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Abstract. The constrained optimization problem min f(x), gj(x) ≤ 0
(j = 1, . . . , p) is considered, where f : X → R and gj : X → R are non-
smooth functions with domain X ⊂ Rn. First-order necessary and first-order
sufficient optimality conditions are obtained when gj are quasiconvex func-
tions. Two are the main features of the paper: to treat nonsmooth problems
it makes use of the Dini derivative; to obtain more sensitive conditions, it
admits directionally dependent multipliers. The two cases, where the La-
grange function satisfies a non-strict and a strict inequality, are considered.
In the case of a non-strict inequality pseudoconvex functions are involved
and in their terms some properties of the convex programming problems are
generalized. The efficiency of the obtained conditions is illustrated on an
example.
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1. Introduction. The constrained optimization problem

(1) min f(x), gj(x) ≤ 0 (j = 1, . . . , p)

is investigated, where f : X → R and gj : X → R (j = 1, . . . , p) are nonsmooth
functions with domain X ⊂ Rn. The scope of the paper is to obtain first-order
necessary and sufficient optimality conditions of Kuhn-Tucker type for problems
with nonsmooth quasiconvex constraints, and in particular ones with quasiconvex
objective functions. Quasiconvex (quasiconcave) programming initiates in the
well-known paper of Arrow, Enthoven [1] and has been studied thereafter by
various authors, e. g. in [10], [2], [3], [4], [7], [8], [12]. The main features of
the paper are the following: to treat nonsmooth problems it makes use of Dini
directional derivatives; to obtain more sensitive conditions it admits directionally
dependent multipliers. This approach has been used in [6] for problems with
locally Lipschitz data, making use of the set-valued Dini derivative. Here we
show, that for problems with quasiconvex constraints we can use instead the
single-valued Dini derivative.

2. Basic definitions. For a set X ⊂ Rn and x ∈ X we denote by X(x)
the set of the admissible directions, that is the set of all u ∈ Rn for which t = 0 is
an accumulating point for the set {t ∈ R+ | x + tu ∈ X}. Consider the function

f : X → R. The lower Dini derivative f
(1)
−

(x, u) of f at x ∈ dom f in direction
u ∈ X(x) is defined as an element of R := R ∪ {−∞} ∪ {+∞} by

f
(1)
−

(x, u) = lim inf
t→0+

1

t
(f(x + tu) − f(x)).

The role of the Dini derivatives for quasiconvex programming is stressed in [4].

Recall that a function f : X → R, X ⊂ Rn, is said quasiconvex (strictly
quasiconvex) if X is convex and for all x0, x1 ∈ X, x0 6= x1, such that f(x0) ≥
f(x1), and all t ∈ (0, 1), it holds f((1− t)x0 + tx1) ≤ f(x0) (f((1− t)x0 + tx1) <
f(x0)). If these properties hold for a fixed x0 ∈ X, we say that f is quasiconvex
(strictly quasiconvex) at x0. Moreover, in the last definition we will not suppose
that X is convex, but the above properties will be assumed to hold only for those
t ∈ (0, 1), for which (1−t)x0+tx1 ∈ X (this relaxed definition allows for instance
further to state Theorem 1 without the hypothesis that X is convex).

Following Diewert [5], we use the Dini derivative to introduce pseudocon-
vexity for nonsmooth functions. We call the set X ⊂ Rn convex-like at x0 if for
each x1 ∈ X it holds x1 − x0 ∈ X(x0). We say that set X is convex-like if it is
convex-like for each x0 ∈ X (turn attention that the convex sets are convex-like).
We say that the function f : X → R, where X is convex-like at x0, is pseudocon-
vex (strictly pseudoconvex) at x0 ∈ X, if f(x0) > f(x1) (f(x0) ≥ f(x1)) implies
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f
(1)
−

(x0, x1 − x0) < 0. The function f : X → R, where X is convex-like, is said
pseudoconvex (strictly pseudoconvex) if it is pseudoconvex (strictly pseudocon-
vex) at each point x ∈ X (the definition of Diewert requires that the domain X
is convex, here we relax this requirement to X is convex-like).

