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Abstract. We are concerned with overconvergent power series. The main
idea is to relate the distribution of the zeros of subsequences of partial sums
and the phenomenon of overconvergence. Sufficient conditions for a power
series to be overconvergent in terms of the distribution of the zeros of a
subsequence are provided, and results of Jentzsch-Szegö type about the as-
ymptotic distribution of the zeros of overconvergent subsequences are stated.

Introduction and statement of the main results. Let

(1) f(z) =

∞
∑

n=0

anzn

be a power series of final radius of convergence R(f). Throughout the paper will
be assumed that R(f) = 1. We set

Sk(z) =

k
∑

n=0

anzn.
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It is known that the sequence {Sn}∞n=0 of all partial sums diverges at
every point z0 outside the unit disk. The classical result of Ostrowski shows
that this conclusion may be wrong if we consider sequences {Snk

} instead of
{Sn}. If a sequence {Snk

} converges inside some domain U (e.g. uniformly with
respect to the Chebyshev norm on compact subsets) which contains the unit disk
D := {z, |z| < 1} then {Snk

}, resp. f is called overconvergent. In what follows,
we will say that {Snk

} is overconvergent in U . In the case of overconvergence,
the function f is necessarily analytically continuable beyond ∂D, and moreover,
f is analytic in U (we write f ∈ A(U).)

We say further that the function f possesses Hadamard-Ostrowski gaps
(H.-O. gaps) if there exist sequences {pk} and {qk} such that

a) qk−1 ≤ pk < qk, k = 1, 2, . . . ,

aa) lim infk→∞ qk/pk > 1 and

aaa) lim supl |al|1/l < 1, if l ∈ ⋃∞
k=1[pk, qk].

The relation between the overconvergence of some subsequence {Snk
} and

the presence of H.-O. gaps in (1) was first revealed by A. Ostrowski:

Theorem of Ostrowski [1, 2]. Let (1) be a power series with radius
of convergence R(f) = 1, which is analytically continuable beyond D. Then f
is overconvergent iff it possesses H.-O. gaps. In this case, the sequence {Spk

}
converges inside a domain that contains all regular points of f on the unit circle.

We draw the attention to the fact that merely the existence of H.-O. gaps
does not imply overconvergence. The classical result by Hadamard and the next
example convince us of this fact.

Theorem of Hadamard [3]. Let f(z) =
∑∞

k=0 akz
nk be a power series

with radius 1. Then f is not analytically continuable beyond ∂D, if k/nk → 0 as
k → ∞.

Consider as an illustration the function f(z) =
∞
∑

n=0
z2n

; it possesses

H.-O. gaps. But according to Hadamard’s theorem, the unit circle is the nat-
ural boundary of analycity.

Set D(f) for the complete domain where (1) admits a continuation as
a single-valued analytic function. Given a sequence of partial sums {Snk

}, we
denote by D({Snk

}) the greatest domain containing the point z = 0 where the
sequence {Snk

} converges (uniformly on compact subsets). Apparently, D(f) ⊇
D({Snk

}). In 1993 J. Mueller [5] showed that in general D(f) could be “essen-
tially” larger than D({Snk

}). He constructed a power series f with radius of
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convergence 1 such that no sequence {Snk
} converges locally uniformly inside the

domain D(f).
Our interest is devoted to the behavior of the zeros of overconvergent

series. This subject was first posed by A. Ostrowski in 1922 by considering max-
imally convergent polynomial sequences [4]. In [9], sequences of polynomials of
best Chebyshev approximation were investigated. Under the basic assumption
that the function f is analytically continuable beyond the unit circle, in [6] suf-
ficient conditions for overconvergence were provided. A detailed study on the
distribution of zeros of overconvergent sequences of partial sums in Forier series
was done in [7]. The purpose of the present paper is to gain a further insight
into this subject by establishing new sufficient conditions for overconvergence of
a given sequence {Snk

} of partial sums in terms of its zero distribution, as well
as to obtain results of Jentzsch-Szegö type for the asymptotical distribution of
its zeros. In our coming results no previous information about the analytical
continuability of the function f will be needed.

