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DISPERSION PHENOMENA IN DUNKL-SCHRÖDINGER

EQUATION AND APPLICATIONS*
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Abstract. In this paper, we study the Schrödinger equation associated
with the Dunkl operators, we study the dispersive phenomena and we prove
the Strichartz estimates for this equation. Some applications are discussed.

1. Introduction. Strichartz estimate is a very interesting topic in the
field of dispersive-type partial differential equations. It has wide applications in
many other topics, such as well-posedness of initial value problems, regularity
of solutions, large-time behavior of solutions, and so on. This topic has a long
history starting with seminal paper of Segal [14] and generally goes under the
name of Strichartz inequalities after the fundamental paper of Strichartz [15]
drawing the connection to the restriction theorems of Tomas and Stein. Standard
references on the subject are [6] and [8].
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In this paper we consider the Dunkl operators Tj , j = 1, . . . , d, which
are the differential-difference operators introduced by Dunkl in [2] and called
Dunkl operators in the literature. These operators are very important in pure
Mathematics and in Physics. They provide a useful tool in the study of special
functions with root systems (see [3]).

Dunkl in [4] (see also [7]) has studied a Fourier transform FD associated
with the Dunkl operators, called Dunkl transform defined by

FDf(x) =

∫

Rd

K(−ix, y)f(y)ωk(y)dy,

where K represents is the Dunkl kernel and ωk is a weight function.
The aim of this paper is to study the Schrödinger equation associated with

the Dunkl operators (henceforth called by the Dunkl-Schrödinger equation). Also,
the paper establishes the Strichartz-type Schrödinger equation estimates with
applications. More precisely, we prove that, for all g in S ′(Rd), the following
problem

(S)

{

∂tu− i4ku = 0
u|t=0 = g,

(where 4k =

d
∑

j=1

T 2
j is the Dunkl Laplace operator) has a unique solution u in

S ′(Rd+1) given by

ut(·) =
1

ck|t|
γ+ d

2

e−i(d+2γ) π
4
sgn tei

‖·‖2

4t

[

FD(ei
‖·‖2

4t g)
] ( ·

2t

)

, t 6= 0.

We also study the solution of this problem when g belongs to S(Rd), E ′(Rd),
or the Dunkl Sobolev spaces Hs

k(Rd). As consequences, we establish the dis-
persive estimates for the Dunkl-Schrödinger equation. Moreover, Strichartz-type
Schrödinger estimates are proved and both problems of well posedness and the
scattering theory associated with the non linear Dunkl-Schrödinger equations are
described.

The paper is organized as follows. In Section 2, we recall the main results
about the harmonic analysis associated with the Dunkl operators. We introduce
in Section 3 the Dunkl-Schrödinger equation. In the same section, we prove that
the problem (S) has a unique solution if the initial data g belong to S ′(Rd), and
we present properties of solution when the initial data g belong respectively to
the spaces S(Rd), E ′(Rd), and the Dunkl-Sobolev spaces. In Section 4, motivated
by the work of Keel and Tao [8] we describe the dispersion phenomena associated
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for the Dunkl-Schrödinger equation. Finally, Section 5 is devoted to some appli-
cations. Namely, we establish the Strichartz estimates for the Dunkl-Schrödinger
equation. Besides, we introduce a class of nonlinear Schrödinger equations as-
sociated with the Dunkl operators. In this regard, we study local and global
well-posedness and scattering theory associated with these equations.

Throughout this paper, C indicates a positive constant not necessarily
the same in each occurrence.

2. Preliminaries. This section gives an introduction to the theory of
Dunkl operators, Dunkl transform and Dunkl convolution. Main references are
[2, 3, 4, 7, 12, 13, 16, 17, 18].

We consider R
d with the Euclidean scalar product 〈·, ·〉 and ‖x‖=

√

〈x, x〉.
For α in R

d\{0}, let σα be the reflection in the hyperplane Hα ⊂ R
d orthogonal

to α, i.e.

(2.1) σα(x) = x− 2
〈α, x〉

‖α‖2
α.

A finite set R ⊂ R
d\{0} is called a root system if R ∩ R.α = {α,−α}

and σαR = R for all α ∈ R. For a given root system R the reflection σα, α ∈ R,
generates a finite group W ⊂ O(d), called the reflection group associated with R.

We fix a positive root system R+ = {α ∈ R /〈α, β〉 > 0} for some β ∈ R
d\
⋃

α∈R

Hα.

