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Abstract. Tsybakov [31] introduced the method of stochastic approxima-
tion to construct a recursive estimator of the location θ of the mode of a
probability density. The aim of this paper is to provide a companion algo-
rithm to Tsybakov’s algorithm, which allows to simultaneously recursively
approximate the size µ of the mode. We provide a precise study of the
joint weak convergence rate of both estimators. Moreover, we introduce
the averaging principle of stochastic approximation algorithms to construct
asymptotically efficient algorithms approximating the couple (θ, µ).

1. Introduction. The most famous use of stochastic approximation
algorithms in the framework of nonparametric statistics is the work of Kiefer and
Wolfowitz [14], who built up an algorithm which allows the approximation of the
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maximizer of a regression function, which is observable at any level. Their well-
known algorithm was widely discussed and extended in many directions (see,
among many others, [1], [10], [15], [12], [27], [3], [29], [24], [6], [30], [4], [7]).
In particular, Mokkadem and Pelletier [20] provided a companion algorithm to
Kiefer-Wolfowitz’s algorithm in order to simultaneously approximate the location
and the size of the mode of the regression function. Stochastic approximation
algorithms were also introduced by Révész [25, 26] to estimate a regression func-
tion from a sample of random variables, and by Tsybakov [31] to approximate the
mode of a probability density. The aim of this paper is to provide a companion
algorithm to Tsybakov’s algorithm in order to simultaneously approximate the
location and the size of the mode of a probability density.

Let us recall Robbins-Monro’s scheme to construct approximation algo-
rithms searching the zero z∗ of an unknown function h : R

d → R
d, which is

observable at any level. First, Z0 ∈ R
d is arbitrarily chosen, and then the se-

quence (Zn) is recursively defined by setting

Zn = Zn−1 + γnWn,

where Wn is an observation of the function h at the point Zn−1, and where the
stepsize (γn) is a sequence of positive real numbers going to zero.

Let X1, . . . , Xn be independent, identically distributed R
d-valued random

vectors, let f denote the probability density of X1, and assume that f has a unique
maximizer θ. To construct a stochastic algorithm approximating the maximizer
θ of f , Tsybakov [31] defines an algorithm searching the zero of ∇f , the gradient
of f , in the following way. First θ0 ∈ R

d is arbitrarily chosen, and then, for n ≥ 1,
θn is recursively defined by setting

θn = θn−1 + γnW (θ)
n ,

where, following Robbins-Monro’s procedure, W
(θ)
n must be an “observation” of

the function ∇f at the point θn−1. Now, contrary to Robbins-Monro’s framework,
the function ∇f is not observable at any level, the only available observations

being the random vectors Xi. In order to build up the “observation” W
(θ)
n ,

Tsybakov [31] follows the method used by Révész [25], and introduces a kernel K

(that is, a function satisfying

∫

Rd

K(x)dx = 1), and a bandwidth (hn) (that is, a

sequence of positive real numbers going to zero); noting that h
−(d+1)
n ∇K(h−1

n [x−
Xn]) can be regarded as an “observation” of the function ∇f at the point x,
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Tsybakov [31] sets W
(θ)
n = h

−(d+1)
n ∇K

(
h−1

n [θn−1 − Xn]
)
, so that his algorithm

approximating θ is defined by the recursive relation

(1) θn = θn−1 + γn
1

hd+1
n

∇K

(
θn−1 − Xn

hn

)
.

Tsybakov [31] proves the srong consistency of θn, and establishes an upper bound
of its mean squared error, as well as a minimax result.

In order to construct a companion algorithm to Tsybakov’s algorithm (1),
which approximates the size µ of the mode θ of the probability density f (in other
words, which approximates µ = f(θ)), we define an algorithm searching the zero
of the function g : y 7→ f(θ) − y. Following Robbins-Monro’s scheme, we set
µ0 ∈ R, and, for n ≥ 1,

µn = µn−1 + γnW (µ)
n ,

where W
(µ)
n is an “observation” of the function g at the point µn−1. Let (h̃n) be

a bandwidth (which may be different from (hn)); noting that h̃−d
n K(h̃−1

n [x−Xn])
can be regarded as an “observation” of the function f at the point x, we set

W
(µ)
n = h̃−d

n K
(
h̃−1

n [θn−1 − Xn]
)
−µn−1. The stochastic approximation algorithm

we introduce to estimate µ is thus defined by the recursive relation

(2) µn = µn−1 − γnµn−1 + γn
1

h̃d
n

K

(
θn−1 − Xn

h̃n

)
.

We prove that µn is strongly consistent, and we establish the weak con-
vergence rate of (θn, µn) defined by the algorithms (1) and (2). We prove in
particular that, for (θn) and (µn) to converge simultaneously at the optimal rate,
the stepsize (γn) must be chosen such that limn→∞ nγn = γ0 ∈ (0,∞), and the
bandwidths (hn) and (h̃n) must converge to zero at different rates. Now, as it is
often the case in the framework of stochastic approximation algorithms, the choice
of a stepsize satisfying limn→∞ nγn = γ0 induces conditions on γ0, which are dif-
ficult to handle because depending on an unknown parameter (in the present
framework, γ0 must be larger than a quantity involving the Hessian D2f(θ) of f
at θ). The famous approach to obtain optimal convergence rates for stochastic
approximation algorithms without tedious condition on the stepsize is to use the
averaging principle independently introduced by Ruppert [28] and Polyak [22].
Their averaging procedure, which was widely discussed and extended (see, among
many others, [32], [5], [23], [16], and [6]) allows to obtain asymptotically efficient
algorithms, that is, algorithms which not only converge at the optimal rate, but
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which also have a minimal asymptotic covariance matrix. This procedure con-
sists in: (i) running the approximation algorithm by using slower stepsizes; (ii)
computing a suitable average of the approximations obtained in (i).

To apply the averaging principle to the approximating algorithms (1) and
(2), we proceed as follows. First, we run the algorithms (1) and (2) with a slower
stepsize satisfying limn→∞ nγn = ∞. Then, we define the average θn of the θk

and the average µn of the µk by setting

θn =
1

∑n
k=1 hd+2

k

n∑

k=1

hd+2
k θk,(3)

µn =
1

∑n
k=1 h̃d

k

n∑

k=1

h̃d
kµk.(4)

We establish the weak convergence rate of (θn, µn). We prove in particular that
adequate choices of the bandwidths (hn) and (h̃n) allow to obtain simultaneously
the asymptotic efficiency of both sequences (θn) and (µn).

To conclude this introduction, let us underline that the proof of the as-
ymptotic behaviour of the sequences (θn), (µn), (θn), and (µn) deeply relies on
the application of asymptotic properties of a general stochastic approximation al-
gorithm. Our paper is thus organized as follows. Our main results on (θn), (µn),
(θn), and (µn) are stated in Section 2. In Section 3, we state some asymptotic
properties of a general stochastic approximation algorithm, and prove them in
Section 4. Finally, Section 5 is reserved to the proof of our main results.

2. Assumptions and main results. Throughout this paper, ‖.‖
denotes the Euclidean norm. For any function φ, we set ‖φ‖∞ = supx ‖φ(x)‖.
For any matrix A, AT denotes the transpose of A, and Id denotes the d × d
identity matrix. Moreover, we consider the following class of regularly varying
sequences.

Definition 1. Let γ ∈ R and (vn)n≥1 be a nonrandom positive sequence.
We say that (vn) ∈ GS (γ) if

lim
n→+∞

n

[
1 − vn−1

vn

]
= γ.(5)

Condition (5) was introduced by Galambos and Seneta [11] (see also [2]);
it was used in [20] in the context of stochastic approximation algorithms. Typical
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sequences in GS (γ) are, for b ∈ R, nγ (log n)b, nγ (log log n)b, and so on.

We can now state our assumptions.

(H1) (i) K is continuously differentiable,

∫

Rd

K(x)dx = 1,

∫

Rd

‖x‖2|K(x)|dx < ∞,

and lim‖x‖→∞ K(x) = 0.

(ii) K is even in each of its coordinates.

(iii)

∫

Rd

‖x‖‖∇K(x)‖dx < ∞ and ‖∇K‖∞ < ∞.

(H2) (i) f is three times continuously differentiable, ‖D2f‖∞ < ∞ and
‖D3f‖∞ < ∞.

(ii) [∇f(x)]T (x − θ) < 0 for all x 6= θ.

(iii) The largest eigenvalue −L(θ) of D2f(θ) is negative.

(H3) (i) (γn) ∈ GS (−α) with α ∈ (1/2, 1].

(ii) (hn) ∈ GS (−a) with a ∈
(

1 − α

4
,
2α − 1

d + 2

)
.

(iii) limn→∞ nγn ∈
(

min

{
1 − a(d + 2)

2L(θ)
;

2a

L(θ)

}
;∞
]
.

(iv)
(
h̃n

)
∈ GS (−ã) with ã ∈

(
1 − α

4
,
2α − 1

d

)
.

Remark 1. Assumption (H1)(ii) implies in particular that

∫

Rd

xiK(x)dx

= 0 for all i ∈ {1, . . . , d} and

∫

Rd

xixjK(x)dx = 0 for all i 6= j. Moreover, assump-

tions (H1)(i) and (H1)(iii) imply that

∫

Rd

‖∇K(x)‖dx < ∞ and

∫

Rd

‖∇K(x)‖2dx <

∞.

Remark 2. (H3)(ii) and (H3)(iv) imply that a < α/(d + 2) and ã <
α/d, respectively.