3. Conditions with non-strict inequalities We can write problem
(1) in the form

(2) min f(x), g(x) ≤ 0,

accepting that g(x) = (g1(x), . . . , gp(x)) (the lower indexes will be used for the
coordinates of a vector) and that g(x) ≤ 0 means that the coordinates satisfy this

inequality. We put g
(1)
−

(x, u) = (g1
(1)
−

(x, u), . . . , gp
(1)
−

(x, u)). The scalar product
in Rp is denoted 〈·, ·〉, that is 〈η, z〉 =

∑p
j=1 ηjzj for η, z ∈ Rp. Besides the usual

algebraic operations with infinities, we accept that (±∞) · 0 = 0 · (±∞) = 0.

We write as usual R+ = [0, +∞) and R+ = R+ ∪ {+∞}. If r ∈ R+ we
put

R+[r] =

{

R, r > 0,
R+, r = 0,

R+[r] =

{

R, r > 0,

R+, r = 0.

Given z0 ∈ R
p
+, we introduce the notations

R
p
+[z0] = R+[z0

1 ] × · · · × R+[z0
p ],

R
p

+[z0] = R+[z0
1 ] × · · · × R+[z0

p ].

Recall that there exists a standard topology on R, in which a neighbour-
hood of +∞ (−∞) is any set U ⊂ R containing an interval of the type (a,+∞]
([−∞, a)) for some a ∈ R. When Ai ⊂ R (i = 1, . . . , k), then int

∏k
i=1 Ai =

∏k
i=1 int Ai is the interior of

∏k
i=1 Ai with respect to the product topology R

k
.

With these agreements the following lemma has place.

Lemma 1. Let z0 ∈ R
p
+ and let ȳ ∈ R, z̄ ∈ R

p
. Then the following two

conditions are equivalent:

(3) (ȳ, z̄) /∈ −int (R+ × R
p

+[z0]),

and

(4)

∃(ξ0, η0) ∈ R+ × R
p
+ : (ξ0, η0) 6= (0, 0),

ξ0 = 0 if ȳ = −∞, η0
j = 0 if z̄j = −∞,

η0
j z0

j = 0 (j = 1, . . . , p) and ξ0 ȳ + 〈η0, z̄〉 ≥ 0.

P r o o f. If r ∈ R we put A(r) = R+ when r ≥ 0, and A(r) = R when
r < 0. Now it is clear that condition (3) is satisfied if and only if the set
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A(ȳ) ×
∏p

j=1 A(z̄j) is separated from −int (R+ × R
p
+[z0]), the two sets are in

Rp+1. Applying the Separation theorem for these two sets, we see that (3) im-
plies (4). Conversely, when condition (4) is satisfied, then (3) follows immediately,
since ξ0 y + 〈η0, z〉 < 0 for (y, z) ∈ −int (R+ × R

p

+[z0]). �

Remark 1. In (4) due to z0 ∈ R
p
+ and η0 ∈ R

p
+ the slackness condition

η0
j z0

j = 0 (j = 1, . . . , p) can be represented in the equivalent form 〈η, z〉 = 0. The

sum ξ0 ȳ + 〈η0, z̄〉 = ξ0 ȳ +
∑p

j=1 η0
j z̄j always has sense, since it has not addends

equal to −∞. The proof of Lemma 1 leads to a practical rule how to choose the
multipliers ξ0 and η0 = (η0

1 , . . . , η
0
p). Namely, we can put

ξ0 =

{

1, ȳ ≥ 0,
0, ȳ < 0,

and η0
j =











1, z0
j = 0, z̄j ≥ 0,

0, z0
j = 0, z̄j < 0,

0, z0
j > 0.