We will assume that 〈α, α〉 = 2 for all α ∈ R+. A function k : R −→ C on a root
system R is called a multiplicity function if it is invariant under the action of the
associated reflection group W . For abbreviation, we introduce the index

(2.2) γ = γ(k) =
∑

α∈R+

k(α).

Throughout this paper, we will assume that the multiplicity is non-nega-
tive, that is k(α) ≥ 0 for all α ∈ R. We write k ≥ 0 for short. Moreover, let ωk

denote the weight function

(2.3) ωk(x) =
∏

α∈R+

|〈α, x〉|2k(α),

which is invariant and homogeneous of degree 2γ. We introduce the Mehta-type
constant

(2.4) ck =

(
∫

Rd

exp(−‖x‖2)ωk(x) dx

)−1

.
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Notations. We denote by

— C(Rd) the space of continuous functions on R
d.

— Cp(Rd) the space of functions of class Cp on R
d.

— Cp
b (Rd) the space of bounded functions of class Cp.

— E(Rd) the space of C∞-functions on R
d.

— S(Rd) the Schwartz space of rapidly decreasing functions on R
d.

— D(Rd) the space of C∞-functions on R
d which have compact support.

— S ′(Rd) the space of temperate distributions on R
d. It is the topological

dual of S(Rd).

The Dunkl operators Tj , j = 1, . . . , d, on R
d associated with the finite

reflection group W and multiplicity function k are given by

(2.5) Tjf(x) =
∂f

∂xj
(x) +

∑

α∈R+

k(α)αj
f(x) − f(σα(x))

〈α, x〉
, f ∈ C1(Rd).

Some properties of the Tj , j = 1, . . . , d, are given in the following list:

For all f and g in C1(Rd) with at least one of them W -invariant, we have

(2.6) Tj(fg) = (Tjf)g + f(Tjg), j = 1, . . . , d.

For f in C1
b (Rd) and g in S(Rd) we have

(2.7)

∫

Rd

Tjf(x)g(x)ωk(x) dx = −

∫

Rd

f(x)Tjg(x)ωk(x) dx, j = 1, . . . , d.

We define the Dunkl-Laplace operator on R
d by

(2.8)

4kf(x) =
d
∑

j=1

T 2
j f(x) = 4f(x) + 2

∑

α∈R+

k(α)

[

〈∇f(x), α〉

〈α, x〉
−
f(x) − f(σα(x))

〈α, x〉2

]

.

For y ∈ R
d, the system

(2.9)

{

Tju(x, y) = yju(x, y), j = 1, . . . , d,

u(0, y) = 1,

admits a unique analytic solution on R
d, which will be denoted by K(x, y) and

called Dunkl kernel. This kernel has a unique holomorphic extension to C
d ×C

d.
The Dunkl kernel possesses the following properties:

i) For z, t ∈ C
d, we have K(z, t) = K(t, z); K(z, 0) = 1 and K(λz, t) =

K(z, λt) for all λ ∈ C.
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ii) For all ν ∈ N
d, x ∈ R

d and z ∈ C
d we have

|Dν
zK(x, z)| ≤ ‖x‖|ν| exp(‖x‖ ‖Rez‖),

with

Dν
z =

∂|ν|

∂zν1
1 · · · ∂zνd

d

and |ν| = ν1 + · · · + νd.

In particular for all x, y ∈ R
d:

|K(−ix, y)| ≤ 1.

iii) The function K(x, z) admits for all x ∈ R
d and z ∈ C

d the following
Laplace type integral representation

(2.10) K(x, z) =

∫

Rd

e〈y,z〉dµx(y),

where µx is a probability measure on R
d with support in the closed ball B(0, ‖x‖)

of center 0 and radius ‖x‖ (see [12]).
The Dunkl intertwining operator Vk is the operator from C(Rd) into itself

given by

(2.11) Vkf(x) =

∫

Rd

f(y)dµx(y), for all x ∈ R
d,

where µx is the measure given by the relation (2.10) (see [12]). In particular, we
have

K(x, z) = V (e〈·,z〉)(x), for all x ∈ R
d, and z ∈ C

d.

In [3], Dunkl proved that Vk is a linear isomorphism from the space of homoge-
neous polynomials Pn on R

d of degree n into itself satisfying the relations






TjVk = Vk
∂

∂xj

, j = 1, . . . , d

Vk(1) = 1.
(2.12)

Trimèche has proved in [17] that the operator Vk can be extended to a
topological isomorphism from E(Rd) into itself satisfying the relations (2.12).

