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Abstract. Uniform G-convexity of Banach spaces is a recently introduced
natural generalization of uniform convexity and of complex uniform convex-
ity. We study conditions under which uniform G-convexity of X passes to
the space of X-valued functions Lp(µ, X).

1. Introduction. In the text below X and Y are Banach spaces;
L(X,Y ) is the space of bounded linear operators from X into Y , L(X) :=
L(X,X); SX is the unit sphere of X. For a finite set G the number of its
elements is denoted by |G|.

In the article [8] a generalization of unconditional convergence (G-uncon-
ditional convergence) for series in Banach spaces was studied. In that general-
ization instead of putting plus-minus coefficients to the summands, the operator
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coefficients from a fixed bounded subset G ⊂ L(X) were used. If G satisfies
some natural “regularity” condition, then G-unconditional convergence implies
the usual one, but the inverse implication although is true for finite-dimensional
G ⊂ L(X), is not true in general even for norm-compact G ⊂ L(X). An analogue
of cotype theory for G-unconditional convergence was build. This G-cotype the-
ory works properly if G is a group or at least a semigroup, but does not work for
arbitrary G. On this way in particular the following notions were introduced:

An operator family G ⊂ L(X,Y ) is called regular, if for every ε > 0 and
for every element x ∈ X there is a T ∈ convG with ‖Tx‖ < ε.

Let G ⊂ L(X). Let us call the following function the modulus of G-con-
vexity of X:

δG
X(t) = inf

‖x‖=‖y‖=1
{sup{‖x + tTy‖ : T ∈ G} − 1}.

A space X is called uniformly G-convex, if δG
X(t) > 0 for all t > 0.

A particular case of uniform G-convexity is the well-known uniform convexity
(when G = {I,−I}; see, for example, [3] for extensive study of this concept) and
complex uniform convexity (when G = {eiθI : θ ∈ (0, 2π]} or, which is equivalent,
when G = {I,−I, iI,−iI}; see [4], [6] and [1]).

The modulus of G-convexity has several properties of the usual modulus
of convexity, and also an analogue of M.I. Kadets theorem about unconditionally
convergent series in uniformly convex spaces was proved.

In the present article we study the inheritance of the uniform G-convexity
of the space X by the space of X−valued functions Lp(µ,X), p ∈ [1,∞) in the
(most interesting for us) case when G is a regular finite group. We show that
uniform G-convexity of all Lp(µ,X) is equivalent to a bit stronger property of X,
i.e. to the uniform G-convexity in terms of p-average, and that for p ∈ (1,∞) the
latter property is equivalent to the uniform G-convexity of X. The case p = 1
remains somehow a miracle for us, because for some finite groups of operators
uniform G-convexity of X implies uniform G-convexity of L1(µ,X) and for others
– does not, and we have no satisfactory classification of groups with respect to
this property.

Some results of the paper can be generalized to wider classes of groups
(say, to norm compact groups of operators), but we restricted ourselves to the
finite groups study by three reasons: first of all the classical uniform and complex
uniform spaces fit into finite groups scheme, next, in this case G-unconditional
convergence implies unconditional convergence in ordinary sense, so uniform G-
convexity implies finite cotype, and finally, even for finite groups we are not able
to solve some of very natural questions. One of these problems we have mentioned
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just a few lines above. Another one is to characterize those regular finite groups
of operators G, for which uniform G-convexity of X implies reflexivity of X.

Let (Ω,Σ, µ) be a measure space. A function f : Ω → X is said to
be strongly measurable, if there is a sequence of simple measurable functions,
which converges to f almost everywhere. As usual Lp(µ,X) denotes the space of
equivalence classes of strongly measurable functions with

‖f‖p =

(∫

Ω
‖f(t)‖pdµ(t)

)1/p

< ∞,

where two functions are said to be equivalent if they are equal almost everywhere.
When G is a family of operators on the space X, we define a counterpart

of this family on the space Lp(µ,X) in the following natural way: G̃ = {T̃ :

(T̃ f)(τ) = T (f(τ)), T ∈ G}. Below we do not distinguish between the families G
and G̃, whenever it does not lead to confusion.