The next theorem uses the following notion of a minimizer. We say that
the feasible point x0 is a radial minimizer (strict radial minimizer) of (1), if for
all admissible directions u ∈ X(x0), there exists δ(u) > 0, such that f(x0) ≤
f(x0 + tu) (f(x0) < f(x0 + tu)) whenever 0 < t < δ(u) and the point x0 + tu is
feasible. Obviously, each local (strict local) minimizer of (1) is its radial (strict
radial) minimizer.

Recall that given a feasible point x0 ∈ X, the set of the active indexes for
(1) at x0 is defined by J(x0) = {j | gj(x

0) = 0}.

Theorem 1 (Necessary conditions, non-strict inequalities). Consider
problem (1) and let x0 be a radial minimizer. Let the functions gj (j = 1, . . . , p)
be continuous at x0 when j /∈ J(x0) and quasiconvex at x0 when j ∈ J(x0). Then
for each u ∈ X(x0) the following condition is satisfied:

(5) (f
(1)
−

(x0, u), g
(1)
−

(x0, u)) /∈ −int
(

R+ × R
p

+[−g(x0)]
)

.

P r o o f. Suppose on the contrary, that for some u0 ∈ X(x0) we have

f
(1)
−

(x0, u0) ∈ −int R+ and g
(1)
−

(x0, u0) ∈ −int R
p

+[−g(x0)]. Let f
(1)
−

(x0, u0) =

limk(1/tk)(yk − y0) and gj
(1)
−

(x0, u0) = limk(1/sjk)(z
jk − zj0) for some sequences

tk → 0+ and sjk → 0+ (j = 1, . . . , p), where yk = f(x0 + tku
0), y0 = f(x0),

zjk = gj(x
0 + sjku

0), zj0 = gj(x
0). Passing to a subsequence of {tk}, we may

assume that tk < min(s1k, . . . , spk). Now we prove that the points x0 + tku
0

are feasible for all sufficiently large k. The condition x0 + tku
0 ∈ X is imposed

implicitly taking the value f(x0+tku
0). Since f and gj (j = 1, . . . , p) are supposed

to have the same domain X, the values gj(x
0 + tku

0) are defined. It remains to
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prove that gj(x
0 + tku

0) ≤ 0 (j = 1, . . . , p) for all sufficiently large k. When
j ∈ J(x0) we have gj(x

0 + sjku
0) ≤ 0 = g(x0). Since gj is quasiconvex at x0,

this gives gj(x
0 + tku

0) ≤ 0. When j /∈ J(x0), we have gj(x
0) < 0. Now the

continuity of gj at x0 implies gj(x
0 + tku

0) < 0 for all sufficiently large k. Thus,
for all sufficiently large k the point x0 + tku

0 is feasible, and at the same time
f(x0 + tku

0) − f(x0) = yk − y0 < 0, which contradicts the hypothesis that x0 is
a radial minimizer. �

Remark 2. Condition (5) will be referred as primal form condition. On
the base of Lemma 1 it is equivalent to the following dual form condition:

(6)

∃ (ξ0, η0) ∈ R+ × R
p
+ : 〈ξ0, η0〉 6= (0, 0),

ξ0 = 0 if f
(1)
−

(x0, u) = −∞,

η0
j = 0 if gj

(1)
−

(x0, u) = −∞ (j = 1, . . . , p),

η0
j gj(x

0) = 0 (j = 1, . . . , p),

and ξ0 f
(1)
−

(x0, u) +
∑p

j=1 η0
j gj

(1)
−

(x0, u) ≥ 0.

The multipliers ξ0 and η0
j (j = 1, . . . , p) can be chosen according to Remark 1.

Remark 3. The last row in (6) is a non-strict inequality. Since only
such conditions are considered in this section, it is entitled “Conditions with non-
strict inequalities”. In the next section we will occupy with similar conditions,
but with strict inequalities.

The following example shows, that without the hypothesis that gj is con-
tinuous at x0 when j /∈ J(x0) Theorem 1 is not true.

Example 1. Consider problem (2) with f, g : R → R given by f(x) = −x
and

g(x) =

{

−1, x ≤ 0,
1, x > 0.