Before continuing, we set νn(K), K− a compact set in C, for the number
of the zeros of Sn on K.

Now, let {Snk
} be a sequence of partial sums which is overconvergent in

some domain U . Then by the classical theorem of Hurwitz

lim sup νnk
(K) < ∞

on compact subsets K of U .
We raise the question whether the “asymptotically small” number of the

zeros of some sequence {Snk
} inside (e.g. on compact subsets) some domain

ensures existence of H.-O. gaps and an overconvergence?

Theorem 1. Let f(z) =
∑∞

n=0 anzn be a power series with radius 1 and
suppose that there exist a domain U ⊃ D with ∂U ⋂

∂D 6= ∅ and a sequence {Snk
}

such that inside U the condition

(2) νnk
(K) = o(nk), k → ∞

holds.
Then the function f possesses H.-O. gaps.

The next result provides a sufficient condition for a sequence {Snk
} to be

overconvergent in a domain.

Theorem 2. Let f be a power series as in Theorem 1 and suppose
that the sequence {Snk

} is overconvergent in a domain U ⊃ D, ∂U ⋂

∂D 6= ∅.
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Moreover, suppose that there are a point z0 ∈ ∂U and a neighborhood V of z0

such that

a) f ∈ A(V )

and

b) the sequence {Snk
} satisfies condition (2) inside V .

Then the sequence {Snk
} is overconvergent in U ⋃

V .

The fact that the function f is analytical in an essentially larger domain
than the domain of overconvergence of the sequence {Snk

} plays a crucial role in
the proof of Theorem 2. It turns out that if the sequence {Snk

} is not too rare,
then merely condition (2) yields an overconvergence. So, the above assertion
about the analytic continuability of f can be omitted. We prove

Theorem 3. Let f be a power series with radius 1. Suppose that there
exist an infinite sequence {Snk

} and a domain U ⊃ D with ∂U ⋂

∂D 6= ∅ such
that condition (2) holds inside U . Assume further that

(3) lim sup
nk→∞

nk+1

nk
< ∞.

Then the sequence {Snk
} is overconvergent in the domain U .

Given a sequence {Snk
} of partial sums, we denote by O({Snk

}) the
largest domain containing the point z = 0 such that condition (2) holds in-
side. By the classical Hurwitz’s theorem, O({Snk

}) ⊇ D({Snk
}). Apparently,

O({Snk
}) ≡ D({Snk

}), provided {Snk
} is overconvergent in O({Snk

}). We de-
duce the following

Corollary 4. Under the conditions of Theorem 3, the domains O({Snk
})

and D({Snk
}) coincide.

From Theorem 3 we easily deduce

Corollary 5. Under the conditions of Theorem 3, each point z0 ∈
∂D({Snk

}) is a concentration point of zeros of {Snk
} and the inequality

lim
δ→0

(

lim sup
nk

νnk
(D(z0, δ))

nk

)

> 0,

with D(z0, δ) being a disk of radius δ centered at z0, holds.

A further consequence of Theorem 3 is
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Theorem 6. Let f be a power series with radius 1 and let U ⊃ D be a
domain, ∂U ⋂

∂D 6= ∅. Suppose that there is a sequence {Snk
} of partial sums

such that condition (3) holds, and, in addition,

lim sup ‖Snk
‖1/nk

K ≤ 1

on compact subsets K of U .
Then {Snk

} is overconvergent in U .

We now recall some known facts and definitions. For further particulars
and results we refer to [11] and [12]. We say that a compact set E in C is regular,
if its complement Ec := C \ E is connected and possesses a Green’s function
GE(z,∞) with singularity at infinity such that limGE(z,∞) → 0 whenever z
approaches the boundary ∂E of E. Set Γρ := {z,GE(z,∞) = ln ρ}, ρ > 1, cap(E)
for its logarithmic capacity and µE for the equilibrium measure. The regularity
of E ensures the positiveness of the capacity as well as the equality

log cap (E) = lim
z→∞

(log |z| − gE(z,∞)).