2. Main results. Let us remark at first, that in the case of finite
operator group the regularity condition can be written substantially simplified:

Lemma 2.1. Let G = {T1, T2, . . . , Tn} ⊂ L(X) be a finite group. If the
group G is regular then

∑
T∈G

T = 0.

P r o o f. By the definition, a group is regular if for every ε > 0 and

every element x ∈ X there is a set {λ1, λ2, . . . , λn}, λk > 0,
n∑

k=1

λk = 1, such

that

∥∥∥∥
n∑

k=1

λkTkx

∥∥∥∥ < ε. Denote M = max ‖Tk‖. Then for every 1 ≤ j ≤ n,
∥∥∥∥

n∑
k=1

λkTjTkx

∥∥∥∥ < Mε. Hence, also the inequality
1

n

n∑
j=1

∥∥∥∥
n∑

k=1

λkTjTkx

∥∥∥∥ < Mε

holds true. The left-hand side of the inequality can be estimated from bellow as
follows:

1

n

n∑

j=1

∥∥∥∥∥

n∑

k=1

λkTjTkx

∥∥∥∥∥ ≥

∥∥∥∥∥∥
1

n

n∑

j=1

n∑

k=1

λkTjTkx

∥∥∥∥∥∥

=

∥∥∥∥∥∥

n∑

s=1

Tsx


 1

n

∑

j,k:TjTk=Ts

λk




∥∥∥∥∥∥
=

∥∥∥∥∥
1

n

n∑

s=1

Tsx

∥∥∥∥∥ ,

and this expression does not depend on ε. �



4 Nataliia Boyko, Vladimir Kadets

Another remark explains why the case of isometries is the most attractive
for us below. Namely, let G = {T1, T2, . . . , Tn} ⊂ L(X) be a finite group, M :=
max
g∈G

‖g‖. Then the expression

‖|x‖| = max
g∈G

‖g(x)‖

defines an equivalent norm on X in which all elements of G are isometries. More-
over, it is easy to check directly, that if (X, ‖ · ‖) is uniformly G-convex, then
(X, ‖| · ‖|) is uniformly G-convex as well with

δG
(X,‖|·‖|)(t) ≥ M−1δG

(X,‖·‖)(M
−1t).

Definition 2.2. Define the modulus of G-convexity in terms of p-average
of a space X where G = {T1, T2, . . . , Tn} ⊂ L(X) as

γG,p
X (t) = inf

x,y∈SX





(
1

n

n∑

i=1

||x + tTiy||
p

)1/p

− 1



 .

The space X is said to be uniformly G-convex in terms of p-average (uniformly
(G, p)-convex, to say it shorter) if γG,p

X (t) > 0 for t > 0.

Lemma 2.3. The function Fx,{yk}(t) =

(
1

n

n∑
k=1

‖x + tyk‖
p

)1/p

is convex.

P r o o f. By the triangle inequality

Fx,{yk}(λt1 + (1 − λ)t2) =

(
1

n

n∑

k=1

‖x + (λt1 + (1 − λ)t2)yk‖
p

)1/p

≤

≤

(
1

n

n∑

k=1

(λ‖x + t1yk‖ + (1 − λ)‖x + t2yk‖)
p

)1/p

.

Let us consider auxiliary vectors u = (‖x + t1T1y‖, ‖x + t1T2y‖, . . . , ‖x + t1Tny‖)

and v = (‖x + t2T1y‖, ‖x + t2T2y‖, . . . , ‖x + t2Tny‖) in the space l
(n)
p and write

the triangle inequality for them: ‖λu + (1 − λ)v‖p ≤ λ‖u‖p + (1 − λ)‖v‖p. Since
the right part of the previous inequality is equal to n−1/p ‖λu + (1 − λ)v‖p, then
we have:

Fx,{yk}(λt1 + (1 − λ)t2) ≤ n−1/p(λ‖u‖p + (1 − λ)‖v‖p) =
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= λFx,{yk}(t1) + (1 − λ)Fx,{yk}(t2). �

Lemma 2.4. Let the function f(s) be defined as follows:

f(s) = inf
x,y∈SX



(

1

n

n∑

k=1

‖x + s1/p Tky‖
p

)1/p

− 1




p

,

then f(s)/s is nondecreasing.