Notation. We denote by Lp
k(R

d) the space of measurable functions on
R

d such that

‖f‖L
p
k
(Rd) :=

(
∫

Rd

|f(x)|pωk(x) dx

)
1
p

< +∞, if 1 ≤ p < +∞,

‖f‖L∞
k

(Rd) := ess sup
x∈Rd

|f(x)| < +∞.
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The Dunkl transform of a function f in L1
k(R

d) is given by

(2.13) FD(f)(y) =

∫

Rd

f(x)K(−iy, x)ωk(x)dx, for all y ∈ R
d.

In the following we give some properties of this transform (see [4] and [7]).
i) For f in L1

k(R
d) we have

(2.14) ‖FD(f)‖L∞
k

(Rd) ≤ ‖f‖L1
k
(Rd).

ii) For f in S(Rd) we have

(2.15) FD(Tjf)(y) = iyjFD(f)(y), for all j = 1, . . . , d and y ∈ R
d.

Proposition 1. The Dunkl transform FD is a topological isomorphism
from S(Rd) onto itself. If we put for f in S(Rd)

(2.16) FD(f)(y) =
c2k

4γ+ d
2

FD(f)(−y), y ∈ R
d,

we have

FDFD = FDFD = Id.

Proposition 2. i) Plancherel formula for FD.
For all f in S(Rd) we have

(2.17)

∫

Rd

|f(x)|2ωk(x) dx =
c2k

4γ+ d
2

∫

Rd

|FD(f)(ξ)|2ωk(ξ) dξ.

ii) Plancherel theorem for FD.

The renormalized Dunkl transform f → 2−(γ+ d
2
)ckFD(f) can be uniquely extended

to an isometric isomorphism on L2
k(R

d).

Definition 1. Let y be in Rd. The Dunkl translation operator f 7→ τyf
is defined on S(Rd) by

(2.18) FD(τyf)(x) = K(ix, y)FD(f)(x), for all x ∈ R
d.

Proposition 3. i) The operator τy, y ∈ R
d, can also be defined on E(Rd)

by

(2.19) τyf(x) = (Vk)x(Vk)y[(Vk)
−1(f)(x+ y)], for all x ∈ R

d.
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(See [18]).
ii) If f(x) = F (‖x‖) in E(Rd), then we have

τyf(x) = Vk

[

F (
√

‖x‖2 + ‖y‖2 + 2〈x, · · · 〉)
]

(x), for all x ∈ R
d.

(See [13]).

Using the Dunkl translation operator, we define the Dunkl convolution
product of functions as follows (see [16] and [18]).

Definition 2. The Dunkl convolution product of f and g in S(Rd) is the
function f ∗D g defined by

(2.20) f ∗D g(x) =

∫

Rd

τxf(−y)g(y)ωk(y)dy, for all x ∈ R
d.

This convolution is commutative and associative and satisfies the follow-
ing properties. (See [16]).

Proposition 4. i) For f and g in D(Rd) (resp. S(Rd)) the function
f ∗D g belongs to D(Rd) (resp. S(Rd)) and we have

(2.21) FD(f ∗D g)(y) = FD(f)(y)FD(g)(y), for all y ∈ R
d.

ii) Let 1 ≤ p, q, r ≤ ∞, such that
1

p
+

1

q
−

1

r
= 1. If f is in Lp

k(R
d) and

g is a radial element of Lq
k(R

d), then f ∗D g ∈ Lr
k(R

d) and we have

(2.22) ‖f ∗D g‖Lr
k
(Rd) ≤ ‖f‖L

p
k
(Rd) ‖g‖L

q
k
(Rd) .

Definition 3. The Dunkl transform of a distribution τ in S ′(Rd) is
defined by

(2.23) 〈FD(τ), φ〉 = 〈τ,FD(φ)〉, for all φ ∈ S(Rd).

Proposition 5. The Dunkl transform FD is a topological isomorphism
from S ′(Rd) onto itself.

For f in Lp
k(R

d), we define the tempered distribution Tf associated with
f by

(2.24) 〈Tf , φ〉 =

∫

Rd

f(x)φ(x)ωk(x)dx, φ ∈ S(Rd).
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Definition 4. i) The Dunkl transform of a distribution τ in S ′(Rd) is
defined by

(2.25) 〈FD(τ), φ〉 = 〈τ,FD(φ)〉, φ ∈ S(Rd).

ii) We define FD on S ′(Rd) by similar formula.

iii) The Dunkl transform of f in Lp
k(R

d) denoted also by FD(f), is defined
by

〈FD(f), φ〉 = 〈FD(Tf ), φ〉 = 〈Tf ,FD(φ)〉, φ ∈ S(Rd).