The function g is quasiconvex. It holds g(x0) < 0 and g is not continuous at
x0. The point x0 = 0 is a radial (and global) minimizer, but condition (5) is not
satisfied. Indeed, for u = 1 it holds

(f
(1)
−

(x0, u), g
(1)
−

(x0, u)) = (−1,+∞) ∈ −int (R+ ×R) = −int (R+ ×R+[−g(x0)]).

If in Theorem 1 we replace the primal form condition (5) with the equiv-
alent dual form condition (6), we observe that, in contrast to the classical theory,
the multipliers depend on the directions. The next example shows that, when
treating nonsmooth problems, the hypotheses of Theorem 1 do not imply condi-
tion (6) with directionally independent multipliers.
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Example 2. Consider problem (2) with f, g : R → R given by

f(x) =

{

x, x ≥ 0,
2x, x < 0,

g(x) =

{

−2x, x ≥ 0,
−x, x < 0.

The functions f and g are continuous and strictly quasiconvex (also strictly
pseudoconvex). The set of the feasible points is R+. Put x0 = 0. Obviously
x0 is a global minimizer. Then condition (6) is satisfied in virtue of Theorem 1,
but cannot be satisfied with directionally independent multipliers.

Indeed, assume in the contrary, that condition (6) is satisfied with some

directionally independent multipliers (ξ0, η0). For u ≥ 0 it holds f
(1)
−

(x0, u) = u,

g
(1)
−

(x0, u) = −2u, whence in particular we should have

ξ0 f
(1)
−

(x0, 1) + η0 g
(1)
−

(x0, 1) = ξ0 − 2η0 ≥ 0.

Similarly, for u ≤ 0 it holds f
(1)
−

(x0, u) = 2u, g
(1)
−

(x0, u) = −u, whence in partic-
ular we should have

ξ0 f
(1)
−

(x0, −1) + η0 g
(1)
−

(x0, −1) = −2ξ0 + η0 ≥ 0.

Adding the two inequalities we obtain −(ξ0+η0) ≥ 0, which obviously contradicts
to ξ0 ≥ 0, η0 ≥ 0, (ξ0, η0) 6= (0, 0).

Theorem 2 (Sufficient conditions, non-strict inequalities). Consider
problem (1) with X convex-like at x0. Let the functions gj, j ∈ J(x0), be strictly
pseudoconvex at x0, and f be pseudoconvex (strictly pseudoconvex) at x0. Suppose
that for each u ∈ X(x0) condition (5) is satisfied. Then x0 is a global minimizer
(strict global minimizer).

P r o o f. Assume on the contrary, that x0 is not a global (strict global)
minimizer. Then there exists a feasible point x1 6= x0 such that f(x1)−f(x0) < 0
(f(x1) − f(x0) ≤ 0). Since f is pseudoconvex (strictly pseudoconvex) at x0, it

holds f
(1)
−

(x0, u) < 0 with u = x1 − x0. Therefore condition (5) gives that

g
(1)
−

(x0, u) /∈ −int R
p

+[−g(x0)]. On the other hand for j ∈ J(x0) we have gj(x
1) ≤

0 = gj(x
0). Since gj is strictly pseudoconvex at x0, we have gj

(1)
−

(x0, u) < 0. This

gives g
(1)
−

(x0, u) ∈ −int R
p

+[−g(x0)], a contradiction. �

The following example shows that in Theorem 2 the strict pseudocon-
vexity requirements for the constraint functions gj cannot be relaxed to only
pseudoconvexity.

Example 3. Consider problem (2) with f, g : R → R given by f(x) = −x
and g(x) = 0. Put x0 = 0. The function f is strictly pseudoconvex, and g is
pseudoconvex but not strictly pseudoconvex at x0. The point x0 is not a global
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minimizer, while condition (5) is satisfied, since

(f
(1)
−

(x0, u), g
(1)
−

(x0, u)) = (−u, 0) /∈ −int (R+ × R+) = −int (R+ × R+[−g(x0)]).