P r o o f. Denote τ = s1/p. Then

f(s)

s
=

inf
x,y∈SX

((
1

n

n∑
k=1

‖x + s1/pTky‖
p

)1/p

− 1

)p

s

=




inf
x,y∈SX

(
1

n

n∑
k=1

‖x + τTky‖
p

)1/p

− 1

τ




p

.

Thus, to prove the lemma we need to show that for all 0 < τ1 < τ2 and arbitrary
elements x, y ∈ SX the following inequality holds:

(
1

n

n∑
k=1

‖x + τ1Tky‖
p

)1/p

− 1

τ1
=

Fx,{Tky}(τ1) − 1

τ1

≤

(
1

n

n∑
k=1

‖x + τ2Tky‖
p

)1/p

− 1

τ2

=
Fx,{Tky}(τ2) − 1

τ2
.

By Lemma 2.3 the function Fx,{Tky}(τ) is convex and equals 1 when τ = 0,
consequently, the function Fx,{Tky}(τ)−1 is also convex and equals 0 when τ = 0.
Hence, the ratio (Fx,{Tky}(τ)−1)/τ , which is equal to the slope of segment between
the origin and the point (τ, Fx,{Tky}(τ) − 1), does not decrease. �

Remark. By the Figiel’s theorem [5], if f(s) > 0 when s > 0 and f(s)/s
is a non-decreasing function, then there is a convex function 0 ≤ f1(s) ≤ f(s)
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such that f1(s) > 0 when s > 0. This remark will be of use in the proof of the
following theorem.

Theorem 2.5. Let 1 ≤ p < ∞, G = {T1, T2, . . . , Tn} ⊂ L(X) be a finite
group. Then the following two conditions are equivalent:

1. The space Lp(µ,X) is G-convex for every measure space (Ω,Σ, µ).

2. The space X is uniformly (G, p)-convex.

3. The space Lp(µ,X) is uniformly (G, p)-convex for every measure space
(Ω,Σ, µ).

P r o o f. 1. ⇒ 2. Denote M = max
k

‖Tk‖. Since the space Lp(µ,X) is

G-convex for every measure space (Ω,Σ, µ), it is also G-convex in the case of

Ω = {1, 2, . . . , n}, where the measure of every point equals
1

n
. For arbitrary

x, y ∈ SX consider the functions f, g : Ω → X : f(k) = x and g(k) = Tky for all

k. Let us denote C = 1/‖g‖. It is obvious that
1

M
≤ C ≤ M . Functions f and

Cg are from the unit ball of the space Lp(µ,X). Thus, we can write the following
chain of inequalities:

1 + δG
Lp(µ,X)(t) ≤ sup

T∈G

(∫
‖f + tCTg‖pdµ

)1/p

= sup
T∈G

(
1

n

∑

i

‖x + tCTTiy‖
p

)1/p

(1) =

(
1

n

∑

i

‖x + tCTiy‖
p

)1/p

= Fx,{Tiy}(Ct) =: F (C).

Inequality (1) means that F (C) ≥ F (0) = 1 for every C. By convexity of F
(Lemma 2.3) we obtain that F does not decrease when C grows. From this and
from (1) it follows that

1 + δG
Lp(µ,X)(t) ≤

1

n1/p

(
∑

i

‖x + tMTiy‖
p

)1/p

Consequently,

(2) δG
Lp

(t) ≤ γG,p
X (Mt).