Our first result is the following proposition.
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Proposition 1. Let (µn) be the sequence defined by the stochastic ap-
proximation algorithms (1) and (2). Under (H1)–(H3), limn→∞ µn = µ a.s.

Remark 3. The assumptions, which ensure the strong consistency of
the sequence (θn) defined by the stochastic approximation algorithms (1) are:
(H1), (H2), (H3)(i)–(ii), together with the condition

∑
γn = ∞ (see Section

5.1.1). Note that this lattest condition is weaker than (H3)(iii).

To establish the weak convergence rate of (θn, µn), we need the following
additional assumption.

(H4) (i) lim
n→∞

nγn ∈
(

min

{
1 − ãd

2
; 2ã

}
;∞
]
.

(ii) ã < 2a and a(d + 2) + 2ã < α.

We also need to introduce the following notations.

ξ = lim
n→∞

(nγn)−1,

R(θ) =
1

2
∇




d∑

i=1



∫

Rd

x2
i K(x)dx


 ∂2f

∂2zi


 (θ),(6)

R(µ) =
1

2

d∑

i=1





∫

Rd

x2
i K(x)dx


 ∂2f

∂2zi
(θ)


 ,(7)

Σ(µ) = [2 − ξ(1 − ãd)]−1f(θ)

∫

Rd

K2(z)dz,(8)

G =

∫

Rd

∇K(z)[∇K(z)]T dz,(9)

and Σ(θ) is the solution of Lyapounov’s equation

(10)

(
D2f(θ) +

[1 − a(d + 2)]ξ

2
Id

)
Σ(θ) + Σ(θ)

(
D2f(θ) +

[1 − a(d + 2)]ξ

2
Id

)

= −f(θ)G.

The following theorem gives the weak convergence rate of (θn, µn).

Theorem 1. Let (θn, µn) be defined by the stochastic approximation
algorithms (1) and (2), and assume that (H1)–(H4) hold.
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• If limn→∞ γ−1
n hd+6

n = 0 and limn→∞ γ−1
n h̃d+4

n = 0, then


√

γ−1
n hd+2

n (θn − θ)√
γ−1

n h̃d
n (µn − µ)


 D→ N

(
0,

(
Σ(θ) 0

0 Σ(µ)

))
,

where
D→ denotes the convergence in distribution.

• If there exist c > 0 and c̃ > 0 such that limn→∞ γ−1
n hd+6

n = c and
limn→∞ γ−1

n h̃d+4
n = c̃, then



√

γ−1
n hd+2

n (θn − θ)√
γ−1

n h̃d
n (µn − µ)




D→N
(

−√
c
[
D2f(θ) + 2aξId

]−1
R(θ)

√
c̃ (1 − 2ãξ)−1R(µ)

,

(
Σ(θ) 0

0 Σ(µ)

))
.

• If limn→∞ γ−1
n hd+6

n = ∞ and limn→∞ γ−1
n h̃d+4

n = ∞, then
(

h−2
n (θn − θ)

h̃−2
n (µn − µ)

)
P→

(
−
[
D2f(θ) + 2aξId

]−1
R(θ)

(1 − 2ãξ)−1R(µ)

)
.

Remark 4. In the framework of Parts 1 and 2 of Theorem 1, that
is, when limn→∞ γ−1

n hd+6
n ∈ [0,∞) and limn→∞ γ−1

n h̃d+4
n ∈ [0,∞), we have α ≤

a(d + 6) and α ≤ ã(d + 4). In view of (H4)(i), it follows that ξ < 2[1 − ãd]−1, so
that Σ(µ) > 0. In view of (H3)(iii), it follows that ξ < 2[1 − a(d + 2)]−1L(θ), so

that the matrix D2f(θ) +
[1 − a(d + 2)]ξ

2
Id is negative definite. Proposition 1 in

[18] ensuring that G is positive definite, Σ(θ) is thus positive definite. Now, in the
framework of Parts 2 and 3 of Theorem 1, that is, when limn→∞ γ−1

n hd+6
n ∈ (0,∞]

and limn→∞ γ−1
n h̃d+4

n ∈ (0,∞], we have α ≥ a(d + 6) and α ≥ ã(d + 4). In view
of (H3)(iii) and (H4)(i), it follows that 2aξ < L(θ) and 2ãξ < 1 , which ensures
that the limits in Parts 2 and 3 of Theorem 1 are well defined.

A stochastic approximation algorithm is said to be asymptotically efficient
if it converges at the optimal rate and if its asymptotic covariance matrix is
minimum (with respect to the order of symmetric matrices). In view of Theorem
1, the couple (θn, µn) converges at the optimal rate if the stepsize (γn) is chosen
in GS(−1) and such that limn→∞ nγn = γ0 with, in view of assumptions (H3)(iii)
and (H4)(i),

(11) γ0 > max

{
min

{
1 − a(d + 2)

2L(θ)
;

2a

L(θ)

}
; min

{
1 − ãd

2
; 2ã

}}
,
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and if the bandwidths (hn) and (h̃n) are chosen such that limn→∞ γ−1
n hd+6

n = c >
0 and limn→∞ γ−1

n h̃d+4
n = c̃ > 0, respectively. We then have:

( √
nhd+2

n (θn − θ)√
nh̃d

n (µn − µ)

)

D→N
(

−√
cγ0

[
D2f(θ) + 2aξId

]−1
R(θ)

√
c̃γ0 (1 − 2ãξ)−1R(µ)

,

(
γ0Σ

(θ) 0

0 γ0Σ
(µ)

))
.

Now, for (θn) (respectively, (µn)) to be asymptotically efficient, the asymptotic
covariance matrix γ0Σ

(θ) (respectively, γ0Σ
(µ)) must also be minimum. The fol-

lowing proposition is proved in Section 5.3.

Proposition 2.

1. For the algorithm (1) to be asymptotically efficient, the stepsize (γn) must
equal the matricial sequence (−[1− a(d+2)][D2f(θ)]−1n−1), the bandwidth
(hn) must satisfy limn→∞ nhd+6

n = c > 0 (in which case a = [d+6]−1), and
we then have√

nhd+2
n (θn − θ)

D→ N
(
−2

√
c[D2f(θ)]−1R(θ),Σ

(θ)
opt

)
,

with Σ
(θ)
opt = f(θ)[1 − a(d + 2)][D2f(θ)]−1G[D2f(θ)]−1.

2. For the algorithm (2) to be asymptotically efficient, the stepsize (γn) must
equal ([1− ãd]n−1), the bandwidth (h̃n) must satisfy limn→∞ nh̃d+4

n = c̃ > 0
(in which case ã = [d + 4]−1), and we then have

√
nh̃d

n (µn − µ)
D→ N

(
2
√

c̃R(µ),Σ
(µ)
opt

)
,

with Σ
(µ)
opt = f(θ)[1 − ãd]

∫

Rd

K2(z)dz.

In view of Proposition 2 and condition (11), it is possible to choose the
stepsize (γn) leading to the asymptotic efficiency of the algorithm (2) only in the
case when 4[d +4]−1 > min{[1 − a(d + 2)]/ [2L(θ)]; 2a/L(θ)}. On the other hand,
since the matrix D2f(θ) is unknown, it is not possible to choose the stepsize
(γn) leading to the asymptotic efficiency of the algorithm (1). The following
theorem, giving the weak convergence rate of the averaged algorithms (3) and
(4), shows that (θn) and (µn) can be simultaneously asymptotically efficient, and
this without any tedious condition on the stepsize (γn); to state it, we need the
following additional assumption.
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(H5) limn→∞ nγn[log(
∑n

k=1 γk)]
−1 = ∞.

Theorem 2. Let (θn, µn) be defined by the stochastic approximation
algorithms (1) and (2), let (θn, µn) be the averaged algorithms defined by (3) and
(4), and assume that (H1)–(H5) hold.

• If limn→∞ nhd+6
n = 0 and limn→∞ nh̃d+4

n = 0, then
( √

nhd+2
n

(
θn − θ

)
√

nh̃d
n (µn − µ)

)
D→ N

(
0 ,

(
Σ

(θ)
opt 0

0 Σ
(µ)
opt

))
.(12)

• If there exist c > 0 and c̃ > 0 such that limn→∞ nhd+6
n = c and

limn→∞ nh̃d+4
n = c̃, then

(13)

( √
nhd+2

n

(
θn − θ

)
√

nh̃d
n (µn − µ)

)

D→N
(( −2

√
c[D2f(θ)]−1R(θ)

2
√

c̃R(µ)

)
,

(
Σ

(θ)
opt 0

0 Σ
(µ)
opt

))
,

and (θn) and (µn) are simultaneously asymptotically efficient.

• If limn→∞ nhd+6
n = ∞ and limn→∞ nh̃d+4

n = ∞, then

(
h−2

n

(
θn − θ

)

h̃−2
n (µn − µ)

)
P→




−[1 − a(d + 2)]

1 − a(d + 4)
[D2f(θ)]−1R(θ)

1 − ãd

1 − ã(d + 2)
R(µ)


 .(14)

Remark 5. In the case when limn→∞ nhd+6
n = ∞ and limn→∞ nh̃d+4

n =
∞, we have a ≤ (d + 6)−1 and ã ≤ (d + 4)−1, so that the limit term in (14) is
well defined.

3. Some preliminary results on stochastic approximation al-

gorithms. As mentioned in the introduction, the proof of our main results
deeply relies on the application of asymptotic properties of a general stochastic ap-
proximation algorithm searching the zero z∗ of an unknown function h : R

d → R
d.

