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STRUCTURE OF THE UNIT GROUP OF FD10
*

Manju Khan

Communicated by V. Drensky

Abstract. The structure of the unit group of the group algebra FD10 of
the dihedral group D10 of order 10 over a finite field F has been obtained.

1. Introduction. Let FG be the group algebra of a group G over a

field F . For a normal subgroup H of G, the natural homomorphism from G to

G/H can be extended to an F -algebra homomorphism from FG onto F [G/H]

defined by
∑

g∈G

agg 7→
∑

g∈G

aggH. The kernel of this homomorphism, denoted

by ω(H), is the ideal of FG generated by {h − 1 | h ∈ H}. It is clear that

FG/ω(H) ∼= F [G/H]. The augmentation ideal ω(FG) of the group algebra FG

is defined by

ω(FG) =




∑

g∈G

agg

∣∣∣∣∣∣
ag ∈ F,

∑

g∈G

ag = 0



 .
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Note that ω(G) = ω(FG) and ω(H) = ω(FH)FG = FGω(FH). Also FG/ω(G)
∼= F showing that the Jacobson radical J(FG) is contained in ω(FG). The

equality occurs if G is a finite p-group and the characteristic of F is p. For

an ideal I ⊆ J(FG), the natural homomorphism from FG to FG/I induces an

epimorphism from the unit group U (FG) of FG, to U (FG/I) with kernel 1 + I

and so that U (FG)/(1 + I) ∼= U (FG/I).

For g1, g2 ∈ G, the commutator is (g1, g2) = g−1
1 g−1

2 g1g2. The lower

central chain of G is given by

G = γ1(G) ⊇ γ2(G) ⊇ · · · ⊇ γm(G) ⊇ · · ·

where γc+1(G) = (γc(G), G) is the group generated by (g, h) with g ∈ γc(G), h ∈

G, for c ≥ 1. The group G is said to be nilpotent of class c if γc+1(G) = {1} but

γc(G) 6= {1}.

Passman and Smith [4] studied the structure of the unit group of the

integral group ring ZD2p. The number of conjugacy classes of elements of finite

order in the normalized unit group of the integral group ring ZD2p has been

determined by Bhandari and Luther [1]. However, the structure of the unit

group U (FD2p) over a field F of positive characteristic is not known.

Recently the author, Sharma and Srivastava [3, 6, 7] have determined the

structure of the unit group of FG for G = S3, S4, A4. The work in this paper

is on the unit group U (FD10) of the group algebra FD10 of the dihedral group

D10 of order 10 over a finite field F . The presentation of D10 is given by

D10 = 〈a, b | a5 = 1, b2 = 1, b−1ab = a−1〉.

Consequently the commutator subgroup of D10 is A = 〈a〉. The distinct

conjugacy classes of D10 are C0 = {1},C1 = {a, a−1},C2 = {a2, a−2} and

C3 = {b, ab, a2b, a3b, a4b}. Hence {Ĉ0, Ĉ1, Ĉ2, Ĉ3} form an F -basis for the center

Z (FD10) of the group algebra FD10, where Ĉi denotes the sum of all elements

in the conjugacy class Ci (cf. Lemma 4.1.1 [5]).

2. Unit group of FD10.

Theorem 2.1. Let U (FD10) be the unit group of the group algebra FD10

of the dihedral group D10 of order 10 over a finite field F . Let V = 1 + J(FD10)

where J(FD10) denotes the Jacobson radical of the group algebra FD10.

(1) If |F | = 5n, then U (FD10)/V ∼= F ∗ × F ∗ and V is a nilpotent group of

class 4. Moreover, the center Z (V ) of V is an elementary abelian 5-group

of order 53n.
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(2) Let |F | = 2n. If the extension field F of F2 contains a primitive 5th root of

unity, then U (FD10)/V ∼= F ∗ ×GL(2, F )×GL(2, F ) and V is an elemen-

tary abelian 2-group of order 2n.

