Cy
−(2k+1)−δ
1 .

H2 = C

∫ y1

x
t−

2k+1
4

−2|e−φ(t)w1(t)|

∫ t

x
|e−2ψ(s)|dsdt

≤ C

∫ y1

x
t−

2k+1
4

−2|eφ(t)w1(t)|dt,

arguing as above for the inner integral.

H3 ≤ C|z|2C

∫ y1

x
t−

2k+1
4

−1|e−φ(t)w1(t)|

∫ t

x
|e−2ψ(s)|dsdt

≤ C|z|2
∫ y1

x
t−

2k+1
4

−1|eφ(t)w1(t)|dt.
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Since |z|2 ≤ x1−δ ≤ t1−δ we see that H2 ≤ H1. Thus, since α =
2k + 1

2
− 1 + δ,

|e−ψ(x)w1(x)| ≤ Cy−α1 + C

∫ y1

x
t−

2k+1
4

−δ|eφ(t)w1(t)|dt

≤ Cy−α1 + C

∫ y1

x
t−

2k+1
2

−δ|e−ψ(t)w1(t)|dt.

Set

B1 = sup
A≤x≤y1

|w1(x)|

|G(x)|
.

Then we have:

B1 ≤ Cy−α1 + C

∫ y1

x
B1t

−α−1dt ≤ Cy−α1 +
B1

2
,

which implies
B1 ≤ Cy−α1 .

We have thus proved the following

Proposition 2.2. Let δ > −
2k + 1

2
+1. Then for A(z) ≤ x ≤ y we have

the inequality

(2.12) |uy1(x) − uy2(x)| ≤ Cy−α1 |G(x)|,

where the positive constant C is independent of y1, y2 and z.

Using both Proposition 2.1 and Proposition 2.2 we now proceed to prove
an upper bound for the exponential order of the Stokes coefficient.

Denote by u+ a solution of Pu+ = 0 subdominant e.g. in a sector con-
taining the positive real axis. Then we know that

(2.13) u+(x, z) = x−
2k+1

4 e−φz(x)(1 + O(x−1))

Proposition 2.3. Let A(z) = C0|z|
2

1−δ , where C0 > 0 and k ≥ 2. Then
there exists a constant C ∈]0, 1[ and independent of z, such that

(2.14) |u+(x, z) − x−
2k+1

4 e−φz(x)| ≤ C|x|−
2k+1

4 |e−φz(x)|,

and

(2.15) |u+′
(x, z) + x

2k+1
4 e−φz(x)| ≤ C|x|

2k+1
4 |e−φz(x)|
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for x ≥ A(z).

P r o o f. We prove only the second estimate, since the first is trivial. We
write u instead of u+ for the sake of simplicity. Let w(x) = G(x) − u(x). Then
u′ = (G−W )′ = G′ + D̃w − ψ′w. Thus

(2.16) u′ + x
2k+1

4 e−φ(x) = G′ + x
2k+1

4 e−φ(x) + D̃w − ψ′w.

It is straightforward to verify that

|G′ + x
2k+1

4 e−φ(x)| ≤ θ|x|
2k+1

4 |e−φ(x)|.

Let us consider the other two terms of the espression above. Due to (2.10) proved
above and Proposition 2.1, we have that

|D̃w(x)| ≤ C|x|−
3
4
(2k+1)−δ |e−φ(x)|

+C|x|
1
4
(2k+1)+1−δ |eφ(x)|

∫ y

x
t−

1
4
(2k+1)−1|e−φ(t)u(t)|dt

≤ C|x|−
3
4
(2k+1)−δ |e−φ(x)|

+C|x|
1
4
(2k+1)+1−δ |eφ(x)|

∫ y

x
t−

3
2
(2k+1)−δ |t

1
2
(2k+1)e−2φ(t)|dt

≤ C|x|−
3
4
(2k+1)−δ |e−φ(x)| + C|x|−

5
4
(2k+1)+1−2δ |e−φ(x)|

≤ C|x|−
3
4
(2k+1)−δ |e−φ(x)|,

because α > 0. Now the latter quantity above is

|x|−(2k+1)−δ |x|
1
4
(2k+1)

and the first factor is small if k ≥ 2 for every δ for which α = α(δ) > 0.
Let us consider the third term in (2.16): ψ ′w. Because of Proposition 2.1,

we may write

|ψ′w(x)| ≤ C|x|−α|x|
1
4
(2k+1)|e−φ(x)|,

and this ends the proof of the proposition. �

An analogous estimate can be derived for any subdominant solution in
its Stokes sector (see next section for more details).

We may now state the main result of this section.

Theorem 2.1. Let k ≥ 2. Let A(z) = C0|z|
2

1−δ be as above. Denote by
W the Wronskian of u0 and uk, where uj denotes the subdominant solution in the
sector of amplitude 2/(2k+3)π and centered at the line of argument 2j/(2k+3)π.
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Then

|W (z)| ≤ CeC1|z|
2k+3
1−δ

for suitable positive constants C and C1.

P r o o f. We argue on u = u0. The same argument applied to the ather
solution allows us to achieve the proof.

First notice that

{

|u(A)| ≤ CA− 2k+1
4 |e−φ(A)|

|u′(A)| ≤ CA
2k+1

4 |e−φ(A)|

where C > 0 does not depend on z. Now define

E(x, z) = |z|2
2k+1
1−δ |u(x)|2 + |u′(x)|2.

Due to the above properties we easily see that

d

dx
E(x) ≤ C|z|

2k+1
1−δ E(x),

which implies that

(2.17) E(0, z) ≤ CE(A, z)eA|z|
2k+1
1−δ

.