Q.E.D.
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2. ⇒ 3. Let x, y be arbitrary elements from the unit ball of the space
Lp(µ,X). By small perturbation argument we can assume x(τ) 6= 0 for all τ .
This enables us to write the following chain of inequalities

(3)

(∫

Ω

1

n

∑

k

‖x(τ) + tTky(τ)‖pdµ(τ)

)1/p

≥

(∫

Ω
‖x(τ)‖p

(
1 + γG,p

X

(
t‖y(τ)‖

‖x(τ)‖

))p

dµ(τ)

)1/p

≥

(
1 +

∫

Ω
‖x(τ)‖p

(
γG,p

X

(
t‖y(τ)‖

‖x(τ)‖

))p

dµ(τ)

)1/p

=

(
1 +

∫

Ω
‖x(τ)‖pf

(
tp‖y(τ)‖p

‖x(τ)‖p

)
dµ(τ)

)1/p

,

where f is the function from Lemma 2.4. By the remark after Lemma 2.4 using
convex minorante f1 of f we can continue the chain of inequalities in the following
way

≥

(
1 +

∫

Ω
‖x‖pf1

(
tp‖y(τ)‖p

‖x(τ)‖p

)
dµ(τ)

)1/p

≥

(
1 + f1

(∫

Ω
tp‖y(τ)‖pdµ(τ)

))1/p

= (1 + f1 (tp))1/p > 1.

Hence, δG
Lp(µ,X)(t) > 0 for all t.

The remaining implication 3. ⇒ 1. is evident. �

Remark 1. If G is a finite group of isometries, then M = 1, and we
obtain an improved estimate δG

Lp(µ,X)(t) ≤ γG,p
X (t) instead of (2).

Remark 2. Although our argument in the implication 2. ⇒ 1. is short
and uses simple convexity inequalities, it does not give the optimal estimate for
the modulus of convexity. The reason is that at some point we use a very bad
estimate

(4) (1 + a)p ≥ 1 + ap

which enables us to apply the convexity argument, but gives no chance to obtain
the best possible inequality. Say, if γG,p

X (t) has for small t a power-type estimate
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from below (γG,p
X (t) ≥ αtβ for some β ≥ 1), then from our estimates one has

δG
Lp(µ,X)(t) ≥ α1t

β1 with β1 = pβ for small t. One can easily see that this

estimate is far from being optimal. Say, in the case of X = R, G = {I,−I} and
p = 2 one has β = 2 and δG

L2(µ,X)(t) ≥ α1t
2 for small t, which is much better than

δG
L2(µ,X)(t) ≥ α1t

4 for small t which we have from our estimate.

But fortunately in the case of γG,p
X (t) ≥ αtβ for small t one can work with

(3) in a different way. Divide Ω into two parts: Ω1 =

{
τ :

t‖y(τ)‖

‖x(τ)‖
≤ 1

}
and

Ω2 =

{
τ :

t‖y(τ)‖

‖x(τ)‖
> 1

}
. On Ω2 apply (4) and a linear estimate for γG,p

X (t) but

on Ω1 apply (1 + a)p ≥ 1 + pa and γG,p
X (t) ≥ αtβ . Then one gets estimate of the

form

≥

(
1 + α1

∫

Ω1

‖x(τ)‖p

(
t‖y(τ)‖

‖x(τ)‖

)β

dµ(τ) + α1

∫

Ω2

‖x(τ)‖p

(
t‖y(τ)‖

‖x(τ)‖

)p

dµ(τ)

)1/p

=: A

In the case of β ≥ p in fact one can get the optimal estimate β1 = β along the
same convexity lines as before: define g(s) as the biggest convex minorante for
min(s, sβ/p), then

A ≥

(
1 + α1

∫

Ω
‖x(τ)‖p min

{(
t‖y(τ)‖

‖x(τ)‖

)β

,

(
t‖y(τ)‖

‖x(τ)‖

)p
}

dµ(τ)

)1/p

≥

(
1 + α1

∫

Ω
‖x(τ)‖pg

(
tp‖y(τ)‖p

‖x(τ)‖p

)
dµ(τ)