The following example shows that also the pseudoconvexity requirements
for the objective function are essential for Theorem 2 and cannot be reduced to
(strict) quasiconvexity.

Example 4. Consider problem (2) with f, g : R → R given by f(x) = x3

and g(x) = x. Put x0 = 0. The functions f and g are strictly quasiconvex,

g is strictly pseudoconvex at x0, but f is not so. Since f
(1)
−

(x0, u) = 0 and

g
(1)
−

(x0, u) = u, condition (5) is satisfied (now f
(1)
−

(x0, u) /∈ −int R+), but x0 is
not a global minimizer.

The following theorem is a consequence of Theorems 1 and 2. Strength-
ening there the pseudoconvexity and the strict pseudoconvexity requirements
respectively to convexity and strict convexity, we obtain a known classical result.

Theorem 3. Let in problem (1) the set X be convex (or more generally
convex-like), the functions f be pseudoconvex (strictly pseudoconvex), and gj (j =
1, . . . , p) be continuous and strictly pseudoconvex. Then a point x0 ∈ X is a global
minimizer of problem (1) if and only if x0 satisfies condition (5).

The given so far examples serve to clarify to what extend the hypothe-
ses of the theorems are essential. Now we give an example to illustrate, that
the obtained results are effective in solving complex nonsmooth problems (the
nonsmoothness here is due to the appearance of the min function).

Example 5. Solve problem (2) with f : R2 → R and g : R2 → R given
by

f(x1, x2) = min
(

x2
1 + 8x1x2 + 16x2

2 − 8x1 − 32x2 + 20, x1 + 4x2

)

,

g(x1, x2) = −x1 − x2 +
√

(x1 − x2)2 + 4.

The function f can be written into the form

f(x1, x2) =

{

x2
1 + 8x1x2 + 16x2

2 − 8x1 − 32x2 + 20, 4 ≤ x1 + 4x2 ≤ 5,
x1 + 4x2, otherwise.

There are no solutions among the points outside the lines `1 : x1+4x2 = 4
and `2 : x1 + 4x2 = 5. We leave this case, since it can be checked easily with
the given here theory, but also with a classical approach (near such points both
f and g are smooth).
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At the points x ∈ `1 we have

f
(1)
−

(x, u) =

{

0, u1 + 4u2 ≥ 0,
u1 + 4u2, u1 + 4u2 < 0,

g
(1)
−

(x, u) = −u1 − u2 +
(x1 − x2)(u1 − u2)
√

(x1 − x2)2 + 4
.

Now the sign of f
(1)
−

(x, u) is easily estimated and from Remark 1 we can limit
the choice of ξ0 to:

f
(1)
−

(x, u) ≥ 0 ⇒ ξ0 = 1 for u1 + 4u2 ≥ 0,

f
(1)
−

(x, u) < 0 ⇒ ξ0 = 0 for u1 + 4u2 < 0.

According to Remark 1 the choice of η0 can be conditioned by the sign of g
(1)
−

(x, u)
and the solution of the system

{

−x1 − x2 +
√

(x1 − x2)2 + 4 = 0,
x1 + 4x2 = 4,

(that is g(x) = 0, x ∈ `1). The latter has the unique solution x0 = (2, 1/2). At

x0 we have g
(1)
−

(x0, u) = −
2

5
u1−

8

5
u2, which gives g

(1)
−

(x0, u) ≥ 0 for u1 +4u2 ≤ 0.

Therefore the choice of η0 can be restricted to:

η0 =











1, x = x0, u1 + 4u2 ≤ 0,

0, x = x0, u1 + 4u2 < 0,

0, x ∈ `1 \ {x
0}.

Now we see that at x0 = (2, 1/2) for all directions u ∈ R2 condition (6) can be
satisfied (in which case we call the point x0 stationary) with the choice:

(ξ0, η0) =

{

(1, 0), u1 + 4u2 ≥ 0,
(0, 1), u1 + 4u2 < 0.