This allows us to conclude that

|W (z)| ≤ CeC1|z|
2k+3
1−δ

.

This ends the proof of the theorem. �

Since α > 0 implies that 1 − δ <
2k + 1

2
. Thus we may always assume

that W (z) is an entire function of order < 3.

3. Proof of the Main Result. We recall from [9] the following facts
relative to equation (1.1):

(a) the complex plane can be divided into 2k+3 sectors Sj , j = 0, . . . , 2k+2 of

amplitude
2π

2k + 3
: to each sector one can associate a subdominant solution

Yj(x; z)of the equation (i.e. a solution exponentially decreasing at ∞).
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(b) ∀j = 0, . . . , 2k + 3 we have the Stokes connection formula:

(3.1) Yj(x; z) = cj(z)Yj+1(x; z) − ωYj+2(x; z),

where it is understood that Y2k+3 = Y0 and Y2k+4 = Y1.

(c) Here we put cj(z) = c0(G
j(z)), where

c0(z) =
W0,2(z)

W1,2(z)

and Gj(z) = ω−(k+1)jz, with ω = exp
2iπ

2k + 3
. Moreover we recall that c0(z)

is not a constant function, since c′j(0) 6= 0.

(d) In the above expression W0,2(z) denotes the Wronskian determinant of
Y0,Y2 and W0,1(z) that of Y0,Y1. Furthermore it is easily checked that

W1,2(z) = ω
2k−3

4 . On the other hand W0,2(z) coincides modulo a constant
with that estimated in Theorem 2.1.

(e) Define

Sj(z) =

[

cj(z) 1
−ω 0

]

j = 0, . . . , 2k + 2,

then

S2k+2(z)S2k+1(z) · · · S1(z)S0(z) =

[

1 0
0 1

]

.

(f) The solution Y0(x; z) has in the sector S =

{

x ∈ C|| arg x| <
3

2k + 5

}

the

following asymptotic development:

Y0(x; z) ∼ x−
2k+1

4 (1 + O(x−1/2))e−E(x;z),

where E(x; z) = 2
2k+3x

2k+3
2 + zx

1
2 .

From (3.1) we see that:

Y0 = Aj(z)Yj − ωAj−1(z)Yj+1,

where the Aj(z) denote entire functions made up from the Stokes coeffiecients cj ,
whose explicit expression can be given as follows:

(3.2) Al(z) =

[ l
2 ]
∑

j=0

(−ω)j
l−1
∑

k1,...,kj=0

c0c1 · · · ĉk1 ĉk1+1 · · · ĉkj
ĉkj+1 · · · cl−2cl−1,
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where by ĉkj
we mean that the corresponding term has been omitted. (3.2) now

yields in the special case of k = 1, 2 that:

(3.3) A1(z) = c0(z),

and that:

(3.4) A2(z) = c0(z)c1(z) − ω.

The aim of this section is to prove that A1(z) has at least one zero in C when
k = 1 and that if k = 2 the same holds for A2(z).

3.1. The case k = 1. This case has been essentially already treated in
[1] and for the sake of completeness we briefly recall the argument.

From the holonomy equation in (d) we obtain the functional equation for
A1(z)

A1(z) + ω2A1(ωz)A1(ω
4z) − ω3 = 0, ∀z ∈ C.

Suppose that A1(z) 6= 0 for all z ∈ C. Then from the above equation that
it follows that A1(z) 6= ω3 for all z ∈ C. Since A1(z) is an entire function Picard’s
Little Theorem implies that A1(z) would be constant because A1(z) avoids two
distinct values 0 and ω3. But this contradicts what has been stated in item (c)
above.

3.2. The case k = 2. Here we prove that (3.4) has at least one zero
in C.

In fact if we assume that A2(z) 6= 0 ∀z ∈ C we may conclude that c0(z)
has in infinite number of zeros in C due to the Borel-Hadamard lemma, see e.g.
[5]. Recalling that c0(0) 6= 0 and the Hadamard representation theorem ( see e.g.
[10] Theorem 5.1) we have:

(3.2.1) c0(z) = eg(z)
∞
∏

1

(

1 −
z

an

)

e
z

an
+ 1

2
( z

an
)2 .

Here g(z) is a polynomial with degree less or equal than 2 due to Theorem 2.1.
On the other hand, because of our assumption

A2(z) = ep(z)

where p(z) is another polynomial whose degree is less or equal than 2. Let us
now study the equation A2(z) = ep(z) = −ω. Taking the logarithm of both sides
we get for the zeros:

p(z) = iπ
9

7
+ 2iπh, h ∈ Z



Remark on an ODE 327

We argue in the case when p has degree 2. The case when the degree is 1 is
similar but simpler. Let p(z) = αz2 + βz + γ, with α 6= 0: from the preceding
equation and the fact that, due to item c above, c1(z) = c0(ω

4z), we obtain these
two asymptotic representions for the complex numbers ah, h ∈ Z:

αa2
h ∼ 2iπh′(h)(3.2.2)

αω6a2
h ∼ 2iπh′′(h),

where h′(h), h′′(h) ∈ Z and h′(h), h′′(h) → ∞ if h tends to infinity. Since Imω6 6=
0 it is clear from (3.2.2) that we have a contradiction. Thus we have proved the
following Theorem:

Theorem 3.2.2. The equation (1.1) has a bounded rapidly decreasing
solution defined on the whole real line for suitable values of the complex number
z.

P r o o f. It is a straightforward consenquence of the previous argument
and of the fact that, due to the P-T invariance properties of equation (1.1), it
is always possible to choose the zero of A2(z) in a such a way that its imaginary
part is strictly negative. (See e.g. [4]).
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