This algorithm is defined by setting Z0 ∈ R
d, and, for n ≥ 1,

(15) Zn = Zn−1 + γn

[
h (Zn−1) + Rn + c−1

n εn

]
,
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where (γn) and (cn) are nonrandom positive sequences going to zero, and where
the random sequences (Rn) and (εn) are defined on a probability space (Ω,A, P)
equipped with a filtration F = (Fn).

The algorithm (15) was widely studied under various assumptions; see,
among many others, [21], [17], [8], [20], and the references therein. However,
the results obtained in these references do not apply in the present framework.
The aim of this section is to state the different properties, which will enable us
to establish the asymptotic behaviour of the algorithms (1), (2), (3) and (4).
To this end, we consider the algorithm (15) under the assumptions (A1)–(A7)
stated below. (A1) says that the algorithm converges strongly to the zero z∗

of the function h; this consistency property will be proved for (θn) and (µn) by
applying Robbins-Monro’s theorem (see Section 5.1). Assumptions (A1)–(A6) are
classical conditions in the framework of stochastic approximation algorithms, and
are adequate for the study of (1), (2), (3) and (4); (A2) requires that the unknown
function h : R

d → R
d is smooth enough at the neighbourhood of its zero z∗, and

that its Jacobian H at the point z∗ is negative definite; (A4) requires that εn is a
noise with finite conditional covariance matrix Γn satisfying limn→∞ Γn = Γ a.s.;
(A5) gives the convergence rate of the term (Rn). A contrario, (A7) is unusual
in the framework of stochastic approximation algorithms; it replaces a condition
on the moments of (εn), which is not fulfilled in our framework.

(A1) limn→∞ Zn = z∗ a.s.

(A2) (i) There exist η > 1 and a neighbourhood of z∗ on which h(z) = H(z −
z∗) + O(‖z − z∗‖η).

(ii) H is diagonalizable and its largest eigenvalue −L is negative.

(A3) Either (cn) ∈ GS(−τ) with τ ∈ (0, 1/2) or (cn) = 1, in which case we set
τ = 0.

(A4) (i) E (εn+1|Fn) = 0.

(ii) There exists a nonrandom, positive definite matrix Γ such that
limn→∞ E(εn+1ε

T
n+1|Fn) = Γ a.s.

(A5) There exist ρ ∈ R
d and (vn) ∈ GS(v∗), v∗ > 0, such that limn→∞ vnRn = ρ

a.s.

(A6) (i) (γn) ∈ GS(−α) with α ∈
(
max{1

2 , 2τ}, 1
]
.
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(ii) limn→∞ nγn ∈
(
min

{
1−2τ
2L , v∗

L

}
,∞
]

where L and v∗ are defined in
(A2) and (A5) respectively.

(A7) There exists a sequence (wn) adapted to Fn such that ‖εn+1‖ ≤ wn for all
n and such that limn→∞ γnw2

n+1 log(
∑n

k=1 γk) = 0.

Section 3.1 is reserved to the results on (15), which will enable us to
establish the asymptotic behaviour of (1) and (2); Section 3.2 is devoted to the
results on the averaged version of (15), which will enable us to establish the
asymptotic behaviour of (3) and (4).

3.1. On the asymptotic behaviour of the stochastic approxima-
tion algorithm (15). The asymptotic behaviour of the algorithm (15) is given
by those of the sequences (Ln) and (∆n) defined by:

Ln = e(
� n

k=1
γk)H

n∑

k=1

e−(
� k

j=1 γj)Hγkc
−1
k εk,

∆n = (Zn − z∗) − Ln.

Let Σ be the solution of Lyapounov’s equation
(

H +
ξ(1 − 2τ)

2
Id

)
Σ + Σ

(
HT +

ξ(1 − 2τ)

2
Id

)
= −Γ,

where ξ = limn→∞(nγn)−1. The following three lemmas are proved in Section 4.

Lemma 1. Let (A2)–(A6) hold. Moreover, assume that v∗ ≥ (α − 2τ)/2

and that there exists m∗ > 2 such that limn→∞ γ
−1+m∗/2
n E[‖εn‖m∗ |Fn−1] = 0 a.s.

Then, we have
√

γ−1
n c2

n Ln
D→ N (0,Σ).

Lemma 2. Let (A2)–(A7) hold.

• If v∗ ≥ (α − 2τ)/2, then ‖Ln‖ = O

(√
γnc−2

n log (
∑n

k=1 γk)

)
a.s.

• If v∗ < (α − 2τ)/2, then ‖Ln‖ = o
(
v−1
n

)
a.s.

Lemma 3. Let (A1)–(A7) hold.

• If v∗ ≤ (α − 2τ)/2, then limn→∞ vn∆n = −[H + v∗ξId]
−1ρ a.s.
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• If v∗ > (α − 2τ)/2, then limn→∞

√
γ−1

n c2
n ∆n = 0 a.s.

The combination of Lemmas 2 and 3 gives the following upper bound of
the strong convergence rate of (Zn), which is usefull in the study of the averaged
version of the algorithm (15) (see Section 4.6): under assumptions (A1)–(A7),

(16) ‖Zn − z∗‖ = O




√√√√γnc−2
n log

(
n∑

k=1

γk

)
+ v−1

n


 a.s.

The combination of Lemmas 1, 2 and 3 also gives, under assumptions (A1)–(A7),
the weak convergence rate of (Zn), which is the first step in the proof of the
following lemma (see Section 4.4).

Lemma 4. For the algorithm (15) to be asymptotically efficient, the
stepsize (γn) must be chosen equal to (−[1− 2τ ]H−1n−1), the sequences (cn) and
(vn) must be such that limn→∞ nc2

nv−2
n = c > 0 (in which case v∗ = [1 − 2τ ]/2),

and we then have
√

nc2
n (Zn − z∗)

D→ N
(
−2

√
cH−1ρ, (1 − 2τ)H−1Γ[H−1]T

)
.

3.2. On the averaged version of the stochastic approximation
algorithm (15). As mentioned in the introduction, the averaging procedure
introduced by Ruppert [28] and Polyak [22] consists in: (i) running the approx-
imation algorithm (15) by using a slower stepsize; (ii) computing an average of
the approximations obtained in (i). If (15) is Robbins-Monro’s algorithm, then
the average leading to the asymptotic efficiency is known to be the arithmetic
one (see, for instance, [28] and [22]); if (15) is Kiefer-Wolfowitz’s algorithm, then
a weighted average must be used to get the efficiency (see, for instance, [6]). In
this section, we establish in particular that, in order to get the asymptotic ef-
ficiency of the averaged version of the stochastic approximation algorithm (15),
the average of the Zk must be weighted by the c2

k. We set

Zn =
1∑n

k=1 c2
k

n∑

k=1

c2
kZk,

and assume that the following additional conditions hold.

(A8) (i) limn→∞ nγn [log (
∑n

k=1 γk)]
−1 = ∞.

(ii) limn→∞ nγη
nc

2(1−η)
n [log(

∑n
k=1 γk)]

η = 0, where η is defined in (A2)(i).
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The asymptotic behaviour of (Zn) is given by those of the sequences (Λn) and
(Ξn) defined by

Λn+1 =
−1∑n
k=1 c2

k

H−1
n∑

k=1

c2
kc

−1
k+1εk+1,

Ξn+1 =
(
Zn − z∗

)
− Λn+1.

The following lemmas are proved in Section 4.

Lemma 5. Let (A2)–(A6) hold. Moreover, assume that there exists
m∗ > 2 such that limn→∞ n1−m∗/2

E[‖εn+1‖m∗ |Fn] = 0 a.s. Then, we have
√

nc2
nΛn+1

D→N
(
0 , (1 − 2τ)H−1Γ[H−1]T

)
.

Lemma 6. Assume that (A1)–(A8) hold.

• If limn→∞ v−1
n

√
nc2

n ∈ (0,∞], then limn→∞ vn Ξn+1 = −(1−2τ)
1−2τ−v∗H−1ρ a.s.

• If limn→∞ v−1
n

√
nc2

n = 0, then limn→∞

√
nc2

n Ξn+1 = 0 a.s.

The combination of Lemmas 5 and 6 gives the weak convergence rate of
(Zn) under assumptions (A1)–(A8):

• If limn→∞ nc2
nv−2

n = 0, then
√

nc2
n

(
Zn − z∗

) D→ N
(
0 , (1 − 2τ)H−1Γ[H−1]T

)
.

• If there exists c > 0 such that limn→∞ nc2
nv−2

n = c (and thus v∗ =
(1 − 2τ)/2), then

√
nc2

n

(
Zn − z∗

) D→ N
(
−2

√
cH−1ρ , (1 − 2τ)H−1Γ[H−1]T

)
,

and (Zn) is asymptotically efficient.

• If limn→∞ nc2
nv−2

n = ∞, then

vn

(
Zn − z∗

) P→ −(1 − 2τ)

1 − 2τ − v∗
H−1ρ.

4. Proof of the preliminary results on stochastic approxima-

tion algorithms. Throughout the proofs, we set sn =
∑n

k=1 γk.
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4.1. Proof of Lemma 1. Let us recall that, if U = (Un) is a sequence of
random vectors adapted to the filtration F , then a predictable quadratic variation
of U is a random sequence 〈U〉 = 〈U〉n defined by setting 〈U〉0 = 0 and 〈U〉n −
〈U〉n−1 = E[(Un−Un−1)(Un−Un−1)

T |Fn−1) (see for instance [9, Definition 2.1.8]).
Now, set

M
(n)
j =

√
γ−1

n c2
nesnH

j∑

k=1

e−skHγkc
−1
k εk.