The equilibrium measure µE is the unique unit measure supported on ∂E, which
minimizes the energy integral

∫∫

log
1

|z − t|dµ(z)dµ(t)

over all unit measures supported on E. In the case being considered supp µE ≡
∂E.

Further, if τn is an infinite sequence of Borel measures, supported on some
set F , we say that τn converges in the weak topology to the measure τ (we write
τn −→ τ), if

∫

φdτn →
∫

φdτ

for any function φ continuous in C and having a compact support. Finally, we
associate with each polynomial Sn the counting measure µn; that is

µn(K) :=
νn(K)

number of all zeros of Sn in C
·

Before we continue, we note the following fact: suppose that a domain U
of overconvergence of {Snk

} is regular. Then the obvious estimate

lim sup
nk→∞

|ank
|1/nk ≤ 1/cap (U)
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is true.

We now introduce the set G({Snk
} as the largest closed set in C where

on each compact subset K the inequality

lim sup
nk→∞

‖Snk
‖1/nk

K ≤ 1

holds. By the maximum principle for polynomials the complement of G({Snk
}) is

connected; further, the set O({Snk
}) coincides with that component of G({Snk

})
which contains the origin (see the proofs below).

An inequality stronger than the former is valid, namely, if G̃ is a closed
regular subset of G({Snk

}), then

(4) lim sup
nk→∞

|ank
|1/nk ≤ 1/cap (G̃).

Indeed, let Tn be a Chebyshev polynomial on G̃ of degree exactly n with
all zeros on G̃; as it is known [10]

|Tn(z)|1/n → cap(G̃)eG(z,∞)

uniformly inside the complement of G̃; G(z,∞) is its Green’s function. The func-

tions
Snk

Tnk

are subharmonic in G̃c. Fix now arbitrary numbers ρ > 1 and Θ > 0.

On writing Snk
= ank

Pnk
with Pnk

being a monic polynomial of degree nk and
using the Lemma of Bernstein-Walsh (see Lemma 3 below), we get for all nk

great enough
∥

∥

∥

∥

ank
Pnk

Tnk

∥

∥

∥

∥

Γρ

≤ C1
enkΘ

cap (G̃)nk

.

(In what follows we will denote by Ci, i = 1, 2, . . . positive constants independent
on i and different on different occasions.) By the maximum principle for subhar-
monic functions, the inequality remains valid at the point of infinity. Using finally
the arbitrariness of Θ, we arrive at (4).

The next result provides an exact estimate for lim supnk→∞ |ank
|1/nk as

well as a result of Jentzsch-Szegö type for the distribution of the zeros.

Theorem 7. Suppose that there is a closed compact set S and an infinite
sequence {Snk

} such that for each compact subset K of S

lim sup
nk→∞

‖Snk
‖1/nk

K ≤ 1.
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Assume, further that S is regular and there is a point z0 6∈ S with

(5) lim sup
nk→∞

1

nk
log |Snk

(z0)| = GS(z0,∞).

Then

(6) lim sup
nk→∞

|ank
|1/nk = 1/cap (S).

If

lim sup
nk→∞

‖Snk
‖1/nk

K = 1

compactly in S, then there is a subsequence {nkl
} such that the counting measures

µnkl
converge weakly to the equilibrium measure µS of S.

The second part of Theorem 7 is in fact a result of Jentzsch-Szegö type
about the distribution of the zeros of {Snkl

}. Theorem 7 is an analogue of the

main theorem of [8].
We note that the sequence {Snkl

} from Theorem 7 is determined by the
condition

(7) lim
nkl

→∞
|ankl

|1/nkl = 1/cap (S).

A direct consequence of Theorem 7 and of (4) is

Corollary 8. Suppose that S is a regular set such that the sequence {Snk
}

converges as nk → ∞ locally uniformly inside S0 and suppose that condition (5)
holds.

