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ABSTRACT. A unifed group-theoretic method of obtaining more general
class of generating functions from a given class of improper partial semi-
bilateral generating functions involving Laguerre and Gegenbauer polyno-
mials are discussed.

1. Introduction and preliminaries. The usual generating relation
involving one special function is called linear or unilateral generating relation.
By the term bilateral generating function, we mean a function G(z, z,w) which
can be expanded in powers of w in the following form:

oo
Gw,z,w) = Y anfal@)ga(2)0",
n=0
where a,,’s are arbitrary, that is independent of z, z and f,(x), gn(z) are two

different special functions. In particular, when two special functions are same,
that is f, = gn, we call the generating relation as bilinear generating relation.
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Unlike the usual bilateral or bilinear generating relations ([1], and [2]), we
shall introduce the concept of partial semi-bilateral and improper partial semi-
bilateral generating relations involving some special functions.

Definition 1.1. By the term partial semi-bilateral generating relation
for two classical polynomials, we mean the relation

(1.1) G(z,z,w) = Z apw"Smtn) (x)Téer”) (2)
n=0
where the coefficients ay’s are quite arbitrary and gimtmn) (x), T,J(m+n) (z) are two

particular special functions of order o, p and of parameter (m + n).

Definition 1.2. By the term improper partial semi-bilateral generating
relation for two classical polynomials, we mean the relation

(1.2) G(z,z,w) Zanw Smn (x)Tél””)(z)
(m+n) (k+n)
where the coefficients a,’s are quite arbitrary and Sq (x), Ty " (2) are two

particular special functions of order a, p and of parameters (m + n), (k + n),
respectively.

The object of this paper is to suggest a unified group-theoretic method
for obtaining a more general class of generating relations from a given class
of improper partial semi-bilateral or partial semi-bilinear generating relations
involving some special functions, when suitable one-parameter continuous trans-
formation group can be constructed for those special functions.

The present unified group-theoretic method was originated from our pre-
vious work [2] where we have derived a more general class of generating relations
from a given class of improper partial-quasi bilateral generating relations. We
have also given some indications for deriving more general class of improper and
proper quasi-bilateral generating relations in some of my recent works [3] and [4].

2. Main results. The Unified Group-theoretic method: Let us consider
the following improper partial semi-bilateral generating relation involving two
particular special functions of the form:

(2.1) G(z,z,w) Za w™ ST ()T (k+")( ),
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where the coeflicients a,’s are quite arbitrary, gimn) (x), T£k+")(z) are two

particular special functions of order «, p and of parameters (m + n), (k + n),
respectively.

Now we shall find out two one-parameter continuous transformation groups
generated by the operators

0 0
Rl - ¢1($, y>6_x + ¢2($7y)a_y + ¢3($7y)
and
0 0
= (2, 75) St Va(z, t)at +v3(z, 1),
such that .
Ry |:S((Xm+n) (x)ym+n:| pgn) ns(m-}—n-ﬁ-l)(x)ym-‘rn-‘rl
and )
Ry {TIEH")(z)tk*”} _ pilnTék+n+1)(z)tt+n+1’
where
exp(wR1)f(z,y) = M(z,9) f(91(z,y), b1 (z,y))
and

exp(VR2) f(z,t) = Aa(z,t) f(g2(2,t), ha(z,t)).
Multiplying both sides of (2.1) by y™t*, we get

e}

(2.2) Yy th Gz, 2, w) = Z anw" (S&ern) (x)ym> (Tékﬂl)(z)tk) .
n=0

Next we replace w by wvyz in (2.2)
(2.3)  y"™*G(x, z, woyz) Za wo) (S&m’L") (:c)ym+") (Tlgk'm)(z)t’””) .

We now operate both sides of (2.3) by exp(wR;)exp(vR2) and as a result of it,
the relation (2.3) reduces to

(P (2, )™ (ha(2, ) A1 (z, ) Ao (2, )G g1 (2, y), g2 (2, ), woha (z, y)ha (2, 1))

=Y aw) ( (R g (w)ym") ((Uff)rTzEHn)(Z)tk*”)

n=0 r=0 s=0
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x© o0 X whTspyntr
1) 1) (1
=S (AW A ST )y )
n=0 r=0 s=0
2 (@ 2 k+n+ k+n+
<pk+npk+n 1 pk+n+r IT( " T)( >t " T)

co oo oo s—1 n+sn+r (mints) -
= ZZZHpm+N+ZHpk+n+] an gly! (Sam e (x)ym " S)

n=0r=0 s=0 =0 )