Thus from (2.24) we have

(2.26) 〈FD(f), φ〉 =

∫

Rd

f(x)FD(φ)(x)ωk(x)dx.

Definition 5. The Dunkl convolution product of a distribution S in
S ′(Rd) and a function φ in S(Rd) is the function S ∗D φ defined by

(2.27) ∀ x ∈ R
d, S ∗D φ(x) = 〈Sy, τ−yφ(x)〉.

Proposition 6. i) Let f be in Lp
k(R

d), p ∈ [1,+∞] and φ ∈ S(Rd). Then
the distribution Tf ∗D φ is given by the function f ∗D φ. If we assume that f is
even for d = 1 and radial for d ≥ 2, then Tf ∗D φ ∈ Lp

k(R
d).

ii) Assume that f ∈ Lp
k(R

d), p ∈ [1,+∞] is even for d = 1 and radial for
d ≥ 2 and φ1,φ2 in S(Rd). Then we have

(2.28) 〈Tf ∗D φ1, φ2〉 = 〈Tf̌ , φ1 ∗D φ̌2〉,

where ȟ(x) = h(−x).

iii) Let f ∈ Lp
k(R

d), p ∈ [1,+∞] be even for d = 1 and radial for d ≥ 2
and φ ∈ S(Rd). Then we have

(2.29) FD(Tf ∗D φ) = FD(Tf )FD(φ).

P r o o f. i) Let f be in Lp
k(R

d), p ∈ [1,+∞] and φ ∈ S(Rd). We have
from (2.24)

∀x ∈ R
d, Tf ∗D φ(x) = 〈(Tf )y, τxφ(−y)〉,

= f ∗D φ(x).
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Now we assume that f is even for d = 1 and radial for d ≥ 2. Applying Proposi-
tion 4 ii), we obtain that Tf ∗D φ ∈ Lp

k(R
d).

ii) Let f ∈ Lp
k(R

d), p ∈ [1,+∞] be even for d = 1 and radial for
d ≥ 2 and φ1, φ2 in S(Rd). Then from Fubini-Tonelli’s theorem the function
(x, y) 7→ f(−y)τxφ1(y)φ2(x) is integrable on R

d×R
d with respect to the measure

ωk(y)dy ωk(x)dx. Thus from Fubini’s theorem we obtain

〈Tf ∗D φ1, φ2〉 =

∫

Rd

∫

Rd

f(−y)τxφ1(y)φ2(x)ωk(y)dyωk(x)dx

=

∫

Rd

f(−y)

(
∫

Rd

τyφ1(x)φ2(x)ωk(x)dx

)

ωk(y)dy

=

∫

Rd

f(−y)φ1 ∗D φ̌2(y)ωk(y)dy

= 〈Tf̌ , φ1 ∗D φ̌2〉.

iii) Let f ∈ Lp
k(R

d), p ∈ [1,+∞] be even for d = 1 and radial for d ≥ 2
and φ in S(Rd). Then from i) and the relations (2.28)(2.21) we have for any ϕ
belongs to S(Rd)

〈FD(Tf ∗D φ), ϕ〉 = 〈Tf ∗D φ,FD(ϕ)〉 = 〈Tf̌ , φ ∗D
ˇFD(ϕ)〉

= 〈Tf ,FD(FD(φ)ϕ)〉 = 〈FD(Tf )FD(φ), ϕ〉.

Thus we have the result. �

Let τ be in S ′(Rd). We define the distributions Tjτ , j = 1, . . . , d, by

〈Tjτ, ψ〉 = −〈τ, Tjψ〉, for all ψ ∈ S(Rd).(2.30)

Thus we deduce

〈4kτ, ψ〉 = 〈τ,4kψ〉, for all ψ ∈ S(Rd).(2.31)

These distributions satisfy the following properties

FD(Tjτ) = iyjFD(τ), j = 1, . . . , d.(2.32)

FD(4kτ) = −‖y‖2FD(τ).(2.33)

Below, if f ∈ Lp
k(R

d), the distribution Tf given by the relation (2.24), is
noted by f .
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3. Dunkl-Schrödinger equation.