(3) If |F | = rn, where r is prime and r 6= 2, 5, then

U (FD10) ∼=





GL(2, F ) × GL(2, F ) × F ∗ × F ∗, if r ≡ ±1 (mod 5);
GL(2, F ) × GL(2, F ) × F ∗ × F ∗, if r ≡ ±2 (mod 5)

and n is even;

GL(2, F̃ ) × F ∗ × F ∗, if r ≡ ±2 (mod 5)
and n is odd.

Here F ∗ = F\{0}, GL(2, F ) is the general linear group of degree 2 over F and

F̃ is the quadratic extension of F .

P r o o f. (1) Since A is a normal subgroup of D10 of index 2, we have

J(FD10) = J(FA)(FD10) (cf. Theorem 7.2.7 of [5]). The group A is of order

5 and char F = 5. This implies that J(FA) = ω(FA) and so J(FD10) = ω(A).

Note that ω(A) is a nilpotent ideal with nilpotency index 5. Therefore, the

natural homomorphism from FD10 onto FD10/ω(A) induces an epimorphism

from U (FD10) to U (FD10/ω(A)) with kernel V = 1 + ω(A) and so

U (FD10)/V ∼= U (F [D10/A]) ∼= F ∗ × F ∗.

Further, as ω(A)5 = 0 and charF = 5, the order of any nontrivial element of

V is 5. Clearly V is a nilpotent group. One can observe that γ2(V ) ⊆ 1 +

ω(A)2, γ3(V ) ⊆ 1 + ω(A)3, γ4(V ) ⊆ 1 + ω(A)4 and so the nilpotency class of V is

at most 4.

The element x = α0 + α1Ĉ1 + α2Ĉ2 + α3Ĉ3 belongs to V of Z (FD10), if

and only if α0 + 2α1 + 2α2 = 1. If H = Z (FD10) ∩ V then

H = {1 + α1(Ĉ1 − 2) + α2(Ĉ2 − 2) + α3Ĉ3 | α1, α2, α3 ∈ F}

is a central subgroup of V of order 53n. Let

ω1 = (a − a−1)(1 + b), ω2 = (a − a−1)(1 − b),
ω3 = (a2 − a−2)(1 + b), ω4 = (a2 − a−2)(1 − b).

Note that ω2
i = 0, 1 ≤ i ≤ 4, and ω1ω3 = ω3ω1 = 0, ω2ω4 = ω4ω2 = 0. Also

observe that

ω1ω2 = (a2 + a3 − 2)(2 − 2b), ω2ω1 = (a2 + a3 − 2)(2 + 2b),
ω3ω4 = (a + a4 − 2)(2 − 2b), ω4ω3 = (a + a4 − 2)(2 + 2b).
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It is known that {(ai − 1), (ai − 1)b | 1 ≤ i ≤ 4} forms a basis of ω(A) as an

F -vector space. Since, for ωi ∈ ω(A), 1 ≤ i ≤ 4 and

(a − 1) = 2(ω3ω4 + ω4ω3) − (ω1 + ω2),

(a2 − 1) = 2(ω1ω2 + ω2ω1) − (ω3 + ω4),

(a3 − 1) = 2(ω1ω2 + ω2ω1) + (ω3 + ω4),

(a4 − 1) = 2(ω3ω4 + ω4ω3) + (ω1 + ω2),

(a − 1)b = 3(ω3ω4 − ω4ω3) + 4(ω1 − ω2),

(a2 − 1)b = 3(ω1ω2 − ω2ω1) + 4(ω3 − ω4),

(a3 − 1)b = 3(ω1ω2 − ω2ω1) + (ω3 − ω4),

(a4 − 1)b = 3(ω3ω4 − ω4ω3) + (ω1 − ω2),

we have

ω(A) = Fω1 + Fω2 + Fω3 + Fω4 + Fω1ω2 + Fω2ω1 + Fω3ω4 + Fω4ω3.

In fact this sum is a direct sum.