) <T2§k+n+7")(z)t(k+p+r)> '

Now putting y = ¢ = 1 in the above relation, we get

(h1(z,1))™ (h2(27 1) A1 (2, D) Aa(z, 1)G(g1 (2, 1), g92(2, 1); wwha (z, 1) ha(2, 1))

co oo oo s—1 n+sn+r

- Z Z Z H pm-HH—Z H pk—i—n—l—g n S'T' <S&m+n+s) (x>> (Ték+n+r) (Z>> :

n=0r=0 s=0 i=0

Thus we state the following general theorem which we propose to discuss for the
said unification:

Theorem 2.1. If there exists a bilateral geneating relation of the form

G(z,z,w) Zanw S(m+n) )Tél””)(z)

then

(hy(z,1))™(he(z, 1)) Az, DA2(z,1)G(g1(z, 1), g2(2, 1), wvhq (x,1)he(z,1))

co oo oo s—1 n+sn+r

Z Z H pm+n+1 H pk+n+g NT:! <Sém+n+s) (@) <T£k+n+r)(z)) )

n=0r=0 s=0 i=0
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where the coefficients ay,’s are arbitrary, gt (x), ngkJrn)(z) are two particular
special functions and R1, Ro are two generators of two one-parameter continuous
transformation groups such that

Ry [SEm0) @)y ] = pli), SEm D @yt

and

Ry |:Tp(k+n)(z>tk+n:| _ pl(€2+)n p(k-l—n-i—l)(z)tk-i-n—f—l
and also

exp(wR1)f(z,y) = M(z,9) f(91(z,y), b1 (z,y))
and

eXp(VRg)f(Z,t) = )‘Q(Zat)f(QZ(zvt)v hQ(th))'

Particular cases: It may be of interest to point out that for £k = m,
the above Theorem 2.1 becomes nice general class of generating functions from
a given class of partial semi-bilateral generating functions, which need not be
derived independently. Thus we state in the following form the result involving
two particular special functions for partial semi-bilateral generating functions.

Theorem 2.2. If there exists a bilateral generating relation of the form:

G(z,z,w) = Z apw™ S (x)Téern) (2)
n=0

then

(h1(z,1))(ha(z,1))" A (2, ) Aa(2,1)G(g1(x, 1), g2(2, 1), wvhy (z, 1)ha(z, 1))

co oo oo r—1

=1 n+s, n+r
— Z Z Z H pglﬂwﬂ, H pgln+jan% <S&m+n+s) (l’)) (ngm+n+7") (Z)) ,
n=0 =0

r=0 s=0 =0

where the coefficients a,’s are arbitrary, gt (x), ngern)(z) are two particular
special functions and R1, Ro are two generators of two one-parameter continuous

transformation groups such that

Ry SO0 (@)y ™| = plb), SGntD) (g)ymntt
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and

Rs Tp(m+n)(z>tm+n :ngnTp(m—&—n—&-l)(Z)tm—f—n—f—l
and also

exp(wh) f(z,y) = M (2, y) f(91(z,y), hi(z,y))
and

eXp(VR2)f(Zut) = )‘2(Zﬂt)f(92(zvt>7 hg(Z,t)).

Remark. In a similar manner, some new results on partial semi-bilinear
as well as on improper partial semi-bilinear generating functions can also be
derived by adopting the said unified group-theoretic method in a suitable manner.

3. Applications. We shall now state the generating relations derived
directly from Theorem 2.1. for Laguerre and Gegenbauer polynomials instead
of St () and T£k+")(z). The following are some of the generating relations
given in the form of applications:

Application 3.1. For gimn) (x) = Ll (x) and T£k+")(z) = Lj(DkJrn)(z),
where L™ (z) and LQ(DHR)(Z) are two Laguerre polynomials of order «, p and
of parameters (m +n), (k + n), we see that

o B

Rl_ya_q:_y’ R2_t&_ta
1 2

P = (—1); ), = (1)

Ai(z,y) = exp(—wy);
g1(z,y) =+ wy;

hi(z,y) = y;

Ao(z,t) = exp(—vt);
92(z,t) = 2 + vt;

hl (Z, t) =t.

Thus from Theorem 2.1, it follows that

exp(—w) exp(—1)G(a + w, 2 + v, wv)

>y

n=07r=0 s

e wn+svk+s
(2 :

1) (=1)ay, (mtn+s) (, (k+ntr) (1)) |
(-1’1 LG @)) (L (2))

slr!
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or
exp(—w — )G (z +w, z + v, wo)
_ i i i s+r LW <L(m+n+s) ($)> (L(kJrnJrr) (z)>
- n=0r=0 s=0 slr! a P
whereas

G(z, z,w ——Za w" LI (1)L (k+")(z).