Notations. We denote by:

— D′(Rd) the space of distributions on R
d. It is the topological dual of

D(Rd).

— Hs
k(Rd) the Dunkl-Sobolev spaces defined for s ∈ R, by

{

u ∈ S ′(Rd) : (1 + ‖ξ‖2)
s
2FD(u) ∈ L2

k(R
d)
}

.

We provide this space with the scalar product

〈u, v〉s,k =

∫

Rd

(1 + ‖ξ‖2)sFD(u)(ξ)FD(v)(ξ)ωk(ξ)dξ

and the norm

‖u‖2
s,k = 〈u, u〉s,k.

— Hs
loc,k(R

d) =
{

u ∈ D′(Rd) : φu ∈ Hs
k(R

d), ∀φ ∈ D(Rd)
}

.

— C(R;Hs
k(Rd)) the space of continuous functions from R into H s

k(R
d).

— E(R;S(Rd)) the space of C∞ functions from R into S(Rd).

— E(R;S ′(Rd)) the space of C∞ functions from R into S ′(Rd).

We consider the following equation where the unknown is a function u
(with complex values) of (t, x) ∈ R × R

d

(S)

{

∂tu− i4ku = 0
u|t=0 = g.

Theorem 1. Let g be in S ′(Rd). There exists a unique solution u in
E(R;S ′(Rd)) such that

(S)

{

∂tu− i4ku = 0, in D′(R × R
d)

u|t=0 = g.

P r o o f. First we prove the existence. For t ∈ R, we put

(3.34) ut = FD(e−it‖ξ‖2
FD(g)).

From (2.25) we have

〈ut, ϕ〉 = 〈FD(g), e−it‖ξ‖2
FD(ϕ)〉.
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Thus we deduce that ut ∈ E(R;S ′(Rd)), and FD(ut) ∈ E(R;S ′(Rd)).
We recall that u is defined by

〈u, ψ〉 =

∫

R

〈ut, ψ(t, ·)〉dt, ψ ∈ S(Rd+1).

Then for any ψ in S(Rd+1), we have from (2.31)

〈∂tu− i4ku, ψ〉 = −〈u, ∂tψ + i4kψ〉 = −

∫

R

〈ut, ∂tψ(t, ·) + i4kψ(t, ·)〉dt

= −

∫

R

〈

FD(ut),FD (∂tψ(t, ·) + i4kψ(t, ·))
〉

dt

= −

∫

R

〈

e−it‖·‖2
FD(g), (∂t − i‖ · ‖2)FDψ(t, ·)

〉

dt.

But

∂t

(

e−it‖ξ‖2
FDψ(t, ξ)

)

=
[

(∂t − i‖ξ‖2)FDψ(t, ξ)
]

e−it‖ξ‖2
.

Thus

〈∂tut − i4ku, ψ〉 = −

∫

R

〈

FD(g), ∂t

(

e−it‖·‖2
FDψ(t, ·)

)〉

dt

= −

∫

R

∂t

〈

FD(g), e−it‖·‖2
FDψ(t, ·)

〉

dt = 0.

Thus we have proved that u is solution of (S).
Now we prove the uniqueness, or equivalently that u ≡ 0 is the unique

solution of problem
{

∂tu− i4ku = 0, in E(R;S ′(Rd))

u|t=0 = 0.

Indeed for all ψ in S(Rd+1) we have

0 = 〈∂tu− i4ku, ψ〉 = −

∫

R

〈ut, (∂t + i4k)ψ(t, ·)〉dt.

But

d

dt
〈ut, ψ(t, ·)〉 = 〈u

(1)
t , ψ(t, ·)〉 + 〈ut, ∂tψ(t, ·)〉,

hence

(3.35) 0 = −

∫

R

d

dt
〈ut, ψ(t, ·)〉dt +

∫

R

[

〈u
(1)
t , ψ(t, ·)〉 − i〈ut,4kψ(t, ·)〉

]

dt.



36 H. Mejjaoli

As ψ(−∞, ·) = ψ(+∞, ·) = 0, we then obtain

(3.36)

∫

R

[

〈u
(1)
t , ψ(t, ·)〉 − i〈ut,4kψ(t, ·)〉

]

dt = 0.

Moreover, using that FD(u
(1)
t ) = (FD(ut))

(1) and the relations (3.36), (2.15) we
deduce

(3.37)

∫

R

[

〈(FD(ut))
(1),FDψ(t, ·)〉 + i〈FD(ut), ‖ · ‖

2FDψ(t, ·)〉
]

dt = 0,

∀ψ ∈ S(Rd+1).