)1/p

≥

(
1 + α1g

(∫

Ω
tp‖y(τ)‖pdµ(τ)

))1/p

= (1 + α1g(tp))1/p > 1 + α2t
β

for small t. In the case of β < p the optimal estimate is β1 = p, and this can be
done as follows:

A ≥

(
1 + α1

∫

Ω1

‖x(τ)‖p

(
t‖y(τ)‖

‖x(τ)‖

)p

dµ(τ) + α1

∫

Ω2

‖x(τ)‖p

(
t‖y(τ)‖

‖x(τ)‖

)p

dµ(τ)

)1/p

= (1 + α1t
p)1/p > 1 + α2t

p

for small t. �
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Theorem 2.6. Let G be a finite group and
∑

T∈G T = 0. Then for every
p ∈ (1,+∞) uniform G-convexity of X is equivalent to its uniform G-convexity
in terms of p−average.

P r o o f. Sufficiency of the condition of space G-convexity in terms of
p−average for its G-convexity for arbitrary p follows from the inequality between
maximum of positive numbers and their p−average. Let us prove the necessity
of this condition. Since X is G-convex, for any t > 0 there is a δ = δG

X(t) > 0
such that for given x, y ∈ SX there is a T ∈ G such that

‖x + tTy‖ ≥ 1 + δ.

The condition on the group G gives us the following inequality for arbitrary
elements of the unit ball of the space X:

1

n

∑

k

‖x + tTky‖ ≥ ‖x‖ = 1.

To prove the theorem it is enough to show that

inf
x,y∈SX

(
1

n

∑

k

‖x + tTky‖
p

)1/p

> 1.

Denoting ak := ‖x + tTky‖ we need to estimate from below the expression(∑
k

ap
k/n

)1/p

. But we know that
∑
k

ak/n ≥ 1 and that at least one of ak

exceeds 1 + δ. By symmetry this leads to the problem of calculating the min-

imum of

(∑
k

ap
k/n

)1/p

for non-negative ak under conditions a1 ≥ 1 + δ, and
∑
k

ak/n ≥ 1. Apparently, the necessary minimum is obtained when these in-

equalities become equalities. Therefore, we need to find the minimum of the

expression

(∑
k

ap
k/n

)1/p

, when a1 = 1 + δ and
∑
k

ak = n. It can be easily shown

that under such conditions the desired minimum is reached when all the numbers
ak, k > 1 are equal, i.e. ak = (1 − δ)/(n − 1), k > 1. Thus we obtain

(5) inf
x,y∈SX

(
1

n

∑

k

‖x + tTky‖
p

)1/p

≥




(1 + δ)p + (n − 1)
(
1 − δ

n−1

)p

n




1/p
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>




1 + pδ + (n − 1)
(
1 − pδ

(n−1)

)

n




1/p

= 1. �

Remark 3. For fixed n and for small values of t using inequality

(1 + s)p ≥ 1 + ps+
1

2
p(p− 1)s2 + o(s2) from (5) one can get estimate of the form

δG,p
X (t) ≥ c(p)(δG

X (t))2, but c(p) → 0 as p → 1, so this estimate is of no use for
p = 1. �

From Theorem 2.5 and Theorem 2.6 we obtain the following statement:

Corollary 2.7. For 1 < p < ∞ and for a finite group G, satisfying the
condition

∑
T∈G

T = 0, uniform G-convexity of X implies uniform G-convexity of

the space Lp(µ,X) for every measure space (Ω,Σ, µ).

This corollary in particular generalizes (and simplifies the proofs of) two
well-known statements [2], [1]: that uniform convexity and complex uniform con-
vexity pass from X to Lp(µ,X) for all 1 < p < ∞.