M (n) = (M
(n)
j )1≤j≤n is a martingale triangular array whose predictable quadratic

variation satisfies

〈M〉(n)
n = γ−1

n c2
nesnH

[
n∑

k=1

e−skHγ2
kc−2

k E(εkε
T
k |Fk−1)e

−skHT

]
esnHT

,

and the application of Lemma 4 in [19] ensures that

lim
n→∞

〈M〉(n)
n = Σ a.s.

Moreover, we have
n∑

k=1

E

[∥∥∥M (n)
k − M

(n)
k−1

∥∥∥
m∗

∣∣∣∣Fk−1

]

=

n∑

k=1

E

[∥∥∥(γ−1
n c2

n)1/2e(sn−sk)Hγkc
−1
k εk

∥∥∥
m∗

∣∣∣∣Fk−1

]

= O

(
(γ−1

n c2
n)m

∗/2e−Lm∗sn

n∑

k=1

eLm∗skγm∗

k c−m∗

k E

[
‖εk‖m∗

∣∣∣Fk−1

])

= O

(
(γ−1

n c2
n)m

∗/2e−Lm∗sn

n∑

k=1

eLm∗skγm∗

k c−m∗

k o(γ
1−m∗/2
k )

)
a.s.

= O

(
(γ−1

n c2
n)m

∗/2e−Lm∗sn

n∑

k=1

eLm∗skγko([γkc−2
k ]m

∗/2)

)
a.s.

= O
(
(γ−1

n c2
n)m

∗/2o([γnc−2
n ]m

∗/2)
)

a.s.

= o(1) a.s.,

which ensures that Lyapounov’s condition is fulfilled. Lemma 1 follows.

4.2. Proof of Lemma 2. Let −λ be an eigenvalue of HT , let w be an
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eigenvector associated with −λ, and let Mn be the martingale defined by

Mn =

n∑

k=1

eλskγkc
−1
k wT εk.(17)

Let us at first assume that either limn→∞ nγn = ∞ or α − 2τ ≤ v∗. The pre-
dictable quadratic variation of (Mn) equals

〈M〉n =
n∑

k=1

e2λskγ2
kc−2

k wT
E(εkε

T
k |Fk−1)w,

and the application of Lemma 4 in [19] ensures that

(18) lim
n→∞

γ−1
n c2

ne−2λsn〈M〉n = wT Σw a.s.

Since (γ−1
n c2

n) ∈ GS(α − 2τ), we have

ln(γ−1
n c2

n) = ln(γ−1
0 c2

0) +

n∑

k=1

ln

(
γ−1

k c2
k

γ−1
k−1c

2
k−1

)

= ln(γ−1
0 c2

0) +

n∑

k=1

ln

(
1 +

α − 2τ

k
+ o

(
1

k

))

= ln(γ−1
0 c2

0) +

n∑

k=1

ln (1 + [α − 2τ ]ξγk + o(γk))

= [α − 2τ ]ξsn + o(sn).(19)

It follows that

ln
[
γ−1

n c2
n exp(−2λsn)

]
= [α − 2τ ]ξsn + o(sn) − 2λsn

= ([1 − 2τ ]ξ − 2λ + o(1))sn.

Since limn→∞ sn = ∞ and since 2λ > 2L > [1 − 2τ ]ξ, we deduce that

lim
n→∞

ln
[
γ−1

n c2
n exp(−2λsn)

]
= −∞

i.e.

lim
n→∞

γ−1
n c2

n exp(−2λsn) = 0,

which proves that limn→∞〈M〉n = ∞ a.s.
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Let η be the funtion defined by η(x) =
√

2x ln lnx; we have

|Mn − Mn−1|
〈M〉n[η(〈M〉n)]−1

=
eλsnγnc−1

n

∣∣wT εn

∣∣√2 ln ln〈M〉n√
〈M〉n

≤ Cn
eλsnγnc−1

n wn√
2e2λsnγnc−2

n wT Σw

√
ln ln(e2λsnγnc−2

n wT Σw)

≤ C ′
n

√
γnwn

√
ln sn

where (Cn) and (C ′
n) are a.s. bounded adapted sequences. Thus, there exists an

adapted sequence (C̃n) going to zero and such that

|Mn+1 − Mn| ≤ C̃n〈M〉n[η(〈M〉n)]−1

The application of Theorem 6.4.24 in [9] then gives

lim sup
n→∞

|Mn|
η(〈M〉n)

≤ 1 a.s.

In view of (18), we thus have

|Mn| = O

(
eλsn

√
γnc−2

n ln ln(e2λsnγnc−2
n )

)
a.s.

= O

(
eλsn

√
γnc−2

n ln sn

)
a.s.

Since wT Ln+1 = e−λsnMn+1, it follows that, for any eigenvector w of HT ,

∣∣wT Ln

∣∣ = O

(√
γnc−2

n ln sn

)
a.s.

Part 1 of Lemma 2 and Part 2 of Lemma 2 in the case when limn→∞ nγn = ∞
follow. It remains to prove Part 2 of Lemma 2 in the case when limn→∞ nγn < ∞.
The application of Theorem 1.3.24 in [9] ensures that the martingale (Mn) defined
in (17) satisfies, for all γ > 0,



Recursive estimation of the mode 667

|Mn|2 = O




n∑

k=1

e2λskγ2
kc−2

k

[
ln

(
n∑

k=1

e2λskγ2
kc−2

k

)]1+γ

 a.s.

= O




n∑

k=1

e2λskγko
(
[v2

k(ln k)1+γ ]−1
)
[
ln

(
n∑

k=1

e2λskγkv
−2
k

)]1+γ

 a.s.

= o

(
e2λsn [v2

n(lnn)1+γ ]−1
[
ln
(
e2λsnv−2

n

)]1+γ
)

a.s.

= o
(
e2λsn [v2

n(ln n)1+γ ]−1 [lnn]1+γ
)

a.s.

= o
(
e2λsnv−2

n

)
a.s.

It follows that, for any eigenvector w of HT ,
∣∣wT Ln

∣∣ = o
(
v−1
n

)
a.s., which con-

cludes the proof of Lemma 2.

4.3. Proof of Lemma 3. Set rn = Rn+R̃n with ‖R̃n‖ = O(‖Zn−z∗‖η),
and note that (15) can be rewritten as

(20) Zn − z∗ = Zn−1 − z∗ + γnH (Zn−1 − z∗) + γnrn + γnc−1
n εn.

Noting that

Ln = γnc−1
n εn + eγnHLn−1 = γnc−1

n εn +
[
Id + γnH + O

(
γ2

n

)]
Ln−1,

we get

(21) ∆n = (Id + γnH)∆n−1 + γn [O (γn)Ln−1 + rn] .

Set A ∈ (0, L); in view of Proposition 3.I.2 in [8] there exist a matrix
norm |||.|||A and a ∈ (0, 1/A) such that, for all γ ≤ a, |||Id + γH|||A ≤ 1−γA. Now,
for x ∈ R

d, define M(x) = [xx . . . x] the matrix in Md(R) all of whose columns
are x; the function ‖.‖A defined on R

d by ‖x‖A = |||M(x)|||A is then a vector norm
compatible with the matrix norm |||.|||A (see [13, pp. 297]). For n large enough,
we thus obtain

‖∆n‖A≤ (1 − Aγn) ‖∆n−1‖A + γn [O (γn) ‖Ln−1‖A + ‖rn‖A] .

Since limn→∞ [O (γn) ‖Ln−1‖A + ‖rn‖A] = 0 a.s., the application of Lemma 4.I.1
in [8] ensures that

lim
n→∞

‖∆n‖A = 0 a.s.

Noting that

rn = Rn + O (‖Ln−1‖η) + O (‖∆n−1‖η) a.s.,
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we rewrite (21) as

∆n = [Id + γnH]∆n−1 + γn [O (γn)Ln−1 + O(‖Ln−1‖η) + O(‖∆n−1‖η) + Rn]

= [Id + γnH + o(γn)] ∆n−1 + γn [O (γn)Ln−1 + O(‖Ln−1‖η) + Rn] .

Now, let (un) be the sequence defined as

(un) =





(vn) if α − 2τ ≥ 2v∗,(√
γ−1

n c2
n

)
if α − 2τ < 2v∗,

and note that (un) ∈ GS(u∗) with u∗ = min{v∗, (α − 2τ)/2}. In particular, we
have

un

un−1
= 1 + u∗ξγn + o (γn) .

It follows that

un∆n =
un

un−1
(Id + γnH + o(γn)) un−1∆n−1

+γnun [O (γn) Ln−1 + O(‖Ln−1‖η) + Rn]

= (Id + γn [H + u∗ξId] + o(γn))un−1∆n−1

+γnun [O (γn) Ln−1 + O(‖Ln−1‖η) + Rn] .

Set m̃ = −[H + u∗ξId]
−1ρ1u∗=v∗ and δn = un∆n − m̃. We have:

δn = (Id + γn [H + u∗ξId] + o(γn)) δn−1 + (γn [H + u∗ξId] + o(γn)) m̃

+ γnun [O (γn) Ln−1 + O(‖Ln−1‖η) + Rn]

= (Id + γn [H + v∗ξId] + o(γn)) δn−1 + γn

[
unBn + B̃n

]
,

with

Bn = O (γn)Ln−1 + O(‖Ln−1‖η),

B̃n = unRn + [H + v∗ξId] m̃ + o(1).

