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ABSTRACT. Some new criteria for the oscillation of all solutions of second
order differential equations of the form

a—2 d_x
dt

d

dx
7 (T(t)w(x)

dt

a—2
+a(t)y <|x|”‘2w<t>w<x> o %) +q®) o] =0,
and the more general equation
d dz|* % da
T (T(t)w(x) T E)
dz|*? dx

+p(t)e (g(m), r(t)i(x)

T E) +4q(t)g(z) =0,

are established. our results generalize and extend some known oscillation
criterain in the literature.

2000 Mathematics Subject Classification: 34C10, 34C15.
Key words: Oscillation, second order nonlinear differential equation.



396 E. M. Elabbasy, W. W. Elhaddad

1. Introduction. We are concerned with the oscillation of solutions of
second order differential equations with damping of the following form

dt

+q(t)[o[* 2 =0,

a—2 d_.i(}
dt

+q(t)g(x) =0,
where r € C[[tg, 00), R"], p € C[[tg, ), [0,0)], ¢ € C[[to,0),R], ¥ € C[R,RT]
and g € C'[R, R] such that xg(z) > 0 for z # 0 and %g(x) >0forxz#0. ¢

is defined and continuous on R x R — {0} with ue(u,v) > 0 for wv # 0 and
©(Au, Av) = Ap(u,v) for 0 < A < oo and (u,v) € R x R —{0}.

By the oscillation of equation (FEj)[(E2)], we mean a function
r € CY([T,,0),R) for some T, > to, which has the property that

a—2
rta) |

dt| dt
[Ty, 00).

A solution of equation (E7)[(E2)] is called oscillatory if it has arbitrarly
large zeros otherwise, it is called nonoscillatory. Finally, equation (E;) [(E2)] is
called oscillatory if all its solutions are oscillatory.

In Section 2 we provide sufficient conditions for the oscillation of all so-
lutions of (E7). Several particular cases of (F1) have been discussed in the liter-
ature. To cite a few examples, the differential equation

-2
T dx

’ E) (i) (rx“x,r@)w(:c)

dx
: <r<t>w<x>

dt

dx
dt

(E1)

and the more general equation

—2
R

d _) +p(t)e (g(l’),r(t)w(x)

dx
T (T(t)lﬁ(x)

dt

dx
dt

(Es) dt

€ C!'([Ty,),R) and satisfies equation (FE;)[(E2)] on

-2
T dx

%) +a®) ol 2 =0

dx

(B) 2 (r(t) "

has been studied by Hsu and yeh [2] Kusano and Naito [4] Kusano, Yoshida [5], Li
and Yeh [6], [7], [8], [9], [10] and Lian, Yeh and Li [11]. A more general equation
than (E3)

—2
R

d _
* —) ) |zl e =0

dt

Sl

(E4)

(r<t>w<x> b
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has been considered by Ayanlar and Tiryaki [1] and Wu et al. [16]. Our re-
sults include, as special cases, known oscillation theorems for (E3) and (EFy). In
particular, we extend and improve the results obtained in [12], [16] and [14].

In Section 3 we will establish some oscillation criteria for equation (Es3).
Several particular cases of (E9) have been discussed in the literature. The differ-
ential equation

—2
T dax

’ %) +a(t)g(@) =0,

(B5) 4 (r(th) =

dt

established by Manojlovic [13]. Wong and Agarwal [15] considered a special case
of this equation as

(Fs) < (r(t)

—2
R

> E) +a(t)g(e) = 0.

dt

Our results in this section generalize and improve Manojlovic [13].

2. Oscillation results for (E;). In order to discuss our main results,
we need the following well-known inequality which is due to Hardy et al. [3,
Theorem 41].

Lemma 1. If X and Y are nonnegative, then
XA+ 0=y = AxyMl>0, A>1,
where equality holds if and only if X =Y.
Theorem 1. Suppose that

(1) o(l,2) >z forall z #0,

(2) 0<¢(x) <~ forallx,
and there exist differentiable functions

k., p:[to,00) — (0,00),
and the continuous function

H:D={(ts):t>s>ty} =R and h: Dy={(t,s):t>s>t} — R,
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where H has a continuous nonpositive partial derivative on D with respect to the
second variable such that

H(t,t) =0 for t>tg, H(t,s) >0 for t>s>tg,

and
d
EP(S)
h(t,s) = =3 (H(t,s)k(s)) — 05 —p(s) | H(t,s)k(s) for all (t,s) € Dy.