For 1 ≤ i ≤ 3, let ui = 1 + ωi. Then (u1, u2) ≡ 1 + y (modZ (V )), where

y = ω1ω2 − ω2ω1 + ω1ω2ω1 − ω2ω1ω2. Since y ∈ ω(A)2, we have (1 + y)−1 ≡

1 − y (modZ (V )) and so (u1, u2, u3) ≡ 1 + yω3 − ω3y (modZ (V )). Hence V is

a nilpotent group of class 4.

Assume x ∈ ω(A) with

x = α1ω1+α2ω2+α3ω3+α4ω4+β1ω1ω2+β2ω2ω1+β3ω3ω4+β4ω4ω3, αi, βi ∈ F.

If 1 + x ∈ Z (V ) then ω1x = xω1 and hence α2 = α4 = 0 and β1 = β2, β3 = β4.

Thus

x = α1ω1 + α3ω3 + β1(ω1ω2 + ω2ω1) + β2(ω3ω4 + ω4ω3).

Since x commute with ω2, we have α1 = α3 = 0 and therefore x = β1(ω1ω2 +

ω2ω1) + β2(ω3ω4 + ω4ω3), where (ω1ω2 + ω2ω1) = 4(Ĉ2 − 2) and ω3ω4 + ω4ω3 =

4(Ĉ1 − 2). Thus for any β1, β2 ∈ F , 1 + x ∈ H. Hence H = Z (V ) and so Z (V )

is an elementary abelian 5-group of order 53n. Note that Z (V ) = V1×V2, where

V1 = {1 + α1(Ĉ1 − 2) + α2(Ĉ2 − 2) | α1, α2 ∈ F},

V2 = {1 + αĈ3 | α ∈ F}.
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Let f(x) be a monic irreducible polynomial of degree n over the prime field F5

such that F5[x]/〈f(x)〉 ∼= F . Assume α is the residue class of x modulo 〈f(x)〉.

We claim that

V1 =

n−1∏

i=0

〈1 + αi(Ĉ1 − 2)〉 ×

n−1∏

i=0

〈1 + 2αi(Ĉ1 − 2)〉.

For that take uαi = 1 + αi(Ĉ1 − 2). Note that

(Ĉ1 − 2)2 = (Ĉ2 − 2)2 = (Ĉ1 + Ĉ2 − 4),

(Ĉ1 − 2)(Ĉ2 − 2) = −(Ĉ1 + Ĉ2 − 4)

and so

uαiuαj = (1 + αi(Ĉ1 − 2))(1 + αj(Ĉ1 − 2))

= 1 + (αi + αj + αi+j)(Ĉ1 − 2) + αi+j(Ĉ2 − 2).

By induction one can prove that

uαi1 uαi2 . . . uαil = 1 + (δ1 + δ2)(Ĉ1 − 2) + δ2(Ĉ2 − 2),

where δ1 =

l∑

j=1

αij and δ2 =

l∑

j,k=1

j 6=k

αij αik . We claim that for any 0 ≤ l ≤ (n − 1),

〈1 + αl(Ĉ1 − 2)〉
⋂ n−1∏

i=0

i6=l

〈1 + αi(Ĉ1 − 2)〉 = {1}.

Let, if possible, uαl = uαi1 uαi2 . . . uαik so that αl = δ1 +δ2 and δ2 = 0. Thus αl =

δ1. Since 0 ≤ i1, i2, . . . , ik, l ≤ n − 1 and {1, α, . . . , αn−1} is a linearly independent

set, we reach a contradiction. Hence
n−1∏

i=0

〈1+αi(Ĉ1−2)〉 is a direct product of cyclic

groups of order 5. Similarly one can show that
n−1∏

i=0

〈1+2αi(Ĉ1−2)〉 is also a direct

product of cyclic groups of order 5. As
n−1∏

i=0

〈1+2αi(Ĉ1−2)〉 and
n−1∏

i=0

〈1+αi(Ĉ1−2)〉
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do not have any common element, we have
n−1∏

i=0

〈1+αi(Ĉ1−2)〉×
n−1∏

i=0

〈1+2αi(Ĉ1−2)〉

is a direct product of cyclic groups of order 52n. Note that this is a subgroup of

V1 with |V1| = 52n. Hence the result follows. Further, the structure of V2 is given

as follows:

V2 =

n−1∏

i=0

〈1 + αi(1 + a + a2 + a3 + a4)b〉.