If we take ψ such that FDψ(t, ξ) = eit‖ξ‖2
ϕ(ξ)χ(t) with ϕ in S(Rd), χ in S(R),

we obtain

(3.38)

∫

R

[

〈(FD(ut))
(1), eit‖·‖

2
ϕ〉 + i〈FD(ut), ‖ · ‖

2eit‖·‖
2
ϕ〉
]

χ(t)dt = 0,

∀χ ∈ S(R).

Thus we deduce that

(3.39)

d

dt
〈FD(ut), e

it‖·‖2
ϕ〉 = 〈(FD(ut))

(1), eit‖·‖
2
ϕ〉 + i〈FD(ut), ‖ · ‖

2eit‖·‖
2
ϕ〉

= 0, ∀ϕ ∈ S(Rd).

Hence for all ϕ in S(Rd), the function t 7→ 〈FD(ut), e
it‖·‖2

ϕ〉 is constant.
Finally, since u0 = 0 then

〈FD(ut), e
it‖·‖2

ϕ〉 = 〈FD(u0), ϕ〉 = 0, ∀ t ∈ R; ∀ϕ ∈ S(Rd).

From this we deduce that u = 0. �

Proposition 7. Let g be in S(Rd). The solution u given by Theorem 1
belongs to E(R;S(Rd)) and it is given by :

(3.40) u(t, x) =
c2k

4γ+ d
2

∫

Rd

K(ix, ξ)e−it‖ξ‖2
FD(g)(ξ)ωk(ξ)dξ.

P r o o f. Let g be in S(Rd). Formula (3.34) gives that ut belongs to S(Rd)
and that ut(x) is equal to the second member term of (3.40). Thus it is easy to
see that the function (t, x) 7→ ut(x) is C∞ on R×R

d. Below we will write u(t, x)
instead of ut(x).
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Moreover from Proposition 1 and the relations (2.9), (2.6), (2.7) we have,

(ix)νT µu(t, x) =
c2k

4γ+ d
2

∫

Rd

T ν
ξ K(ix, ξ)e−it‖ξ‖2

(iξ)µFD(g)(ξ)ωk(ξ)dξ

=
c2k

4γ+ d
2

∫

Rd

K(ix, ξ)(−Tξ)
ν
[

e−it‖ξ‖2
(iξ)µFD(g)(ξ)

]

ωk(ξ)dξ

=

∫

Rd

K(ix, ξ)hν,µ(t, ξ)e−it‖ξ‖2
ωk(ξ)dξ,(3.41)

where hν,µ is an element of E(R;S(Rd)).
Using (3.41) and dominated convergence theorem it is easy to see that

the solution u belongs to E(R;S(Rd)). �

Proposition 8. Let g be in Hs
k(Rd), s ∈ R, and let the solution u given

by Theorem 1 belong to C(R;Hs
k(R

d)). For p in N, (u
(p)
t ) ∈ C(R;Hs−2p

k (Rd)) and
we have

(3.42)

{

‖ut‖s,k = ‖g‖s,k, ∀ t ∈ R

‖u
(p)
t ‖s−2p,k ≤ Cp‖g‖s,k, ∀ t ∈ R; ∀ p ∈ N

∗.

P r o o f. Formula (3.34) gives that, for all t in R,

FD(ut) = e−it‖ξ‖2
FD(g).

Thus it is easy to deduce (3.42).

Now we will prove that for p in N, (u
(p)
t ) belongs to C(R;Hs−2p

k (Rd)).
Indeed, let (tn)n be a sequence that converge to t0 in R. We have

‖utn − ut0‖
2
s,k =

∫

Rd

(1 + ‖ξ‖2)s|e−itn‖ξ‖2
− e−it0‖ξ‖2

|2|FD(g)(ξ)|2ωk(ξ)dξ.

The dominate convergence theorem gives that lim
n→∞

‖utn − ut0‖
2
s,k = 0. On the

other hand, from (3.34) we have

FD(u
(p)
t ) = (−i‖ξ‖2)pe−it‖ξ‖2

FD(g).

From this we obtain

‖u
(p)
tn

− u
(p)
t0

‖2
s,k =

∫

Rd

(1 + ‖ξ‖2)s|e−itn‖ξ‖2
− e−it0‖ξ‖2

|2‖ξ‖p|FD(g)(ξ)|2ωk(ξ)dξ.