All the remaining points x ∈ `1 \{x
0} are not stationary, since for any such point

x we can choose at least one direction u, for which the obtained ξ0 and η0 give
the zero pair (ξ0, η0) = (0, 0).

Similarly, in the case x ∈ `2 we see that there are no stationary points.

Thus x0 = (2, 1/2) is the only point which satisfies the necessary condition
from Theorem 1. Since, as it can be easily checked, the function f is pseudoconvex
at x0, and g is strictly pseudoconvex at x0, we can draw the conclusion that
x0 = (2, 1/2) is a global minimizer for the considered problem, and its only
radial minimizer.
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Let us note, that f is pseudoconvex and g is strictly pseudoconvex (not
only at x0), therefore looking for solutions of the considered problem, we can
refer to Theorem 3.

4. Conditions with strict inequalities. In this section we show
that the first-order conditions with strict inequalities are related to the radial
isolated minimizer.

Let k be a positive real. We say that the feasible point x0 ∈ X is a radial
isolated minimizer (of order 1) for problem (1) if for all u ∈ X(x0), there exist
positive reals δ = δ(u) and A = A(u), such that the inequality

f(x0 + tu) ≥ f(x0) + At ‖u‖

is satisfied for all feasible points x0 + tu such that 0 ≤ t < δ(u). If the reals δ and
A can be chosen to be independent on u, then x0 is called an isolated minimizer
for (1).

The following lemma is analogous of Lemma 1 and is proved in a similar
way.

Lemma 2. Let z0 ∈ R
p
+ and let ȳ ∈ R, z̄ ∈ R. Then the following two

conditions are equivalent:

(7) (ȳ, z̄) /∈ −(R+ × R
p

+[z0])

and

(8)

∃(ξ0, η0) ∈ R+ × R
p
+ : (ξ0, η0) 6= (0, 0),

ξ0 = 0 if ȳ = −∞, η0
j = 0 if z̄j = −∞,

〈η0, z0〉 = 0, and ξ0 ȳ + 〈η0, z̄〉 > 0.

Theorem 4 (Sufficient conditions, strict inequalities). Let x0 ∈ X be a
feasible point for problem (1). Suppose that for all u ∈ X(x0) \ {0} the following
condition is satisfied:

(9) (f
(1)
−

(x0, u), g
(1)
−

(x0, u)) /∈ −(R+ × R
p

+[−g(x0)]).

Then x0 is a radial isolated minimizer of (1). Under the additional assumption
that X is convex, f is quasiconvex (strictly quasiconvex) and gj (j = 1, . . . , p)
are quasiconvex, then x0 is a global (strict global) minimizer of (1).

P r o o f. Assume on the contrary, that x0 is not a radial isolated min-
imizer of (1). Choose a sequence εk → 0+. ¿From the made assumption,
there exists u ∈ X(x0) \ {0} and a sequence tk → 0+, such that the points
x0 + tku are feasible and (1/tk)

(

f(x0 + tku) − f(x0)
)

< εk ‖u‖. The latter gives

f
(1)
−

(x0, u) ≤ 0, that is f
(1)
−

(x0, u) ∈ −R+. When gj(x
0) = 0 we have similarly
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(1/tk)
(

gj(x
0 + tku) − gj(x

0)
)

≤ 0. Hence gj
(1)
−

(x0, u) ≤ 0, that is gj
(1)
−

(x0, u) ∈

−R+ = −R+[−gj(x
0)]. When gj(x

0) < 0, then R+[−gj(x
0)] = R and again

gj
(1)
−

(x0, u) ∈ −R+[−gj(x
0)]. These reasonings show that (f

(1)
−

(x0, u), g
(1)
−

(x0, u))

∈ −(R+ × R
p

+[−g(x0)]), which contradicts the hypothesis (9).