(2) Assume the field F contains a primitive 5-th root of unity, say ε. We

define a matrix representation of D10,

θ : D10 −→ U (F ⊕ M(2, F ) ⊕ M(2, F ))

by the assignment

a 7→

(
1,

(
ε 0

0 ε−1

)
,

(
ε2 0

0 ε−2

))
and b 7→

(
1,

(
0 1

1 0

)
,

(
0 1

1 0

))

and extend it to an algebra homomorphism

θ∗ : FD10 −→ F ⊕ M(2, F ) ⊕ M(2, F )

where M(2, F ) is the algebra of 2×2 matrices over the field F . Let x =

4∑

i=0

αia
i+

4∑

i=0

βia
ib ∈ Ker θ∗, where αi, βi ∈ F . Thus θ∗(x) = 0 gives the following system

of equations:

4∑

i=0

αi +

4∑

i=0

βi = 0(1)

α0 + α1ε + α2ε
2 + α3ε

3 + α4ε
4 = 0(2)

α0 + α1ε
4 + α2ε

3 + α3ε
2 + α4ε = 0(3)
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α0 + α1ε
2 + α2ε

4 + α3ε + α4ε
3 = 0(4)

α0 + α1ε
3 + α2ε + α3ε

4 + α4ε
2 = 0(5)

β0 + β1ε + β2ε
2 + β3ε

3 + β4ε
4 = 0(6)

β0 + β1ε
4 + β2ε

3 + β3ε
2 + β4ε = 0(7)

β0 + β1ε
2 + β2ε

4 + β3ε + β4ε
3 = 0(8)

β0 + β1ε
3 + β2ε + β3ε

4 + β4ε
2 = 0.(9)

Since ε is a primitive 5-th root of unity, we have ε is a root of the equation

x4 + x3 + x2 + x + 1 ∈ F2[x]. From equations (2), (3), (4) and (5) and using

char F = 2 we get α1 + α2 + α3 + α4 = 0. Also multiplying equation (2) by ε4,

(3) by ε, (4) by ε3, and (5) by ε2 and after adding we get α0 + α2 + α3 + α4 = 0.

Thus α0 = α1. Similarly we get α0 = α1 = α2 = α3 = α4. By using the

same arguments in equations (6), (7), (8) and (9), we get β0 = β1 = β2 =

β3 = β4. Hence from equation (1) we get all coefficients of x are the same and

therefore Ker θ∗ = FD̂10, where D̂10 is the sum of all elements in D10. Since

dimF (Ker θ∗) = 1, we have

FD10/Ker θ∗ ∼= F ⊕ M(2, F ) ⊕ M(2, F ).

As θ∗ is onto, θ∗(J(FD10)) ⊆ J(F ⊕ M(2, F ) ⊕ M(2, F )) = 0 implies that

J(FD10) ⊆ Ker θ∗. Further, since D̂2
10 = 0, we have Ker θ∗ ⊆ J(FD10) and

therefore J(FD10) = FD̂10.

Since J(FD10) is a nilpotent ideal, we have

U (FD10)/V ∼= F ∗ × GL(2, F ) × GL(2, F )

where V = 1 + J(FD10). Here V is an elementary abelian 2-group of order 2n

whose structure is given as

V =
n−1∏

i=0

〈1 + αiD̂10〉,

where α is the residue class of x mod 〈f(x)〉. Here f(x) is a monic irreducible

polynomial of degree n over F2.
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(3) Since the group algebra FD10 is a semi-simple Artinian ring, by Wed-

derburn structure theorem we get

FD10
∼= M(n1, D1) ⊕ M(n2, D2) ⊕ · · · ⊕ M(nj, Dj)

where the Di’s are finite dimensional division algebras over F . Since F is a finite

field, we have the Di’s are finite division rings and so the Di’s are finite field

extensions of F .