Thus the dominated convergence theorem gives the result. �
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Theorem 2. Let g be in S ′(Rd). The solution u given by Theorem 1 can
be written, for t 6= 0, as

(3.43) ut(·) =
1

ck|t|
γ+ d

2

e−i(d+2γ) π
4
sgn tei

‖·‖2

4t

[

FD(ei
‖·‖2

4t g)

]

( ·

2t

)

.

P r o o f. First we prove this formula for g ∈ D(Rd). Indeed, the relation
(3.34) can be written as

(3.44) u(t, x) =
[

FD(e−it‖ξ‖2
) ∗D g

]

(x).

Now we are going to calculate

FD(e−it‖ξ‖2
).

From [13, p. 2424], we have for any positive a

FD(e−a‖ξ‖2
) =

1

cka
γ+ d

2

e−
‖·‖2

4a .

Let us observe that for z ∈ C, z = |z|eiθ with positive real part, by taking the

branch z
1
2 = |z|

1
2 ei

θ
2 , the two functions

z 7→ FD(e−z‖ξ‖2
) and z 7→

1

ckz
γ+ d

2

e−
‖·‖2

4z

are holomorphic on the domain Rez > 0. As they coincide on the real axis,
they coincide in the whole domain. Now, if t positive, considering a sequence of
zn with positive real part which tends to it, we get, as the Dunkl transform is
continuous on tempered distributions that

FD(e−it‖ξ‖2
) =

1

ckt
γ+ d

2

e−i(d+2γ) π
4 ei

‖·‖2

4t .

In the case when t is negative, we have, following the same way, that

FD(e−it‖ξ‖2
) =

1

ck|t|
γ+ d

2

ei(d+2γ) π
4 ei

‖·‖2

4t .

Thus, we have

FD(e−it‖ξ‖2
) =

1

ck|t|
γ+ d

2

e−i(d+2γ) π
4
sgn tei

‖·‖2

4t .
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Hence, from (3.44) we obtain

(3.45) u(t, x) =
1

ck|t|
γ+ d

2

e−i(d+2γ) π
4
sgn t(ei

‖·‖2

4t ∗D g)(x).

On the other hand, since g ∈ D(Rd), we have
(

ei
‖·‖2

4t ∗D g

)

(x) =

∫

Rd

K

(

−ix

2t
, y

)

ei
‖x‖2+‖y‖2

4t g(y)ωk(y)dy

= ei
‖x‖2

4t FD(ei
‖·‖2

4t g)
( x

2t

)

.

Hence

(3.46) u(t, x) =
1

ck|t|
γ+ d

2

e−i(d+2γ) π
4
sgn tei

‖x‖2

4t

[

FD(ei
‖·‖2

4t g)
] ( x

2t

)

.

Thus formula (3.43) is proved in the case g ∈ D(Rd).
We assume now g is in S ′(Rd). There exists (gp)p in D(Rd) such that gp

converge to g in S ′(Rd). Let up be the solution of problem (S) with initial data
gp. From Proposition 7, we have up ∈ E(R;S(Rd)) and according to the first case,
up is given by formula (3.46). Consider the right member of (3.46).

One has

ei
‖·‖2

4t gp → ei
‖·‖2

4t g in S ′(Rd),

therefore

FD(ei
‖·‖2

4t gp) ◦At → FD(ei
‖·‖2

4t g) ◦ At in S ′(Rd),

where At : R
d → R

d is the application x 7→
x

2t
. As the multiplication by ei

‖x‖2

4t is

continuous S ′(Rd) → S ′(Rd), we deduce that the right-hand side of (3.46) taken
with gp converges to the same expression with g, in S ′(Rd). On the other hand,
according to the uniqueness in Theorem 1, the solution up of the problem (S),

with initial data gp is given by (up)t = FD(e−it‖·‖2
FD(gp)), as FD(gp) converges

to FD(g) in S ′(Rd) and e−it‖·‖2
FD(gp) converges to e−it‖·‖2

FD(g) in S ′(Rd), (up)t
converges to ut in S ′(Rd) where u is the solution of (S) with initial data g.
Therefore the formula (3.46) implies (3.43). �

Corollary 1. If g is in L1
k(R

d), then we have the dispersion estimate:

(3.47) ‖ut‖L∞
k

(Rd) ≤
1

ck|t|
γ+ d

2

‖g‖L1
k
(Rd).
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P r o o f. The previous Theorem and relation (2.14) give the result. �

Notation. We denote by E ′(Rd) the space of distributions on R
d with

compact support.
Another important application of Theorem 1 is the following.