Let us note that for p = ∞ the space Lp(µ,X) cannot be uniformly G-
convex, with exception of the trivial case when Ω is an atom of µ and consequently
Lp(µ,X) = X. In fact, divide Ω into two disjoint sets A and B with nonzero
measures and consider the expression ‖χAx + tχBGkx‖, where ‖x‖ = 1. When t
is sufficiently small the second summand is less then 1 for every Gk, hence, the
norm of the whole sum equals the norm of the first summand, i.e. equals one.

3. Some speculations around the p = 1 case. The case of p = 1 is
essentially difficult. It is evident that X = R with G = {−I,+I} gives an example
of uniformly G-convex space which is not uniformly (G, 1)-convex, which explains
the well-known fact that L1(Ω,Σ, µ) (with exception of the trivial case when Ω is
an atom of µ) is not uniformly convex (in fact, is not strictly convex). But on the
other hand, X = C with G = {±I,±iI} is an example of uniformly (G, 1)-convex,
which is the reason why Globevnik’s theorem [4] on complex uniform convexity
of L1(Ω,Σ, µ) is valid. Moreover, [6], [1] for G = {±I,±iI} every uniformly
G-convex space is uniformly (G, 1)-convex, and consequently L1(µ,X) inherits
uniform G-convexity of the space X.

In connection with this facts the following question naturally arises: what
difference between the groups {−I,+I} and {±I,±iI} causes such a distinction
in the inheritance of uniform G-convexity. For the present we do not have a



G-convexity for vector-valued spaces 11

satisfactory answer for this question. Below we collect some remarks, relevant to
this problem.

Proposition 3.1. Let X be a real Banach space with dimX = n, G =
{T1, T2, . . . , Tm} ⊂ L(X) and

∑
T∈G T = 0. Suppose SX has a face F with

non-empty relative (n−1)-dimensional interior. Then X is not uniformly (G, 1)-
convex (in fact it is not even strictly (G, 1)-convex in the natural sense).

P r o o f. Let x0 ∈ F be the relative (n − 1)-dimensional interior point of
F , and let x∗ be the real functional generating F (i.e. such that F = {x ∈ BX :
x∗(x) = 1}). According to our assumption there is an ε > 0, such that for every
z ∈ εBX

‖x0 + z‖ = F (x0 + z).

Then for t > 0 sufficiently small and for every y ∈ SX (for example, for y = x0)
we have

1

n

∑

T∈G

‖x0 + tTy‖ =
1

n

∑

T∈G

F (x0 + tTy) = 1,

which means that δG,1
X (t) = 0. �

Proposition 3.2. Let G be a finite algebraic group, |G| = n. Then there
is a complex Banach space X, and an injective representation φ : G → L(X)

such that φ(G) is regular, X is uniformly φ(G)-convex with δ
φ(G)
X (t) ≥ t2/(2n +

2) + 0(t2) for small t > 0, but X is not uniformly (φ(G), 1)-convex.

P r o o f. Let `∞(G) be the space of all complex-valued functions on G,
equipped with sup-norm, and take X ⊂ `∞(G) consisting of those functions
x : G → C, that

∑
h∈G

x(h) = 0. Define φ : G → L(X) in the standard way:

((φ(g))x) (h) := x(gh). Then the real subspace Y of X consisting of all real-
valued x ∈ X is φ(G)-invariant, and BY is a polyhedra. So by the previous
proposition Y is not uniformly (φ(G), 1)-convex, and hence Y is not uniformly

(φ(G), 1)-convex as well. Now let us estimate δ
φ(G)
X (t). For arbitrary x, y ∈ SX

and t > 0

max
g∈G

‖x + tφ(g)y‖ = max
h∈G

max
g∈G

|x(h) + ty(gh)| =: A

Let h0 ∈ G be the point at which |x(h0)| = ‖x‖ = 1. Without loss of generality
we may assume that x(h0) = 1 (otherwise multiply x by a suitable modulus-one
constant). So we can continue the estimate as follows:

A ≥ max
g∈G

|x(h0) + ty(gh0)| = max
g∈G

|1 + ty(g)| =: r.
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If max
g∈G

Re y(g) > t/(2n + 2) then evidently r > 1 + t2/(2n + 2), which implies

the estimate of δ
φ(G)
X (t) we need. In the opposite case since

∑
g∈G

Re y(g) = 0 all

Re y(g) must be not too “big negative”:

Re y(g) ≥ −nt/(2n + 2), ∀g ∈ G

So we have the following:

r2 = max
g∈G

|1+ty(g)|2 = max
g∈G

(1+2tRe y(g)+t2|y(g)|2) ≥ 1−
2nt2

2n + 2
+t2 = 1+

2t2

2n + 1
.