Then equation (E4) is oscillatory if

(3) lim supm /to [H(t,s)p(s)k(s)q(s) - aa(H(t,s)k(s;)a—l ds = oo.

t—o00

Proof. On the contrary we assume that (E;) has a nonoscillatory solu-
tion z(t). We suppose without loss of generality that z(¢) > 0 for all ¢ € [tg, o).
We define the function w(t) as

dz |*? dx
rt)pe) = —
w(t) = p(t) ’m‘j’;x LA
Thus,
d dz|** dx |
; ) %p(t) pr (r(t)¢($) T E) 1 p(t)r(t)y(x) Ccll_t
) = L)y (o)
This and equation (FE1) imply
0 (t)
d % w(t %11 o
@) = o0 w(t) —p(t)[q(t) +p(t)e(1, M)]—(Oé—l)hp(t)r(t)]a jw(®)]

From (1) we obtain

d
iw(t) - Eﬂ(t)
p(t)

o w(t) = p(t)g(t) = p(tw(t) = (@ = Diyp(H)r(B)] =T [w(t)| 1
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Multiply the above inequality by H (t,s)k(s) and integrate from T to t we obtain

d
/ CH(t $)k(s)p(s)q(s)ds < / " $)k(s) ") (5) | wls)ds
T 7 Jr ’ p(s)

/Hts s)ds — ( a—l/Hts )]al]w(s)\ﬁdg_

Since

t t
—/ H(t, s)k(s)iw(s)ds =H(t,T)k(T)w(T) + / 2(H(t, s)k(s))w(s)ds,
T ds T 0s
the previous inequality becomes

t

/ H(t,s) s)ds < H(t, T)k(T)w(T) —/ h(t, s)w(s)ds

T

~(a—1) /T H(t, s)k(s)[yp(s)r(s)] @D Jw(s)[*/ (71 ds.
Hence we have

/Hts s)ds < H(t,T)k /\htus )| ds

@ e [ K] () .

Define
h(t,s)
a (H(t, s)k(s))/ @D’

X = [yp(s)r(s)]'/

v = (Ht. k() p(e)r(s)] V0D () /)",

Since a > 1, by Lemma 1 we obtain

(o = 1) H(t, 5)k(s) a/te=n _ yp(s)r(s) [p(t, s)|*

e i
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for all t > s > T. Moreover, by (4), we also have for every t > T,

/ HO K Opals)ds < HODMT)AT) + [ ;VPEB)“E) ngt»)’d

We use the above inequality for T" = T}y to obtain

/ [H(t,sm(s)p(s)q(s)— ’”’E;’g ))’h(“)s)‘ ]d < H(t,to)k(To) [(Th)

Therefore,

[ [ et - LML ],

5)
(H(t,s)k(s)* "

vp(s)r(s) |h(t,s)[* } s
ac (H(t,s)k(s)* "

¢ vp(s)r(s) |h(t, 5)|*
+ /T 0 [H(t, s)k(s)p(s)a(s) — ] ds.

Hence for every t > ty we have

_ /T [H(t, $)k(s)p(s)a(s) —

To
< Hi(t,tg) /t k(s)p(s)|a(s)|ds + H(t,to)k(To) |w(To)|
To
- e / H(6)o(s) )] s + K)ol .
This gives
. 1 ¢ vp(s)r(s) [h(t, s)|
tkr& sup H(t tO) /to |:H(t7 S)p(s)k(s)q(s) - ac H(t S)k(s))a1:| dS
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< { /T k(s)p(s) |a(s)] ds + k(To) \w(%)\} <o

which contradicts the assumption (3). This completes the proof. O

Corollary 1. If the condition (3) is replaced by the condition

t

lim sup H(t,s)p(s)k(s)q(s)ds = oo,

t—o00 Jq'(t7 t()) t
and

| ! pls)r(s) At 5)|°
AP G 1) / (H(t, )k(s))* "

then the conclusion of Theorem 1 remains valid.

ds < 00,

Theorem 2. Suppose that (1) and (2) hold, and let the functions H, h,
p and k be the same as in Theorem 1. Moreover, assume that