Then
cap(S) = cap (G(Snk

))

and S is the largest set where {Snk
} converges locally uniformly inside.

If f 6≡ 0 on each component of S, then there is a subsequence {nkl
} such

that
µnkl

−→ µS .

Remark. We note that if G(Snk
) is regular, then S ≡ G(Snk

). Otherwise
S coincides with the regular component of G(Snk

).
We relate Corollary 8 to Theorem 5.2.2. in [7] where under the same

conditions on f and {Snk
} as above and condition (5) replaced by (6) a weak
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convergence of the counting measures µnk
through an appropriate subsequence

to the equilibrium measure of the set S is established.
We note also the corollaries

Corollary 9. Let (1) be a power series with radius 1 and let the sequence
{Snk

} be given. Suppose that D({Snk
}) is regular and that condition (5) holds for

some point z0 ∈ Dc({Snk
}).

Then
lim sup
nk→∞

|ank
|1/nk = 1/ cap (D({Snk

}))

and for any sequence {nkl
} with (7) the convergence

µnkl
→ µD({Snk

}), nkl
→ ∞

takes place.

For the case, when condition (3) holds, one may omit involving D({Snk
})

into considerations. Namely, one can prove

Corollary 10. Let (1) be a power series with radius 1. Let the sequence
{Snk

} be such that condition (3) holds. Suppose, in addition, that O({Snk
}) is

regular and that condition (5) holds for some point z0 6∈ O({Snk
}). Then

lim sup
nk→∞

|ank
|1/nk = 1/cap (D({Snk

})).

In both cases for any sequence {nkl
} with (7) the measures µnkl

converges weakly

to the equilibrium measures. (Compare the last result with Corollary 5.)

Condition (3) plays an essential role in the proofs of Theorem 3 and of
preceding corollaries. It is an open problem whether these statements are true
when (3) is not necessarily satisfied. Also, it is an open question whether the
presented results are extendable to Fourier (see [7]) and Faber series.

Preliminaries.

Lemma 1. Given a regular compact set E in C with connected com-
plement and {Pn}n∈Λ be a sequence of polynomials, such that on each compact
subset K of E condition (2) holds. Let an be the leading coefficients of Pn, i.e.,
Pn(z) := anzn + · · · , an 6= 0, n ∈ Λ. Suppose that

lim
n∈Λ

|an|1/n = 1/cap(E)
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and
lim sup

n∈Λ
‖Pn‖E

1/n ≤ 1.

Then the counting measures µn associated with Pn converge weakly to the equi-
librium measure µE of E, n ∈ Λ.

The proof of this result was first presented in [17] (see also in [13]). In an
independent way it was completed in [18].

Let F := {Fn}n∈Λ be a family of functions locally single-valued and ana-
lytic in some domain B except perhaps for branch points, and let |Fn|, n ∈ Λ be
single valued. We say that a function H harmonic in B is a harmonic majorant
of F in B, if for any compact subset K ⊂ B the inequality

lim sup
n∈Λ

‖Fn‖K ≤ e‖h‖K

holds. If for each compact subset of B and each subsequence a strict equality
takes place then h is an exact harmonic majorant. The next lemma is due to J.
L. Walsh ([14] and [15]).

Lemma 2. Let B be a domain in C, F− be a family as above and h be
a harmonic majorant for F in B. If there is a continuum M ⊂ B where a strict
inequality holds, then a strict inequality holds on every compact subset of B.

Further, given a sequence of polynomials {Pn}, deg Pn ≤ n, let h be an
exact harmonic majorant for {Pn}1/n in B for {Pn} and for any subsequence.
Then on each compact subset of B condition (2) holds.

For the sake of completeness, we provide the next two lemmas

Lemma 3 (The Lemma of Bernstein-Walsh), [16]. Given a regular com-
pact set E in C with connected complement, let Pn be a polynomial of degree n.
Then, for every compact set F ⊂ Ec the inequality

‖Pn(z)‖F ≤ ‖Pn‖Een‖GE(z,∞)‖F

is true.