Set Ã ∈ (v∗ξ, L); there exist a matrix norm |||.||| �
A

and ã ∈ (0, 1/Ã) such that,

for all γ ≤ ã, |||Id + γ [H + v∗ξId]||| �
A ≤ 1 − γÃ. Let ‖.‖ �

A be the vector norm
compatible with the matrix norm |||.||| �

A (for all x ∈ R
d, ‖x‖ �

A = |||M(x)||| �
A). For n

large enough, we have

‖δn‖ �
A ≤

(
1 − Ãγn + o(γn)

)
‖δn−1‖ �

A + γn

[
unBn + B̃n

]

Set B ∈ (v∗ξ, Ã); for n large enough, we get

‖δn‖ �
A
≤ (1 − Bγn) ‖δn−1‖ �

A
+ γn

[
unBn + B̃n

]
a.s.
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Since limn→∞ unBn + B̃n = 0 a.s., the application of Lemma 4.I.1 in [8] then
ensures that limn→∞ δn = 0 a.s., which concludes the proof of Lemma 3.

4.4. Proof of Lemma 4. The combination of Lemmas 1, 2 and 3 ensures
that, under assumptions (A1)–(A7):

• If limn→∞ γ−1
n c2

nv−2
n = c ≥ 0, then√

γ−1
n c2

n(Zn − z∗)
D→ N (−√

c[H + v∗ξId]
−1ρ,Σ).

• If limn→∞ γ−1
n c2

nv−2
n = ∞, then vn(Zn − z∗)

P→ − [H + v∗ξId]
−1ρ.

It follows that, for (Zn) to converge at the optimal rate, (γn) must be chosen

such that lim
n→∞

nγn = γ0 ∈
(

min

{
1 − 2τ

2L
,
v∗

L

}
,∞
)

and the sequences (cn) and

(vn) must be such that limn→∞ nc2
nv−2

n = c > 0 (in which case v∗ = (1 − 2τ)/2).
We then have

√
nc2

n(Zn − z∗)
D→ N

(
−√

cγ0

[
H +

1 − 2τ

2
ξId

]−1

ρ, γ0Σ

)
.

For (Zn) to be asymptotically efficient, the asymptotic covariance matrix γ0Σ
must also be minimum. To find this minimum covariance matrix, we allow the
stepsize (γn) to be matricial. In other words, we consider the stochastic approx-
imation algorithm defined as

Yn = Yn−1 +
A

n

[
h(Yn−1) + Rn + c−1

n εn

]
,

where A is a d × d nonsingular matrix. Following the proof of Lemmas 1–3 (by
replacing γn, H, Rn, and εn by n−1, AH, ARn, and Aεn, respectively) we show
that, under assumptions (A1)–(A7), if the matrix AH +[(1−2τ)/2]Id is negative
definite, and if limn→∞ nc2

nv−2
n = c > 0, then (Yn) satisfies the central limit

theorem

(22)
√

nc2
n(Yn − z∗)

D→ N
(
−√

c

[
AH +

1 − 2τ

2
Id

]−1

Aρ,Σ(A)

)
,

where Σ(A) is the solution of Lyapounov’s equation

(23)

(
AH +

1 − 2τ

2
Id

)
Σ(A) + Σ(A)

(
HT AT +

1 − 2τ

2
Id

)
= −AΓAT .
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Now, set ∆(A) = Σ(A) − (1 − 2τ)H−1Γ[H−1]T ; in view of (23), we have
(

AH +
1 − 2τ

2
Id

)
∆(A) + ∆(A)

(
HT AT +

1 − 2τ

2
Id

)

= −AΓAT −
(

AH +
1 − 2τ

2
Id

)
([1 − 2τ ]H−1Γ[H−1]T )

−([1 − 2τ ]H−1Γ[H−1]T )

(
HT AT +

1 − 2τ

2
Id

)

= −AΓAT − (1 − 2τ)AΓ[H−1]T − (1 − 2τ)2H−1Γ[H−1]T − (1 − 2τ)H−1ΓAT

= −[A + (1 − 2τ)H−1]Γ[A + (1 − 2τ)H−1]T .

It follows that the matrix ∆(A) is nonnegative. Moreover, ∆(A) = 0 if and
only if A = −(1− 2τ)H−1. We thus deduce that the matrix Σ(−(1− 2τ)H−1) =
(1−2τ)H−1Γ[H−1]T is minimum. Now, if A = −(1−2τ)H−1, then (22) becomes

√
nc2

n(Yn − z∗)
D→ N

(
−2

√
cH−1ρ, (1 − 2τ)H−1Γ[H−1]T

)
.

Lemma 4 thus follows.

4.5. Proof of Lemma 5. Set Mn+1 =
∑n

k=1 c2
kc

−1
k+1εk+1; (Mn) is a

martingale whose predictable quadratic variation satisfies

〈M〉n+1 =

n∑

k=1

c4
kc

−2
k+1E(εk+1ε

T
k+1|Fk) =

n∑

k=1

c2
kΓ(1 + o(1)) a.s.

Since (c2
n) ∈ GS(−2τ) with 1 − 2τ > 0, we have

(24) lim
n→∞

nc2
n∑n

k=1 c2
k

= 1 − 2τ,

and thus

lim
n→∞

[nc2
n]−1〈M〉n+1 = (1 − 2τ)−1Γ a.s.

Moreover, we have

[nc2
n]−m∗/2

n∑

k=1

E

[
‖Mk+1 − Mk‖m∗

∣∣∣Fk

]

= O

(
[nc2

n]−m∗/2
n∑

k=1

cm∗

k E

[
‖εk+1‖m∗

∣∣∣Fk

])
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= O

(
[nc2

n]−m∗/2
n∑

k=1

cm∗

k o
(
km∗/2−1

))
a.s.

= O

(
[nc2

n]−m∗/2
n∑

k=1

k−1o
(
[kc2

k]
m∗/2

))
a.s.

= o(1) a.s.,

which ensures that Lyapounov’s condition is fulfilled. It follows that

[nc2
n]−1/2Mn+1

D→N
(
0 , (1 − 2τ)−1Γ

)
.

Noting that Λn+1 = −[
∑n

k=1 c2
k]

−1Mn+1, and applying (24) again, we obtain

√
nc2

nΛn+1
D→N

(
0 , (1 − 2τ)H−1Γ[H−1]T

)
.

4.6. Proof of Lemma 6. In view of (20), we have

Zn−1 − z∗ = γ−1
n H−1 [(Zn − z∗) − (Zn+1 − z∗)] − H−1rn − c−1

n H−1εn,

and thus

Zn − z∗ =
1∑n

k=1 c2
k

H−1
n∑

k=1

c2
kγ

−1
k+1 [(Zk+1 − z∗) − (Zk − z∗)]

− 1∑n
k=1 c2

k

H−1
n∑

k=1

c2
krk+1 −

1∑n
k=1 c2

k

H−1
n∑

k=1

c2
kc

−1
k+1εk+1.

It follows that

Ξn+1 = −H−1
[
R(1)

n+1 + R(2)
n+1 + R(3)

n+1

]
(25)

with

R(1)
n+1 =

1∑n
k=1 c2

k

n∑

k=1

c2
kRk+1,

R(2)
n+1 =

1∑n
k=1 c2

k

n∑

k=1

c2
kγ

−1
k+1 [(Zk − z∗) − (Zk+1 − z∗)] ,

R(3)
n+1 =

1∑n
k=1 c2

k

n∑

k=1

c2
kO(‖Zk − z∗‖η).

We now successively establish the almost sure asymptotic behaviour of R(i)
n ,

i ∈ {1, 2, 3}.
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• In view of assumption (A5), we have:

R(1)
n+1 =

1∑n
k=1 c2

k

n∑

k=1

c2
kv

−1
k ρ[1 + o(1)] a.s.

In the case limn→∞ v−1
n

√
nc2

n ∈ (0,∞], we have 1/2− τ − v∗ ≥ 0; hence 1− 2τ −
v∗ > 0, and thus

lim
n→∞

nc2
nv−1

n∑n
k=1 c2

kv
−1
k

= 1 − 2τ − v∗.

Applying (24), we deduce that

lim
n→∞

vnR(1)
n+1 =

1 − 2τ

1 − 2τ − v∗
ρ a.s.(26)

In the case limn→∞ v−1
n

√
nc2

n = 0, we have v−1
n = o([nc2

n]−1/2), and thus

lim
n→∞

√
nc2

nR(1)
n+1 = lim

n→∞

√
nc2

n∑n
k=1 c2

k

n∑

k=1

o
(
k−1/2ck

)
a.s.