Let the mentioned additional assumption are fulfilled. Suppose on the
contrary, that x0 is not a global (strict global) minimizer. Then there exists a
feasible point x1 ∈ X \ {x0}, such that f(x0) > f(x1) (f(x0) ≥ f(x1)). Since gj

(j = 1, . . . , p) are quasiconvex, the points x0 + tu with u = x1 − x0 are feasible.
Since x0, as proved above, is a radial minimizer of (1), the point t0 = 0 is a local
minimizer for the quasiconvex (strictly quasiconvex) function φ(t) = f(x0 + tu),
0 ≤ t ≤ 1, and therefore its global (strict global) minimizer. In particular f(x0) =
φ(0) ≤ φ(1) = f(x1) (f(x0) = φ(0) < φ(1) = f(x1)), a contradiction. �

Remark 4. On the base of Lemma 2, the primal form condition (9) is
equivalent to the following dual form condition:

(10)

∃ (ξ0, η0) ∈ R+ × R
p
+ : 〈ξ0, η0〉 6= (0, 0),

ξ0 = 0 if f
(1)
−

(x0, u) = −∞,

η0
j = 0 if gj

(1)
−

(x0, u) = −∞ (j = 1, . . . , p),

η0
j gj(x

0) = 0 (j = 1, . . . , p),

and ξ0 f
(1)
−

(x0, u) +
∑p

j=1 η0
j gj

(1)
−

(x0, u) > 0.

As an application consider the problem in Example 2 for x0 = 0 putting
ξ0 = 3, η0 = 1 when u > 0, and ξ0 = 1, η0 = 3 when u < 0. Now it is easy to
verify that

(11) ξ0f
(1)
−

(x0, u) + η0g
(1)
−

(x0, u) = |u| > 0 for all u ∈ Rn \ {0}.

On the base of Theorem 4 we conclude that x0 is a strict global minimizer, hence
the unique minimizer, of the considered problem.

For the next theorem, being a reversal of Theorem 4, we need the following
constraint qualification of Kuhn-Tucker type:

Q′

−
(x0) :

If x0 is feasible and gj
(1)
−

(x0, u) ∈ −R+[−gj(x
0)] for j = 1, . . . , p,

then exists t̄ > 0 such that x0 + t̄u is a feasible point for (1)).

Theorem 5 (Necessary conditions, strict inequalities). Let the set X
be convex, the functions gj (j = 1, . . . , p) be quasiconvex, and the feasible point
x0 be a radial isolated minimizer of problem (1). Suppose that the constraint
qualification Q ′

−
(x0) has place. Then for all u ∈ X(x0) \ {0} condition (9) is

satisfied.
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P r o o f. Condition (9) is certainly true when gj
(1)
−

(x0, u) /∈ R+[−gj(x
0)]

for some j. The alternative is that gj
(1)
−

(x0, u) ∈ −R+[−gj(x
0)] for j = 1, . . . , p.

Then the assumed constraint qualification implies the existence of a positive
real t̄, such that the point x0 + t̄u is feasible. From the quasiconvexity of gj it
follows that all points x0 + tu, 0 ≤ t ≤ t̄, are feasible. Since x0 is a radial isolated
minimizer, there exists a real A > 0, such that (1/t)

(

f(x0 + tu) − f(x0)
)

≥ A ‖u‖

is satisfied for all sufficiently small positive t. This gives f
(1)
−

(x0, u) ≥ A ‖u‖.

Hence f
(1)
−

(x0, u) /∈ −R+, which verifies (9) in this case. �

Like in the classical Kuhn-Tucker condition [9] (compare also with Man-
gasarian [11]) the sense of the constraint qualification Q′

−
(x0) is roughly speaking

that a point cannot leave the set of the feasible points at x0 in tangent directions.
The following example shows that Q′

−
(x0) is essential for Theorem 5.

Example 6. Consider problem (2) with f, g : R → R given by f(x) =
g(x) = x2 and let x0 = 0. The function g is quasiconvex. The point x0, as the only

feasible point, is a radial isolated minimizer. It holds f
(1)
−

(x0, u) = g
(1)
−

(x0, u) = 0
for all u ∈ Rn, whence obviously condition (9) is not satisfied.
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