Lemma 4 (The two-constants-lemma), [10]. Given a regular domain G,
let ∂G = Γ1

⋃

Γ2,Γi− family of curves, i = 1, 2. Let f ∈ A(G)
⋂

C(G). Then
for every compact subset K of G there exists a constant α(K) := α, 0 < α < 1
such that

‖f‖K ≤ ‖f‖α
Γ1
‖f‖1−α

Γ2
.
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Proofs.
P r o o f o f Th e o r em 1. We suppose without loss of generality that

f(0) = a0 6= 0. Select in an arbitrary way simply connected and regular domains
0 ∈ W1 ⊂ W2 ⊂ U with cap (W1) > 1 and let ζn,l, l = 1, . . . , lnk

be all zeros of
Snk

on W 2. By (2),

(8) lnk
= o(nk), nk → ∞.

Set

tnk
(z) :=

{

∏lnk

l=1(z − ζnk,l), lnk
> 0

1, otherwise

Let 0 < r < 1 be a positive number such that |f(z)| > 0 for z ∈ Dr :=
{z, |z| ≤ r} ⊂ W1 and fix a positive number ρ < r.

Introduce into considerations the functions φnk
(z) :=

{

Snk

tnk

}1/(nk−lnk
)

with φnk
being that holomorphic branch for which |arg φnk

(0)| ≤ π/nk. The
functions φnk

are analytic on W 2. Thanks the choice of r and of ρ, the inequalities

(r − ρ)lnk ≤ |tnk
(z)| ≤ (diamW2)

lnk

hold for every z ∈ Dρ and for nk large enough. Using the last inequalities and
keeping in mind the choice of the holomorphic branch imply that

(9) φnk
→ 1, nk → ∞

uniformly on the disk Dρ. On the other hand, the sequence φnk
is uniformly

bounded inside W1. Indeed, let K be a compact subset of W1 and Θ > 0 be
arbitrary. Making use of (8) and applying Bernstein-Walsh’s lemma leads to

‖φnk
‖K ≤ eΘ‖z/ρ‖1−lnk

/nk

K , nk ≥ nk0
.

Hence, viewing (9) and applying the uniqueness theorem for analytic functions
and by Montel’s theorem, we get that

φnk
→ 1, nk → ∞

uniformly inside the entire domain W1.
Condition (2) yields

(10) lim sup
nk→∞

‖Snk
‖1/nk

K ≤ 1, nk → ∞
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on each compact subset K of W1 and, thus,

lim sup
nk→∞

‖Snk
‖1/nk

∂W1
≤ 1, nk ∈ {nk}, k → ∞.

Now we apply a result by Gehlen [6] saying that if condition (10) holds
for some closed regular set F then for each ε > 0 there exists a number q(ε) :=
q ∈ (0, 1) such that

lim sup
ν∈

�
[qnk,nk]

|aν |1/nk ≤ 1 + ε

cap (F )
.

Our statement becomes true, if we take F := W 1 and select the number ε small
enough. �

P r o o f o f Th e o r e m 2. First we remark that under the conditions of
the theorem the domain U is necessarily simply connected, as well as that U ⊃ D
and f ∈ A(U ⋃

V ). On the other hand, the polynomials Snk
, nk → ∞ satisfy

inside V condition (10). Hence, on any compact subset K of the domain U ⋃

V
the inequality

lim sup ‖Snk
‖1/nk

K ≤ 1

takes place. Since f ∈ A(U ⋃

V ), we deduce that

lim sup ‖f − Snk
‖1/nk

K ≤ 1

on each compact subset K ⊂ U ⋃

V .
Hence, the function h ≡ 0 is a harmonic majorant for the sequence

{|f − Snk
|1/nk} in the domain U ⋃

V . Moreover, the last inequality is strict
on compact subsets of the unit disk D. Then, by Lemma 2, a strong inequality
holds on each compact set in U ⋃

V ; with other words

lim sup ‖f − Snk
‖1/nk

K < 1

on compact subsets K in U ⋃

V .
The last inequality proves our statement. �

P r o o f o f Th e o r e m 3. The proof is based on the considerations of
the proof of Theorem 1. In the same way as before we introduce the numbers
ρ < r < 1 and the regular domains W1, W2.