= 0 a.s.(27)

• Since (c2
nγ−1

n+1) ∈ GS(α − 2τ), we have

R(2)
n+1 =

1∑n
k=1 c2

k

[
c2
1γ

−1
2 (Z1 − z∗) − c2

nγ−1
n+1(Zn+1 − z∗)

+
n∑

k=2

[c2
kγ−1

k+1 − c2
k−1γ

−1
k ](Zk − z∗)

]

=
1∑n

k=1 c2
k

[
c2
1γ

−1
2 (Z1 − z∗) − c2

nγ−1
n+1(Zn+1 − z∗)

+
n∑

k=2

c2
kγ

−1
k+1

[
1 − c2

k−1γ
−1
k

c2
kγ

−1
k+1

]
(Zk − z∗)

]

=
1∑n

k=1 c2
k

[
c2
1γ

−1
2 (Z1 − z∗) − c2

nγ−1
n+1(Zn+1 − z∗)

+
n∑

k=2

c2
kγ

−1
k+1O(k−1)(Zk − z∗)

]

Now, let (mn) be the sequence defined as

(mn) =

{ (√
n−1c−2

n

)
if limn→∞ vn

√
n−1c−2

n = ∞,(
v−1
n

)
otherwise,

and note that (mn) ∈ GS(−m∗) with m∗ = min{v∗, (1 − 2τ)/2}. Applying (16)
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and (24), we obtain

∥∥∥R(2)
n+1

∥∥∥ = O




1

nc2
n

+

c2
nγ−1

n+1

[√
γnc−2

n log(sn) + v−1
n

]

nc2
n

+

∑n
k=2 c2

kγ
−1
k+1k

−1

[√
γkc

−2
k log(sk) + v−1

k

]

nc2
n


 a.s.

= O




1

nc2
n

+

c2
nγ−1

n+1

[√
γnc−2

n log(sn) + v−1
n

]

nc2
n

+

∑n
k=2 c2

kγ
−1
k+1k

−1

[√
γkc

−2
k log(sk) + v−1

k

]

nc2
n


 a.s.

= O


 1

nc2
n

+

√
n−1γ−1

n log(sn)
√

nc2
n

+
v−1
n

nγn

+
1

nc2
n

n∑

k=2

[ckk−1/2
√

k−1γ−1
k log(sk) + c2

kγ
−1
k k−1v−1

k ]

)
a.s.

= O


 1

nc2
n

+

√
n−1γ−1

n log(sn)
√

nc2
n

+
v−1
n

nγn

+
1

nc2
n

n∑

k=2

c2
k[o(c

−1
k k−1/2) + o(v−1

k )]

)
a.s.

= o

(
1√
nc2

n

)
+ o

(
v−1
n

)
+ O

(
1

nc2
n

n∑

k=2

c2
ko(mk)

)
a.s.

= o(mn) a.s.(28)
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• In view of (16), (24), and (A8), we have

∥∥∥R(3)
n+1

∥∥∥ = O

(
1

nc2
n

n∑

k=1

c2
k

[
(γkc

−2
k log sk)

η/2 + v−η
k

])
a.s.

= O

(
1

nc2
n

n∑

k=1

c2
k

[
o([k−1c−2

k ]1/2) + o(v−1
k )
])

a.s.

= O

(
1

nc2
n

n∑

k=1

c2
ko(mk)

)
a.s.

= o(mn) a.s.(29)

Part 1 (respectively, Part 2) of Lemma 6 is then a straightforward consequence
of the combination of (25), (26), (28) and (29) (respectively, of (25), (27), (28)
and (29)).

5. Proof of the main results. From now on, F = (Fn) denotes the
σ-field spanned by (X1, . . . , Xn).

5.1. Proof of Proposition 1. We first establish an upper bound of the
strong convergence rate of θn, and then prove the consistency of µn.

5.1.1. Upper bound of the strong convergence rate of θn. To
prove an upper bound of the strong convergence rate of θn, we apply Lemmas 2
and 3. To this end, we first rewrite (1) as

θn = θn−1 + γn

[
∇f(θn−1) + R(θ)

n + h−(d+2)/2
n ε(θ)

n

]
(30)

with

R(θ)
n =

1

hd+1
n

E

[
∇K

(
θn−1 − Xn

hn

)∣∣∣∣Fn−1

]
−∇f(θn−1),

ε(θ)
n =

1√
hd

n

{
∇K

(
θn−1 − Xn

hn

)
− E

[
∇K

(
θn−1 − Xn

hn

)∣∣∣∣Fn−1

]}
.

Moreover, we note that, under (H1) and (H2), we have

R(θ)
n =

1

hd+1
n

∫

Rd

∇K

(
θn−1 − x

hn

)
f(x)dx −∇f(θn−1)

=
1

hn

∫

Rd

∇K(z)f(θn−1 − hnz)dz −∇f(θn−1)
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=

∫

Rd

K(z)∇f(θn−1 − hnz)dz −∇f(θn−1)

=
h2

n

2


∇

d∑

i=1



∫

Rd

x2
i K(x)dx


 ∂2

∂2zi


 f(θn−1) + o(h2

n),(31)

and

E

[
∇K

(
θn−1 − Xn

hn

)[
∇K

(
θn−1 − Xn

hn

)]T
∣∣∣∣∣Fn−1

]

=

∫

Rd

∇K

(
θn−1 − x

hn

)[
∇K

(
θn−1 − x

hn

)]T

f(x)dx

= hd
n

∫

Rd

∇K(z)[∇K(z)]T f(θn−1 − hnz)dz

= hd
n


f(θn−1)



∫

Rd

∇K(z)[∇K(z)]T dz


+ o(1)


 .(32)

We now check that assumptions (A1)–(A7) required in Lemmas 2 and 3 are
fufilled by the stochastic approximation algorithm (30). To this end, we need the
following Robbins-Monro’s Theorem (see for instance [8, page 61]).

Theorem 3 (Robbins-Monro). Let (Zn) be defined by the stochastic
approximation algorithm (15), and assume that

• cn = O (1), γn = o
(
c2
n

)
,
∑

γn = ∞ and
∑

γ2
nc−2

n < ∞;

• There exists a continuously differentiable function V : R
d → R

+, such
that ∇V is Lipschitz-continuous, and such that, for all x ∈ R

d, ‖h(x)‖2 ≤
cte(1 + V (x)) and [∇V (x)]T h(x) ≤ 0;

• E(εn|Fn−1) = 0, E(‖εn‖2|Fn−1) = O(1 + V (Zn−1)) and
∑

γn‖Rn‖2 < ∞
a.s.

Then, the sequence V (Zn) converges a.s. and
∑

γn|[∇V (Zn)]T h(Zn)| < ∞ a.s.

To apply Theorem 3, Lemma 2, and Lemma 3, we set V : z 7→ ‖z − θ‖2,

h = ∇f , (cn) = (h
(d+2)/2
n ), εn = ε

(θ)
n , and Rn = R

(θ)
n .

• Let us first note that it follows from (32) that supn E(‖ε(θ)
n ‖2|Fn−1) < ∞.

Moreover, (31) implies that ‖R(θ)
n ‖ = O(h2

n), so that, in view of (H3), we
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have
∑

γn‖R(θ)
n ‖2 < ∞. In view of (H2) and (H3), Theorem 3 applies.

Thus, the sequence (‖θn − θ‖) converges a.s., and
∑

γn|(θn − θ)T∇f(θn)| <
∞ a.s. Assumption (H2) together with the condition

∑
γn = ∞ (which is

implied by (H3)(iii)) imply that limn→∞ θn = θ a.s. Assumption (A1) is
thus fulfilled and the claim in Remark 3 is proved.

• (H2) ensures that (A2) holds with H = D2f(θ) and L = L(θ).

• In view of (H3), (A3) holds with τ = a(d + 2)/2.

• It follows from (32) and (A1) that (A4) is satisfied with

Γ = f(θ)

∫

Rd

∇K(z)[∇K(z)]T dz.

• Note that R
(θ)
n =

∫

Rd

K(z) [∇f(θn−1 − hnz) −∇f(θn−1)] dz. A two-order

Taylor’s development and the application of Lebesgues’ Theorem give

lim
n→∞

h−2
n R(θ)

n =
1

2
∇




d∑

i=1

d∑

k=1

∂2f

∂zi∂zk
(z)

∫

Rd

zizkK(z)dz


 (θ).

In view of (H1)(ii), (A5) thus holds with (vn) = (h−2
n ) (and thus v∗ = 2a)

and ρ = R(θ) (R(θ) being defined in (6)).

• (A6) follows from (H3) (see Remark 2).

• (H1)(iii) and (H3) ensure that (A7) holds with wn = 2‖∇K‖∞h
−d/2
n .

Set

L(θ)
n = esn[D2f(θ)]

n∑

k=1

e−sk[D2f(θ)]γkh
−(d+2)/2
k ε

(θ)
k ,(33)

∆(θ)
n = (θn − θ) − L(θ)

n .(34)

The combination of Lemmas 2 and 3 ensures that

‖θn − θ‖ = O

(
max

{
h2

n ;

√
γnh

−(d+2)
n ln sn

})
a.s.(35)

5.1.2. Proof of Proposition 1. To prove Proposition 1, we apply
Theorem 3. To this end, we rewrite (2) as

µn = µn−1 + γn

[
h(µn−1) + R(µ)

n + h̃−d/2
n ε(µ)

n

]
(36)
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with

h(z) = f(θ) − z,

R(µ)
n = f(θn−1) − f(θ) + B(µ)

n ,

B(µ)
n =

1

h̃d
n

E

[
K

(
θn−1 − Xn

h̃n

)∣∣∣∣Fn−1

]
− f(θn−1),

ε(µ)
n =

1√
h̃d

n

{
K

(
θn−1 − Xn

h̃n

)
− E

[
K

(
θn−1 − Xn

h̃n

)∣∣∣∣Fn−1

]}
.