Consequently, for small t

r ≥ 1 +
t2

2n + 2
+ 0(t2). �

Remark, that the same construction with real `∞(G) will give even linear

estimate from below for δ
φ(G)
X (t).

Since G and φ(G) have the same structure as algebraic groups, Proposi-
tion 3.2 has the following meaning: there are no group-theoretic properties of a
group G ⊂ L(X) which can ensure implication (uniform G-convexity) ⇒ (uni-
form (G, 1)-convexity). So if we are looking for a property of G ⊂ L(X), that
is sufficient for the above implication, this property must involve the actions of
operators T ∈ G on elements of X. Something in this direction can be done if
one looks at the proof (uniform G-convexity) ⇒ (uniform (G, 1)-convexity) in the
case of G = {I,−I, iI,−iI} given in [6]. The proposition below is a generalization
of such kind. Remark, that it is applicable to both real and complex spaces.

Proposition 3.3. Let X be a Banach space, G = {T1, T2, . . . , Tn} ⊂
L(X) be a group of isometries, and

∑
T∈G

T = 0. Suppose the following two condi-

tions are fulfilled:

(a) For every x ∈ SX the subspace LinGx := Lin{Tx}T∈G is 1-comple-
mented in X, i.e. there is a linear projector Px : X → LinGx with ‖Px‖ = 1.

(b) The family {LinGx}x∈SX
is a uniformly (G, 1)-convex family of sub-

spaces, i.e. δ(t) := infx∈X δG,1
Lin Gx(t) > 0 for all t > 0.

Then if X is uniformly G-convex, then X is uniformly (G, 1)-convex.

P r o o f. Remark that Px in condition (a) can be taken in such a way,
that PT = TP for every T ∈ G. In fact, for arbitrary Px from (a) the operator
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P̂x :=
1

n

∑
T∈G

T−1PxT is a projector onto LinGx with ‖P̂x‖ = 1 and P̂xT = T P̂x

for all T ∈ G. So P̂x can be taken instead of Px.
Fix arbitrary x, y ∈ SX and t > 0. We have to estimate from below the

value of

A :=
1

n

∑

T∈G

‖x + tTy‖.

Denote α =
1

2t(n − 1)
δG
X(t). Consider two cases. The first one is ‖Pxy‖ ≥ α. In

this case

A ≥
1

n

∑

T∈G

‖Px(x + tTy)‖ =
1

n

∑

T∈G

‖x + tTPxy‖ ≥ 1 + δ(αt).

In the opposite case of ‖Pxy‖ < α for every T ∈ G we have ‖x + tTy‖ ≥
‖x + tTPxy‖ ≥ 1 − αt. So

A ≥
1

n
(max
T∈G

‖x + tTy‖ + (n − 1)αt) ≥ 1 +
1

n
(δG

X(t) + (n − 1)αt) = 1 +
1

2n
δG
X(t).

So,

δG,1
X (t) ≥ min

{
δ

(
1

2(n − 1)
δG
X(t)

)
,

1

2n
δG
X(t)

}
> 0. �

Surely, for G = {I,−I, iI,−iI} both conditions (a) and (b) are fulfilled,
because LinGx = Cx is up to isometry the same space for all x ∈ SX , and by
complex Hahn-Banach theorem Cx is 1-complemented in X. Remark also, that
(b) is a necessary condition for (G, 1)-convexity of X. But (a) seems to be a too
strong restriction.
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