Using (10) yields

(11) lim sup
nk→∞

‖Snk+1
− Snk

‖1/nk+1

∂W1
≤ 1.



478 Ralitza K. Kovacheva

Next, we establish an uniform convergence of Snk
inside W1. If in (11) a

strict inequality takes place, then we are done. That is why we suppose that

(12) lim sup ‖Snk+1
− Snk

‖1/nk+1

∂W1
= 1.

Coming back to the circle Dρ, (recall that Dρ ⊂ D), we note that

‖Snk+1
− Snk

‖Dρ
≤ 2ρnk .

On keeping track of (3), we may write

(13) ‖Snk+1
− Snk

‖Dρ
≤ C3q

nk+1

with q < 1 being a suitable positive constant, q > ρlim inf nk/nk+1 .
Next, we apply the two-constants-theorem with respect to W1 and Dρ.

Let S ⊂ W1 \ Dρ be an arbitrary closed regular set. There exists a positive
constant α(S) := α, 0 < α < 1 such that for every nk

(14) ‖Snk+1
− Snk

‖S ≤ ‖Snk+1
− Snk

‖Dρ

α‖Snk+1
− Snk

‖∂W1

1−α.

Select now a positive number Θ such that eθ < 1/qα/2(1−α). Using (12),
for nk large enough we obtain

‖Snk+1
− Snk

‖∂W1
≤ enk+1Θ.

Estimating the term ‖Snk+1
−Snk

‖S in (14) by making use of (13) and of the last
inequality and keeping track of the choice of Θ yield

lim sup
k→∞

‖Snk+1
− Snk

‖1/nk+1

S ≤ qα/2 < 1.

Hence, {Snk
} converges uniformly on S, and thus, by arguments of the arbitrari-

ness of S, locally uniformly inside W1. Letting ∂W1 approach ∂U , we arrive at
the statement of the theorem. �

P r o o f o f o f C o r o l l a r y 4. By definition, D({Snk
}) ⊆ O({Snk

}).
Suppose that D({Snk

}) ⊂ O({Snk
}). Let z0 ∈ ∂D({Snk

}) ⋂O({Snk
}) and V ⊂

O({Snk
}) be a neighborhood of z0. Condition (2) takes place on compact subsets

of the domain Ṽ := V
⋃D({Snk

}). By the previous proof, the sequence {Snk
}

converges inside the domain Ṽ (recall that (3) is valid). Hence, Ṽ ⊂ D({Snk
})

which due the definition of D({Snk
}) is impossible. �
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P r o o f o f o f Co r o l l a r y 5. Suppose that the first statement is not
true. Then there is a point z0 ∈ ∂D({Snk

}) and a neighborhood V of z0 such that
νnk

(V ) = 0 for all nk large enough. But according to Theorem 3 the sequence
{Snk

} would be then overconvergent in a larger domain than D({Snk
}). Further,

suppose that z0 be a boundary point of D({Snk
}) for which the second statement

is false. This means that (2) holds for closed disks D(z0, δ) for all δ sufficiently
small, which in turns means that z0 ∈ O({Snk

}). This conclusion contradicts
Corollary 4. �

P r o o f o f Th e o r em 6. We first remark that

lim sup
nk→∞

‖Snk
‖1/nk

K = 1

on compact subsets K of U, since otherwise f ≡ 0. The proof of the theorem
follows immediately from the second part of Lemma 2. Indeed, applying it with
respect to the sequence {Snk

} and the domain U , we obtain (2). Adding condition
(3), we get the statement of the theorem. �

Before we continue, we set G̃({Snk
}) for that component of G({Snk

})
which contains the closed unit disk D. In what follows, we will show that
O({Snk

}) ≡ G̃({Snk
}).