To apply Theorem 3, we set V : z 7→ (z − µ)2, (cn) = (h̃
d/2
n ), εn = ε

(µ)
n , and

Rn = R
(µ)
n . We first note that

E

[
K2

(
θn−1 − Xn

h̃n

)∣∣∣∣Fn−1

]
=

∫

Rd

K2

(
θn−1 − x

h̃n

)
f(x)dx

= h̃d
n

∫

Rd

K2(z)f(θn−1 − h̃nz)dz

= h̃d
n


f(θn−1)

∫

Rd

K2(z)dz + o(1)


 ,(37)

which implies that supn E(|ε(µ)
n |2|Fn−1) < ∞ a.s. Now, we have

B(µ)
n =

1

h̃d
n

∫

Rd

K

(
θn−1 − x

h̃n

)
f(x)dx − f(θn−1)

=

∫

Rd

K(z)f(θn−1 − h̃nz)dz − f(θn−1)

=
h̃2

n

2

d∑

i=1





∫

Rd

x2
i K(x)dx


 ∂2f

∂2zi
(θ)


+ o(h̃2

n).(38)

Moreover, the application of (35) ensures that

|f(θn) − f(θ)| = O(‖θn − θ‖2) a.s.

= O
(
max

{
h4

n ; γnh−(d+2)
n ln sn

})
a.s.(39)

In view of (H3), we deduce from the combination of (35) and (39) that∑
γn[R

(µ)
n ]2 < ∞ a.s. The application of Theorem 3 then ensures that
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∑
γn |(µn − µ)[f(θn) − f(θ)]| < ∞ a.s., that is,

∑
γn(µn − µ)2 < ∞ a.s. Propo-

sition 1 follows from the fact that
∑

γn = ∞.

5.2. Proof of Theorem 1. We have seen in Section 5.1.1 that Lemmas
2 and 3 can be applied to the stochastic approximation algorithm (30) with

h = ∇f , H = D2f(θ), (cn) = (h
(d+2)/2
n ), τ = a(d + 2)/2, εn = ε

(θ)
n , Γ =

f(θ)

∫

Rd

∇K(z)[∇K(z)]T dz, Rn = R
(θ)
n , (vn) = (h−2

n ), v∗ = 2a, and ρ = R(θ)

(R(θ) being defined in (6)). Let (L
(θ)
n ) and (∆

(θ)
n ) by defined by (33) and (34),

respectively. The following properties thus hold.

• If α > a(d + 6), then
∥∥∥L(θ)

n

∥∥∥ = o
(
h2

n

)
a.s.(40)

• If α ≥ a(d + 6), then lim
n→∞

h−2
n ∆(θ)

n = −
[
D2f(θ) + 2aξId

]−1
R(θ) a.s.(41)

• If α < a(d + 6), then lim
n→∞

√
γ−1

n hd+2
n ∆(θ)

n = 0 a.s.(42)

Now, set

L(µ)
n = e−sn

n∑

k=1

eskγkh̃
−d/2
k ε

(µ)
k ,

∆(µ)
n = (µn − µ) − L(µ)

n .

We apply Lemmas 2 and 3 to the stochastic approximation algorithm (36). To this

end, we set (cn) = (h̃
d/2
n ), εn = ε

(µ)
n , and Rn = R

(µ)
n , and check that assumptions

(A1)–(A7) required in Lemmas 2 and 3 are fulfilled.

• (A1) follows from the application of Proposition 1.

• (A2) clearly holds with H = −1 and thus L = 1.

• In view of (H3), (A3) holds with τ = ãd/2.

• Since limn→∞ θn = θ a.s. (see Remark 3), (37) ensures that (A4) holds with
Γ = f(θ)

∫
Rd K2(z)dz.

• The combination of (39) and (H4)(ii) ensures that |f(θn) − f(θ)| = o(h̃2
n)

a.s. It then follows from (38) that (A5) holds with (vn) = (h̃−2
n ) (and thus

v∗ = 2ã) and ρ = R(µ) (R(µ) being defined in (7)).

• (A6) follows from (H3) and (H4) (see Remark 2).



Recursive estimation of the mode 679

• (H1)(iii) and (H3) ensure that (A7) holds with wn = 2‖K‖∞h̃
−d/2
n .

The application of Lemmas 2 and 3 then ensures that the following properties
hold.

• If α > ã(d + 4), then
∥∥∥L(µ)

n

∥∥∥ = o
(
h̃2

n

)
a.s.(43)

• If α ≥ ã(d + 4), then lim
n→∞

h̃−2
n ∆(µ)

n = [1 − 2ãξ]−1R(µ) a.s.(44)

• If α < ã(d + 4), then lim
n→∞

√
γ−1

n h̃d
n∆(µ)

n = 0 a.s.(45)

Theorem 1 follows the combination of Properties (40)–(45) together with the
following lemma.

Lemma 7. Let the assumptions of Theorem 1 hold. If α ≤ min{a(d +
6), ã(d + 4)}, then we have



√

γ−1
n hd+2

n L
(θ)
n√

γ−1
n h̃d

n L
(µ)
n


 D→ N

(
0 ,

(
Σ(θ) 0

0 Σ(µ)

))
.

We now prove Lemma 7. Set H = D2f(θ), σ
(θ)
k = γkh

−(d+2)/2
k , σ

(µ)
k =

γkh̃
−d/2
k , and

M
(n)
j =



√

γ−1
n hd+2

n esnH 0

0
√

γ−1
n h̃d

ne−sn




j∑

k=1

(
e−skHσ

(θ)
k ε

(θ)
k

eskσ
(µ)
k ε

(µ)
k

)
.

For a given n, M (n) = (M
(n)
j )1≤j≤n is a martingale whose predictable quadratic

variation satisfies

〈M〉(n)
n =



√

γ−1
n hd+2

n esnH 0

0
√

γ−1
n h̃d

ne−sn




× Cn



√

γ−1
n hd+2

n esnHT

0

0

√
γ−1

n h̃d
ne−sn




with

Cn =

n∑

k=1

E

[(
e−skHσ

(θ)
k ε

(θ)
k

eskσ
(µ)
k ε

(µ)
k

)(
σ

(θ)
k [ε

(θ)
k ]T e−skHT

eskσ
(µ)
k ε

(µ)
k

)∣∣∣∣∣Fk−1

]
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=

n∑

k=1


[σ

(θ)
k ]2e−skH

E

[
ε
(θ)
k [ε

(θ)
k ]T

∣∣∣Fk−1

]
e−skHT

σ
(θ)
k σ

(µ)
k eske−skH

E

[
ε
(θ)
k ε

(µ)
k

∣∣∣Fk−1

]

σ
(θ)
k σ

(µ)
k E

[
[ε

(θ)
k ]T ε

(µ)
k

∣∣∣Fk−1

]
eske−skHT

[σ
(µ)
k ]2e2skE

[
[ε

(µ)
k ]2

∣∣∣Fk−1

]

.

It follows that

〈M〉(n)
n =

(
A1,n A2,n

A3,n A4,n

)

with

A1,n = γ−1
n hd+2

n esnH

{
n∑

k=1

[σ
(θ)
k ]2e−skH

E

[
ε
(θ)
k [ε

(θ)
k ]T

∣∣∣Fk−1

]
e−skHT

}
esnHT

,

A2,n = γ−1
n

√
hd+2

n h̃d
nesnHe−sn

{
n∑

k=1

σ
(θ)
k σ

(µ)
k eskHe−skE

[
ε
(θ)
k ε

(µ)
k

∣∣∣Fk−1

]}
,

A3,n = AT
2,n,

A4,n = γ−1
n h̃d

ne−2sn

{
n∑

k=1

[σ
(µ)
k ]2e2skE

[
[ε

(µ)
k ]2

∣∣∣Fk−1

]}
.

Since (32) implies that

lim
k→∞

E

[
ε
(θ)
k [ε

(θ)
k ]T

∣∣∣Fk−1

]
= f(θ)G,

and since (37) implies that

lim
k→∞

E

[
[ε

(µ)
k ]2

∣∣∣Fk−1

]
= f(θ)

∫

Rd

K2(z)dz,

the application of Lemma 4 in [19] ensures that

lim
n→∞

A1,n = Σ(θ) and lim
n→∞

A4,n = Σ(µ),

where Σ(µ) and Σ(θ) are defined in (8) and (10), respectively. Now, setting h∗
k =

min(hk, h̃k), we note that

E

[
ε
(θ)
k ε

(µ)
k

∣∣∣Fk−1

]
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=
1√

hd
nh̃d

n

[∫

Rd

∇K

(
θk−1 − x

hk

)
K

(
θk−1 − x

hk

)
f(x)dx

]
+ o(1)

=
h∗d

n√
hd

nh̃d
n

[∫

Rd

∇K

(
h∗

k

hk
z

)
K

(
h∗

k

h̃k

z

)
f (θk−1 − h∗

kz) dz

]
+ o(1)

= f(θk−1)
h∗d

n√
hd

nh̃d
n

[∫

Rd

∇K

(
h∗

k

hk
z

)
K

(
h∗

k

h̃k

z

)
dz

]
+ o(1)

= o(1)(46)

since the function z 7→ [∇K(z)]K(z) is odd in each of its coordinates. We thus
get

|||A2,n|||2 ≤ γ−1
n

√
hd+2

n h̃d
n

n∑

k=1

∣∣∣
∣∣∣
∣∣∣e(sn−sk)(H−Id)

∣∣∣
∣∣∣
∣∣∣
2
o

(
γ2

k

√
h
−(d+2)
k h̃−d

k

)

→ 0 as n → ∞
by application of Lemma 3 in [19]. It follows that

lim
n→∞

〈M〉(n)
n =

(
Σ(θ) 0

0 Σ(µ)

)
a.s.(47)

Let us now check that (M
(n)
j )1≤j≤n satisfies Lindeberg’s condition. Set b > 2; we

first note that
n∑

k=1

E

[∥∥∥∥
√

γ−1
n hd+2

n esnHe−skHσ
(θ)
k ε

(θ)
k

∥∥∥∥
b
∣∣∣∣∣Fk−1

]

= O

([
γ−1

n hd+2
n

]b/2
e−bLsn

n∑

k=1

ebLskγb
kh

−b(d+2)/2
k E

[
‖ε(θ)

k ‖
b
∣∣∣∣Fk−1

])

= O

([
γ−1

n hd+2
n

]b/2
e−bLsn

n∑

k=1

ebLskγkak

)

with

ak = γb−1
k h

−b(d+2)/2−db/2+d
k = γb−1

k h−db−b+d
k o(h−b+2

k )

= o([γkh
−(d+2)
k ]b−1) = o([γkh

−(d+2)
k ]b/2).