Application 3.2. For gimin) (x) = C&ern)(x) and T,§k+”)(z) = C’,(,Hn)(z)
where C{" ™) () and C’Z(,kJrn)(z) are two Gegebauer polynomials of order «, p and
of parameters (m +n), (k +n), we see that

0 , 0 o , 0
— ol 102 Y : = st— + 242 4 pt;
Ry TYo-+2y aerozy, Ry =2z 5, T2 5 TPh
Prakn = 2(m +n); Pl = 20k +n);
M(z,y) = (1 - 2wy)”%; Ma(z,t) = (1= 20)75;
(2,y) = —— (5,) = ——
x, = 7, Z’ g 7’
INY) = T o0y 92 /T =20t
t
h = - ho(z,t) = :
1(x7y> 1 _ 2wy7 2(27 ) 1 _ 2'Ut
Thus from Theorem 2.1, it follows that
1—2w) 5 (1 - 20)F 56 | =, ———, el >
(1= 2w)™2 (1 = 20) <\/1 2w V1—20 (1—2w)(1 - 2v)

oo oo oo s—1

—ZZZH (25( m+n+1))H(2”(k¢+n+]’))
n=0r=0 s=0 =0

wnJrsUkJrr
Ap———F—F

(C&m—&-n—&-s) (x>) (CZ()k—&-n—&-r) (z))

slr!

[c.olENNe e o)

= Z Z Z 25+, wtsyhts (m+n)s(k +n), (CéernJrs)(x)) <C§k+n+r)(z))

11
n=0 r=0 s=0 s
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wherever
Gz, z,w) = Z anw”Cém+")(x)Clgk+”) (2)
n=0
and
o<z fwl<s
v < = —.
2’ 2

Application 3.3. For S, (m-tn) (x) = Léern) (x) and T£k+")(z) = C’I(,kJrn)(z),
where L&m+n)( ) and ngk+n)( ) are Laguerre and Gegenbauer polynomials of
order «, p and of parameters (m + n) and (k + n), we see that

B 0,0
—y——y; = 2t + 2 o+
1
Podn = (—1); picln = 20k +n);
Al(xay> = exp(_wy>7 )\2(2,t> = (1 - 2’Ut)7%;
(z,y) =z + wy; (zt)—iz :
g1\xr,y) = Y3 g2\, — ma
t
h =; h t) = .

Thus from Theorem 2,1, it follows that

(1—20)" 5 *exp(—w)@ (1: + w, \/lz——%’ 1 TUQU>
0o 00 00 - n+s k+r
MW H @ (ke g (L @) (G 0(:)
n=0r=0 s=0 j=0
0o 00 00 n+s k+r k ,
=23 S e g (@) (0
e Iyl

1
whenever G(z, z, w) Zanw Lim+m) )C£k+”)(z) and |v| < 3
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Application 3.4. For Sy (m-tn) (x) = C’éern)( ) and T(k+")( ) = Lj(DkJrn)(z),
where C&ern)( ) and LI(,k+n)(z) are Gegenbauer and Laguerre polynomials of
order a, p and of parameters (m + n), (k+ n), we see that

0 0
R1=xy%+2ya + ay; R2=t&—t;
1 2
Phaen = 2(m + ) Pictn = (-1;
)‘1($7y) = (1 - 2wy)_%7 AQ(Zat) = eXp(_Ut>;
(2.0) = =5 (1) = 2 4ot
g1\x,y _m, g2\ =, =z UL
Y
h = ; h t) =t.
1(I’,y) 1_2wy, 2(27 )

Thus from Theorem 2.1, it follows that
x W
—0)(1 -2w)"* TG ——— —_
exp(-0)(1~ 20) 36 (b )

co oo oo s—1
wnJrsUkJrr(

=3 3N T s n+ ) (-1ra

n=0 r=0 s=0 i=0

C&m—&-n—&-s) ($)> (LI(Jk—&-n—&-r) (Z))

x© © n—l—svk—i-r(m + n)
s (m—+n+s) (k4+n+s)
Z Z Z slr! <C°‘ (x)> (Lp (Z)>
=0 r=0 s=0
whenever
> 1
Gz, z,w) = Zanw”Cém+”)(x)LI(Jk+”)(z) and |w| < 5
n=0
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