Indeed, if K is a regular compact subset of G̃({Snk
}), then the inequality

lim sup
nk→∞

‖Snk
‖1/nk

K < 1

is impossible (for {nk} and for any subsequence). Otherwise we may suppose
thanks Lemma 2 that on a closed disk Dρ with ρ < 1 a strict inequality takes
place. Since

lim sup
nk→∞

‖f − Snk
‖1/nk

Dρ
≤ ρ,

then f ≡ 0 on Dρ, which in turn implies that f ≡ 0 in D. Consequently,

(15) lim
nk→∞

‖Snk
‖1/nk

K = 1

on compact subsets of G̃({Snk
}). Now, applying again Lemma 2 we see that

condition (2) holds necessarily on compact subsets there. On the other hand,
O({Snk

}) ⊆ G̃({Snk
}) (see the proof of Theorem 2). This proves our proposition.

We note in particular that on compact subsets of O({Snk
}) inequality (15) holds.
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P r o o f o f Th e o r em 7. We recall (see (4)) that under the conditions
of the theorem

lim sup
nk→∞

|ank
|1/nk ≤ 1/ cap (S).

Suppose that

(16) lim sup
nk→∞

|ank
|1/nk < 1/ cap (S).

and introduce the functions

vnk
(z) := 1/nk log |Snk

(z)| − GS(z,∞).

The functions vnk
are subharmonic in Sc and

(17) vnk
(∞) = (1/nk) log |ank

| + log cap S.

Set
v(z) := lim sup

nk

vnk
(z).

By the theorem of Arzela-Askoli the function v is either equivalent to −∞, or is
continuous and subharmonic in Sc. The conditions of the theorem ensure that
v ≡ −∞ is impossible.

Using now the Lemma of Bernstein-Walsh, we obtain

v(z) ≤ 0, z ∈ Sc.

According to condition (5),

v(z0) = 0,

from what we deduce that

(18) v(z) ≡ 0, z ∈ Sc.

But in view of (16) and of (17),

v(∞) < 0.

So, the last inequality is in view of (18) impossible; hence, assumption (16) is
false.

Further, Lemma 1 is applicable to the subsequence {Snkl
}, where nkl

is

determined by (7). Thus the sequence of the counting measures µnkl
converges

weakly to the equilibrium measure µS . �
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At the end of our paper, we give two examples. Let

f(z) :=

∞
∑

n=0

(z(z + 1)/2)3
n

.

The series is absolutely convergent inside the lemniscate L := {z, |z(z + 1)| = 2}
and diverges at every point outside. Hence, D(f) ≡ Lo. Since 1 ∈ L⋂

∂D and
Lo ⊃ D, the radius of convergence equals 1. We note that Cap L =

√
2 and

GL(z,∞) = ln |z(z + 1)/2| (see [10].) Further, in the case being considered Lo is

a regular domain. Consider now the partial sums S2.3k(z) =
∑k

l=0(z(z + 1)/2)3
l

,
k = 0, 1, · · · . The sequence {S2.3k} is overconvergent in L and, as it is easy to
check, condition (5) holds at each point outside. Hence, Theorem 7 is applicable
with respect to {S2.3k}∞k=1.

Consider as a second example the function

f(z) :=
∞
∑

n=0

(z(z − 10)/11)3
n

.

This series converges inside the lemniscate M := {z, |z(z − 10)| = 11} and di-
verges outside. ∂M consists of two closed analytic disjoint curves, and M ⋂

∂D =
{−1}. As before, the conditions of Theorem 7 refer to the sequence of the partial

sums S2.3k(z) =
∑k

n=0(z(z − 10)/11)3
n

.
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[1] A. Ostrowski. Über eine Eigenschaft gewisser Potenzreihen mit un-
endlichvielen verschwindenden Koeffizienten. Berl. Ber. 1921, 557–565.
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