(6) 0< 1>n£ Llim inf []—[J((tt’:))} < o0,
$Z lo [t—00 » L0
and
: 1 " p(s)r( )!h(ts)\a
" B 75 55 ), kT <
hold. If there exists a function Q € C([tg,o0),R) such that
t a/ a—1)
(s)
o B | G e
and for every T > tg,
9)

lim sup

Jin sy s [ - LOEIE s o),

a® (H(t,s)k(s)* 1]

where Q4 (t) = max{Q(t),0} fort > tg, then equation (E1) is oscillatory.
Proof. On the contrary we assume that (F7) has a nonoscillatory solu-

tion z(t). We suppose without loss of generality that x(¢t) > 0 for all ¢ € [tg, 00).

Defining w(t) as in the proof of Theorem 1, we obtain (4) and (5). Then, for
t > T >ty we have

L Bp(s)r(s) At o)1
7 o [ keate) - LIS Ty < o)

lim sup
t—o00
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Thus, by (9) we have

(10) UT) < k(T)w(T) forall T > Ty,
and
(1) Jim sup ﬁ [ 1 s)pks)als)ds = AT
Let
1 t
F(t) = HT0) I, |h(t, s)| lw(s)| ds,
) = LD H e k(s) ()] ()| d
H(t7T0) To 7 ’

for t > Ty. Then by (4) and (11), we get that
tlim inf |G(t) — F(t)] < k(To)w(Tp)

t

1
—lim sup ———— [ H(t, s)p(s)k(s)q(s)ds
Jim sup s [ (L p(0k(5)a(s)
(12) < k(To)w(To) — Q(Tp) < oo.
Now, we claim that
00 ’w(s)‘a/(afl)
(13) / k(s) < 0.
Ty [p(s)r(s)]H/ (=D
Suppose to the contrary that
STV O Rk
(14) / E(s) = 00.
T [p(s)r(s)]*/ (e
By (6), there is a positive constant n satisfying
, L H(Es)
(15) slgfto [tlggolnf H(t,to)] >

On the other hand, by (14) for any positive number p there exists a T > Ty such
that

/t k(s) ’w<8>’0¢/(0‘—1) ds > a for all t > Ty.
lp(s)r(s)|V/ (el (a=1)n
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So for all ¢t > T}

(a—1) [* s jw(w)|*/ )
H(t,Ty) J1, H(t,5)d [/To Blw) [p(u)r(u)]t/ (=1 du]

G(t) =

— (a—1) ! [—0H(t,s)] s ’w(u”a/(afl) T
~ H(t,Tp) /TO | 9s d /TO (u) [p(w)r ()] /@D d“_ ds

CT) Jr L 0s 1% U Tp(wyr(u)] /@D

ZI(_Ia_1> /t -—aH(t,S)-d /sk(u> ’w(u>’a/(a—1) aul ds

(16) S (a—1) /t [—8H(t,s)] s — uH(t,Tl).

“(a=1)n H(t,Ty) Jp, Js

From (15) we have

lim inf H(t,T)
t—o0 H(t, to)

H(t,Ty)

>n>0.

So there exists To > T such that >n for all t > Ty. Therefore by (16)

H(t,to)
G(t) > p for all ¢ > Ty, and since p is arbitrary constant, we conclude that
(17) lim G(t) = oc.
t—00

Next, consider a sequence {t,} -, in (Tp,00) with lim, .. t, = oo and such
that

lim (G(t,) — F(ta)] = Jim sup[G(t) — F(1)].

n—oo
In view of (12), there exists a constant M such that
(18) G(tn) — F(t,) < M  for all sufficient large n.
It follows from (17) that
(19) lim G(t,) = oo.

n—oo

This and (18) give

(20) lim F(t,) = oc.

n—oo
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Then, by (18) and (19),

F -M -1
GSZ; -1> Gt > > for n large enough.
Thus,
F(t, 1
thn; > 3 for n large enough.