It follows that
n∑

k=1

E

[∥∥∥∥
√

γ−1
n hd+2

n esnHe−skHσ
(θ)
k ε

(θ)
k

∥∥∥∥
b
∣∣∣∣∣Fk−1

]
= o(1).(48)
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Similarly, we have

n∑

k=1

E

[∣∣∣∣
√

γ−1
n h̃d

ne−sneskσ
(µ)
k ε

(µ)
k

∣∣∣∣
b
∣∣∣∣∣Fk−1

]

= O

([
γ−1

n h̃d
n

]b/2
e−bsn

n∑

k=1

ebskγb
kh̃

−bd/2
k E

[
|ε(µ)

k |
b
∣∣∣∣Fk−1

])

= O

([
γ−1

n h̃d
n

]b/2
e−bsn

n∑

k=1

ebskγb
kh̃

−bd+d
k

)

= O

([
γ−1

n h̃d
n

]b/2
e−bsn

n∑

k=1

ebskγko([γkh̃
−d
k ]b/2)

)

= o(1).(49)

Lemma 7 then follows from (47), (48) and (49).

5.3. Proof of Proposition 2 and Theorem 2. To prove Proposition
2 (respectively, Theorem 2), we need to apply Lemma 4 (respectively, Lemma 6)
to the stochastic approximation algorithms (30) and (36). To this end, we set

Λ
(θ)
n+1 =

−1
∑n

k=1 hd+2
k

[D2f(θ)]−1
n∑

k=1

hd+2
k h

−(d+2)/2
k+1 ε

(θ)
k+1,

Ξ
(θ)
n+1 = (θn − θ) − Λ

(θ)
n+1,

Λ
(µ)
n+1 =

1
∑n

k=1 h̃d
k

n∑

k=1

h̃d
kh̃

−d/2
k+1 ε

(µ)
k+1,

Ξ
(µ)
n+1 = (µn − µ) − Λ

(µ)
n+1.

• We have seen in Section 5.1.1 that assumptions (A1)–(A7) stated in Section
3 are fulfilled by the stochastic approximation algorithm (30) with h = ∇f ,

H = D2f(θ), (cn) = (h(d+2)/2
n ), τ = a(d + 2)/2, εn = ε(θ)

n ,

Γ = f(θ)

∫

Rd

∇K(z)[∇K(z)]T dz, Rn = R
(θ)
n , (vn) = (h−2

n ), v∗ = 2a, and ρ = R(θ)

(R(θ) being defined in (6)). The first part of Proposition 2 is thus a straightfor-
ward consequence of the application of Lemma 4. At this first step, we note that
(H2), (H3)(i) and (H5) ensure that (A8) holds with η = 2, and it thus follows
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from Lemma 6 that:

(50) if lim
n→∞

nhd+6
n ∈ (0,∞],

then lim
n→∞

h−2
n Ξ

(θ)
n+1 =

−[1 − a(d + 2)]

1 − a(d + 4)
[D2f(θ)]−1R(θ) a.s.,

(51) if lim
n→∞

nhd+6
n = 0, then lim

n→∞

√
nhd+2

n Ξ
(θ)
n+1 = 0 a.s.

• We have seen in Section 5.2 that assumptions (A1)–(A7) stated in Section 3
are fufilled by the stochastic approximation algorithm (36) with H = −1, (cn) =

(h̃
d/2
n ), τ = ãd/2, εn = ε

(µ)
n , Γ = f(θ)

∫
Rd K2(z)dz, Rn = R

(µ)
n , (vn) = (h̃−2

n ),

v∗ = 2ã, and ρ = R(µ) (R(µ) being defined in (7)). The second part of Proposition
2 is thus a straightforward consequence of the application of Lemma 4. To start
the proof of Theorem 2, let us note that (H5) ensures that (A8) holds with η = 2.
It thus follows from Lemma 6 that:

if lim
n→∞

nh̃d+4
n ∈ (0,∞], then lim

n→∞
h̃−2

n Ξ
(µ)
n+1 =

1 − ãd

1 − ã(d + 2)
R(µ) a.s.,(52)

if lim
n→∞

nh̃d+4
n = 0, then lim

n→∞

√
nh̃d

n Ξ
(µ)
n+1 = 0 a.s.(53)

Properties (12), (13), and (14) in Theorem 2 straightforwardly follow from the
application of (50), (51), (52), (53), together with the following lemma.

Lemma 8. Under (H1)–(H5),

( √
nhd+2

n Λ
(θ)
n+1√

nh̃d
nΛ

(µ)
n+1

)
D→ N

(
0 ,

(
Σ

(θ)
opt 0

0 Σ
(µ)
opt

))
.

We now prove Lemma 8. Set

W
(n)
j =



[
nhd+2

n

]−1/2∑j
k=1 hd+2

k h
−(d+2)/2
k+1 ε

(θ)
k+1[

nh̃d
n

]−1/2∑j
k=1 h̃d

kh̃
−d
k+1ε

(µ)
k+1


 .

W (n) = (W
(n)
j )1≤j≤n is a martingale triangular array whose predictable quadratic

variation satisfies

〈W 〉(n)
n =

(
w1,n w2,n

w3,n w4,n

)
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with

w1,n =
1

nhd+2
n

n∑

k=1

h
2(d+2)
k h

−(d+2)
k+1 E

[
ε
(θ)
k+1[ε

(θ)
k+1]

T
∣∣∣Fk

]
,

w4,n =
1

nh̃d
n

n∑

k=1

h̃2d
k h̃−d

k+1E

[
[ε

(µ)
k+1]

2
∣∣∣Fk

]
,

w2,n =
1√

(nhd+2
n )(nh̃d

n)

n∑

k=1

hd+2
k h

−(d+2)/2
k+1 h̃d

kh̃
−d/2
k+1 E

[
ε
(θ)
k+1ε

(µ)
k+1

∣∣∣Fk

]
,

w3,n = wT
2,n.

We have

lim
n→∞

w1,n = lim
n→∞

1

nhd+2
n

n∑

k=1

h
(d+2)
k f(θ)G[1 + o(1)] = [1 − a(d + 2)]−1f(θ)G,

and

lim
n→∞

w4,n = lim
n→∞

1

nh̃d
n

n∑

k=1

h̃d
kf(θ)

∫

Rd

K2(z)dz[1 + o(1)]

= [1 − ãd]−1f(θ)

∫

Rd

K2(z)dz.

Moreover, (46) ensures that

w2,n = O


 1√

(nhd+2
n )(nh̃d

n)




n∑

k=1

o
(
h

(d+2)/2
k h̃

d/2
k

)
a.s.

= o(1) a.s.

It follows that

(54) lim
n→∞

〈W 〉(n)
n =
(

[1 − a(d + 2)]−1f(θ)G 0
0 [1 − ãd]−1f(θ)

∫
Rd K2(z)dz

)
a.s.

Let us now check that (W
(n)
j )1≤j≤n satisfies Lindeberg’s condition. For b > 2, we
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have
n∑

k=1

E

[∣∣∣(nhd+2
n )−1/2hd+2

k h
−(d+2)/2
k+1 ε

(θ)
k+1

∣∣∣
b
∣∣∣∣Fk

]
= (nhd+2

n )−b/2
n∑

k=1

O
(
hb+d

k

)

= (nhd+2
n )−b/2

n∑

k=1

o
(
hd+2

k

)

= o(1),(55)

and
n∑

k=1

E

[∣∣∣(nh̃d
n)−1/2h̃d

kh̃
−d/2
k+1 ε

(µ)
k+1

∣∣∣
b
∣∣∣∣Fk

]
= (nh̃d

n)−b/2
n∑

k=1

O
(
h̃d

k

)

= O
(
[nh̃d

n]1−b/2
)

= o(1).(56)

We deduce from (54), (55) and (56) that

W (n)
n

D→ N
(

0 ,

(
[1 − a(d + 2)]−1f(θ)G 0

0 [1 − ãd]−1f(θ)
∫

Rd K2(z)dz

))
.

Lemma 8 then follows from the fact that
( √

nhd+2
n Λ

(θ)
n+1√

nh̃d
nΛ

(µ)
n+1

)
= AnW (n)

n

with

An =




−nhd+2
n� n

k=1
hd+2

k

[D2f(θ)]−1 0

0 n
�
hd

n� n
k=1

�
hd

k




→
(

−[1 − a(d + 2)][D2f(θ)]−1 0
0 1 − ãd

)
.
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