Further, we can observe that r ≡ ±1 or ±2 (mod 5). If r ≡ ±1 (mod 5),

then (ai + a−i)r = (ai + a−i) for i = 1, 2. Hence for any element x ∈ Z (FD10),

xrn

= x and so

FD10
∼= M(2, F ) ⊕ M(2, F ) ⊕ F ⊕ F.

Now if r ≡ ±2 (mod 5) then r2 ≡ ±1 (mod 5). Now if n is even then rn ≡

±1 (mod p) which implies that xrn

= x for all x ∈ Z (FrD2p) and so FD10
∼=

M(2, F )⊕M(2, F )⊕F ⊕F . If n is odd then r2n ≡ 1 (mod p) and so xr2n

= x for

any element in the center of FD10. Thus

FD10
∼= M(2, F̃ ) ⊕ F̃

or ∼= M(2, F̃ ) ⊕ F ⊕ F.

Since A is a derived subgroup of D10, we have FD10
∼= F (D10/A)⊕ω(A). Further,

FD10/ω(A) ∼= F (D10/A) ∼= FC2
∼= F ⊕ F . So finally we have FD10

∼= ω(A) ⊕

F ⊕F . As ω(A) is a two-sided ideal of the group algebra FD10 then it will direct

sum of simple module and each simple module is isomorphic to a matrix ring

over F . Thus the group algebra FD10
∼= M(2, F̃ ) ⊕ F ⊕ F . Hence

U (FD10) ∼=





GL(2, F ) × GL(2, F ) × F ∗ × F ∗, if r ≡ ±1 (mod 5);

GL(2, F ) × GL(2, F ) × F ∗ × F ∗, if r ≡ ±2 (mod 5)

and n is even;

GL(2, F̃ ) × F ∗ × F ∗, if r ≡ ±2 (mod 5)

and n is odd. �

Remark 1. Although our methods were theoretical, the use of the GAP

package LAGUNA [2] helped us to verify certain long and involved computations.
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Remark 2. We have not handled the case when the extension field F of

F2 does not have a primitive 5-th root of unity. However, we have the following

proposition in the case of F2.

Proposition 2.2. U (F2D10) ∼= V ′(A) o 〈b〉, the semi-direct product of

V ′(A) with 〈b〉 where V ′(A) = (1 + ω(A)) ∩ U (F2D10).

P r o o f. Since A is a normal subgroup of D10, the natural homomor-

phism D10 ↪→ D10/A induces an algebra homomorphism, say θ, from F2D10 onto

F2[D10/A]. The kernel of this map is ω(A) and so F2D10/ω(A) ∼= F2C2. Assume

θ∗ = θ|V ′(F2D10), the restriction of θ on V ′(F2D10), where

V ′(F2D10) =




∑

g∈G

agg ∈ U (F2D10) | Σag = 1



 .

Note that if u ∈ V ′(F2D10) then θ∗(u) ∈ V ′(F2[D10/A]) and therefore θ∗ :

V ′(F2D10) −→ V ′(F2[D10/A]) is a group homomorphism with Ker θ∗ = V ′(A) =

(1 + ω(A)) ∩ V ′(F2D10). Further, assume

θ′ = θ|U (FD10) : U (FD10) −→ U (F [D10/A])

is a group homomorphism. It is easy to observe that the kernel of θ ′ is V ′(A) and

so U (F2D10)/V
′(A) ∼= Im θ′ ⊆ U (F2〈b〉) = 〈b〉. Hence

U (F2D10) ∼= V ′(A) o 〈b〉. �
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