This and (20) imply that

) F(t,)
(21) N

On the other hand, by the Holder’s inequality, we have

1 fn

Fltn) = iy [, 1 ) (e)lds

jw(s)|*/ Y d o
[p(s)r(s)]/@D }

1  p(s)r(s) [t $)|° |
. {<a — 1) H (0, T) /T (H (1, 5)k(s))" ! ds}

G(afl)/a(tn) 1 tn p(s)r(s) ]h(tn,s)\o‘ 1/a
= o/ {H(tn,To) /To (H(tn, 5)k(s))* " ds} ’

a—1 tn
et f, 00

and therefore,

F°(tn) 1 " p(s)r(s) [Altn, 5)|°
Gla—1) (tn) = (a - 1)(a71)H(tan0) /To (H<tn7 S)k(s))a_l *

1 " p(s)r(s) [h(tn, )|
= (@~ D@ UnH (f fo) /t (H(tn, s)k(s)* " o

for all large n. It follows from (21) that

(22) im — 1 /tt" p()r(s) [h(tn, 5)|"

W H o) S (H (1 5)k(5)" ]

ds = 00,
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that is,

i
00 H (%, to

)

1 [t p(s)r(s) |hlt,s)*
>Aummwmwﬁ_

which contradicts (7). Hence, (13) holds. Then, it follows from (10) that

t Qi/(afl) (S) t |w(s)‘a/(a71)
Aw@mm@wwmﬁgéf@m@mwmm“<“7

which contradicts (8). This completes the proof of Theorem 2. O

Theorem 3. Suppose that (1) and (2) hold, and let the functions H, h,
p and k be the same as in Theorem 1. such that (6) and

t

(23) gymmigoﬂmmmmm@@<w

hold. If there exists a function Q € C([tg,o0),R) such that (8) hold for every
T >ty and

(24)
t vp(s)r(s)|h(t,s)|"
li{’go lnf H(t,T) /7; l:H(t7 S)p(s)k(‘s)q(s) - ad (H(t, S)k(s))ail dS Z Q(T)7

then equation (E7) is oscillatory.

Proof. Without loss of generality, we may assume that there exists a
solution x(t) of equation (E;) such that z(¢) # 0 on [Ty, 0o) for some sufficiently
large Ty > to. Define w(t) as of Theorem 1. As in the proofs of Theorem 1 and
2, we can obtain (4), (5) and (10). From (23) it follow that

Jim sup [G(t) = F()] < K(to)w(to)

_tlirgo inf o) /to H(t,s)p(s)k(s)q(s)ds

(25) < oo,
where F'(t) and G(t) are defined as in the proof of Theorem 2. By (24) we have
t

Q(t < hm inf
(to) < lim H(t to) Jy,

H{(t, s)p(s)k(s)q(s)ds

o ps)r(s) |A(t s
ﬂ&“mmméwwmmw>

i‘ 1ds.
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This and (23) imply that
t «
hm lnf / p(S)T(S) |h(t7 S)_‘l OO,
e " 10) Jiy (H(E,5)k(3))°

considering a sequence {t,},-; in (Tp, 00) with lim, . ¢, = co and such that

. 1 ™ p(s)r(s) [h(tn, s)|*
nh—{goH(tn,to) /to (H(tn,s)k(s))af1 ds

. ! plo)r(s) 11,91
(26) - tLOO f H(t, tp) /to (H(t, S)k‘(s))a_l

Now, suppose that (14) holds. With the same argument as in Theorem 2, we
conclude that (17) is satisfied. By (25), there exists a constant M such that (18)
is fulfilled. Then, following the procedure of the proof of Theorem 2, we see that
(22) holds, which contradicts (26). This contradiction proves that (26) fails. The
remainder of the proof is similar to that of Theorem 2, so we omit the details.
This completes the proof of Theorem 3. O

Theorem 4. Suppose that (1) and (2) hold, and let the functions H, h,
p and k be the same as in Theorem 1 such that (6), and

o " p(s)r(s) h(t, s)|*
(27) tlggo inf H(t,to) /to (H(t,s)k(s)*"

hold. If there exists a function 2 € C([tg,00),R) such that (8) and (24) hold for
every T > to, then equation (E7) is oscillatory.

Remark 1. If p(t) = 0, and ¥ (z) = 1, then the above Theorems 1, 2
and 4 extend and improve Theorems 1, 2 and 3 of Manojlovic [12], and Theorems
1 — 3 reduce to Theorems 1 — 3 of Wang [14], respectively.

ds < 00.

ds < o0,

Remark 2. If p(t) = 0, then Theorems 1 — 4, extend and improve
Theorems 1 — 4 of Wu et al., [16].

Example 1. Consider the differential equation

dt
We note that

q d
4 (t—%(l + e—'““)d—f) + 7 a(t) = 0 for ¢ 21> 0.

a=2, r(t)= 3, q(t) =t7°% and (z) = 1+ e 1*O,



Oscillation Criteria for Nonlinear Differential Equations . .. 407

let
p(s) =s, k(s) =s and H(t,s) = (t — 5)°.
Then
i L[ Yp(s)r(s) |t S)q
lim su 7/ [Ht,s s)k(s)qg(s ) ds
=00 pH(tatO) to ( )p( ) ( )q( ) (H(t’s)k(s))afl
- : /t<t2%1 2st 57— 85T 85T 15T 12)d
=L SUP T N2 §2 — s 52 —8s sZt—s 5= 00
oo P (t_t0)2 to

Hence, this equation is oscillatory by Theorem 1. However, none of the results of
[12], [14] and [16] are applicable for this equation.

Example 2. Consider the differential equation

d 2+ cos? (Int) 1+ 322(t) d
dt \ 1+ 3cos?(Int) 2+ x2(t) dt

for t > tg = 1. We note that

x(t)) + %%m(t) + =

2 + cos? (Int) 1 1
=2, r(t) 1JFBCOSQ(IM)MJ() 2 Pt =1,
and
1+ 322
= — < 3.
0 < (z) a2 <3
If we take

p(s) =1, k(s) =s and H(t,s) = (t —s)?,

then h(t,s) = 2s(t — s) and

lim sup ﬁ /to [H(t, $)p(s)k(s)q(s) — ’YP(S)ri

t—o0

1 t 91 2 +sin? (In s)
= li — t—8)"——3s| ————=—=]|d
oo P (t—1)2 /1 [( 2 s (1 + 3sin? (lns))} i

1 t 51
>tlirgosupm/l [(t—s) ;—68] ds
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L 1 ) 9, 51
—tlggosup(t_l)2 Phnt — o7 42 4 o | = oo,

Hence by Theorem 1 this equation is oscillatory. One such solution of this equa-
tion is x(t) = cos (Int).

3. Oscillation creteria for (E3).
Theorem 5. Suppose that (1) and

d
(28) %9(95)
(¥(x) |g(z)o—2])!/ @D

hold, and let the functions H, h, p and k be the same as in Theorem 1. Then
equation (E9) is oscillatory if

>5>0 for x#0,

| ) ¢ B %p(s)r(s)|
tliglo sup ) /to [H(t,s)p(s)k(S)Q(é’) T e (H(t, s)k(s))

where 0 = %

h(t @
(78)‘ l
S

1 § = 00,

Proof. Let z(t) a nonoscillatory solution of equation (E9). Without loss
of generality, we may assume that x(t) # 0 on [Ty, o0) for some sufficiently large
To > tg. Define w(t) as

a—2
) |
w(t) = p(t) @) for t>t
Thus,
d e e
d o 2P oo dt | dt
G0 = L) + pl) e
d
?") @]

(¥ (@) lg()e=2) D [p(e)rn] e
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This and equation (Fs) imply

d
d T p(t) o)
= Z(t) w(t) = p®)a(t) +pt)e(1, 7))
d [e]
_ %g( ) |w(t)|o—T
(e () |g(@)o=2) D [p(t)r() @Y

From (1) and (28) we have

d
d 7 (t)w B NN 5 e
) =5 et = pt)at) — ptw(t) [p(t)r(t)]l/(a_l)’ OIE

Multiply the above inequality by H(t,s)k(s) and integrate from 7" to ¢ we obtain
d
t t —p(s)
[ He sk < [ HEok) [ B po) | w(s)ds
T T p(s)

/ H(t,s) —w ds—(S/ H(t,s)k(s )[*yp(s)r(s)]a%ll \(.«J(s)]ﬁ ds.

Since
t

¢ d 0
—/T H(t,s)k(s)gw(s)ds:H(t,T)k(T)w(T)—i—/ a—(H(t,s)k(s))w(s)ds.

T S

The previous inequality becomes

/ H(t,s) s)ds < H(t, T)k(T)w(T) + /t |h(t, s)w(s)| ds
T
H( j[(@=D/a
(29) - —1/5 1/a1) ds.
Define

B [H (t, 5)k(5)) ™ [p(s)r(s)]/* [hlt, 5)] |,

>~
el
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v = (B0 [H (e k()] os)r() 7 o))

Then use the lemma 1, we have

BH(t, s)k(s) [w(s)| =1 _ B~ p(s)r(s) [h(t, s)|*

eI @D @ e = s (s h(s) ™

From (29) we have

t ' g1op(s)r(s) [h(t, 9)|°
| H M)ty < Ho DY) + [ PE RS s

' _ Bp(s)r(s) [h(t 5)*
/T [H(t, $)k(s)p(s)q(s) o (H(t )k())"] ] ds < H(t,T)k(T)w(T).

The remainder of the proof proceeds as in the proof of Theorem 1. The proof is
complete. O

Following the procedure of the proof of Theorem 2 and 3, we can also
prove the following theorems.

Theorem 6. Suppose that (1) and (28) hold, and let the functions H, h,
p and k be the same as in Theorem 1. If there exist a functions ) € C([top, ), R)
such that

. " p(s)r(s) |n(t,s)|”
(30) R (A, /t (H(t, 5)k(s))° 1

and that for every T > tg,
(31)

ds < o0,

lim inf

' B p(s)r(s) [h(t, 5)|°
Jim inf o [ HG k) - ds > O(T),

T a® (H(t,s)k(s))*™"
and (8) hold, then every solution of (E9) is oscillatory.

Theorem 7. Suppose that (1) and (28) hold, and let the functions H, h,
p and k be the same as in Theorem 1. If there exist a function Q € C([tp,0),R)
such that

(32) lim inf

1 t
t—oo  H(t,T) /T H(t,s)p(s)k(s)q(s)ds < oo,
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and that (8) and (31) hold, then every solution of (E2) is oscillatory.

Theorem 8. Suppose that (1) and (28) hold, and let the functions H, h,
p and k be the same as in Theorem 1. If there exist a function Q € C([tp, ), R)
such that

: 1 " p(s)r(s) |h(t, )|
(33) AL SUP Fr /to (L s)k(s) T =
and that for every T > t,
(34)
. 1 ¢ B %p(s)r(s) [h(t, s)|*
Jim sup 7o [ ka0t - TEITORLIE 4o > (),

and (8) hold, then every solution of (E2) is oscillatory.

Remark 3. If p(t) = 0, then Theorem 5, 6 and 8 extend and improve
Theorem 1, 3 and 2 of Manojlovic [13].

Example 3. Consider the differential equation

d —-1,.2 d.ﬁU(t) -2,.3
—_— (15 X (15)— +t “x (15) =0 for t to > 0

We note that

d
W—2 an %9(95) B
S Sy 7O
Let
p(s) =1, k(s) =s and H(t,s) = (t —s)>
Then
. ! _ Bp(s)r(s) At 5)|”
lim sup 7o) /to [H(t,S)p(s)k(S)Q(S) ot (H (£ 5)h(s))" "

1 t g2 t2 t 3
= i S b G VLAY P e
0P )2 /to{s Ty tgy T =

Hence, this equation is oscillatory by Theorem 5. However the result of Mano-
jlovic [13] do not apply to this equation.
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Example 4. Consider the differential equation
d [ 2+sin*(Int) 1+ 32%(t) do ®) 1dx (z(t) + 23(1))
dt \1+ 3sin?(Int) 2+ x2(t) dt tdt  t2(1+ 3sin? (Int))
for t > tg = 1. We note that

L)
7%(93) —24a22>2=4

=0,

If we take
p(s)=1, k(s) =s and H(t,s)=(t— 5)27

then h(t,s) = 2s(t — s) and

s OUCTICEN
e (H(t,9)k(s))™

L 1 t (t —s)? s [ 2+sin?(Ins)
—tlirgosup (t—1)2/1 [(s(1+3sin2(lns))> 2 <1+3sin2 (lns)>] ds

, 1 L (t—s)?
= lim sup (lt—1)2/1 [(Ts) _8] ds

1 1t21 t 7t2+1t+3
— |-t"Int — = = =| = oo.
(t—1)2 |4 8 2" '8

Jim s s [ [H(t, $)0()()a(s)

= lim sup
t—o00

Hence by Theorem 1 this equation is oscillatory. One such solution of this equa-
tion is x(t) = sin (Int).
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