Corollary 2. i) If g ∈ E ′(Rd) and u is the solution of problem (S), then,
ut ∈ E(Rd), for all t 6= 0.

ii) Let g(x) = e−iλ‖x‖2
, with λ > 0. Then

u 1
4λ

=
1

ck
λγ+ d

2 e−i(γ+ d
2
) π
4 δ.

P r o o f. i) If g ∈ E ′(Rd), then ei
‖·‖2

4t g ∈ E ′(Rd), and from Paley-Wiener
Theorem for the distribution with compact support (see [18]) we have

FD

(

ei
‖·‖2

4t g

)

∈ E(Rd) and formula (3.43) gives i).

ii) For t =
1

4λ
, we have

FD

(

ei
‖·‖2

4t g

)

= FD(1) = δ.

Then

ei
‖·‖2

4t FD

(

ei
‖·‖2

4t g

)

= δ.

This gives the result. �

Remark. From the previous Corollary we remark that the regularity
of solution, for t 6= 0 depends on the behavior at infinity of the initial data and
not of its regularity. This phenomenon is known under the name of distribution
to infinite speed.

Proposition 9. Let g be in L2
k(R

d) and we assume that, for all µ ∈ N
d,

we have xµg ∈ L2
k(R

d). Then for t 6= 0, ut ∈ E(Rd), where u is the solution of
problem (S).

P r o o f. By a simple calculation we prove that

[∂t − i4k, xj + 2itTj ] = 0, j = 1, . . . , d,

where [A,B] = AB −BA.
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By iteration of the previous identity we obtain

(3.48) [∂t − i4k, (x+ 2itT )µ] = 0, ∀µ ∈ N
d.

Moreover, using Proposition 8 we obtain that the solution u of system (S) belongs
to C(R;L2

k(R
d)). Next, we consider Vµ(t, x) = (x+ 2itT )µu(t, x). We have Vµ is

an element of C(R;S ′(Rd)) and Vµ(0, ·) belongs to L2
k(R

d). On the other hand
using the identity (3.48) we obtain (∂t − i4k)Vµ = 0. Hence from Proposition 8
we deduce that,

(3.49) Vµ ∈ C(R;L2
k(R

d)), µ ∈ N
d.

As

(3.50) (x+ 2itT )µ =
∑

|β|≤|µ|−1

Pµ,β(t, x)T β + (2it)|µ|T µ,

where Pµ,β is a polynomial in (t, x). Then using the relations (3.49),(3.50), the
fact that u is in C(R;L2

k(R
d)) and by induction on µ we obtain that T µ

x ut belongs
to L2

loc,k(R
d), for t 6= 0.

Thus, by Theorem 3.3 of [7] we obtain

ut ∈ Hs
loc,k(R

d), s ∈ N, t 6= 0.

As
⋂

s≥0

Hs
loc,k(R

d) ⊂ E(Rd) (Theorem 3.4 of [7]), the result is proved. �

4. Dispersion phenomena.

Notations. For any interval I of R (bounded or unbounded) and a Ba-
nach space X, we define the mixed space-time Lq(I;X) Banach space of (classes
of) measurable functions u : I → X such that ‖u‖Lq(I;X) <∞, with

‖u‖Lq(I;X) =
(

∫

I

‖u(t, ·)‖q
Xdt

)
1
q
, if 1 ≤ q <∞,

‖u‖L∞(I;X) = ess sup
t∈I

‖u(t, ·)‖X .

C(I;X) the space of continuous functions I → X. When I is bounded, C(I;X)
is a Banach space with the norm of L∞(I,X).

Cc(I,S(Rd)) is the space of continuous functions from I into S(Rd) com-
pactly supported in I, equipped with the topology of uniform convergence on the
compact subintervals of I.
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Definition 6. We say that the exponent pair (q, r) is
d+ 2γ

2
-admissible

if q, r ≥ 2,

(

q, r,
d+ 2γ

2

)

6= (2,∞, 1) and

(4.51)
1

q
+
d+ 2γ

2r
≤
d+ 2γ

4
.

If equality holds in (4.51), we say that (q, r) is sharp
d+ 2γ

2
-admissible, otherwise

we say that (q, r) is nonsharp
d+ 2γ

2
-admissible. Note in particular that when

d+ 2γ > 2 the endpoint

P =

(

2,
2d+ 4γ

d+ 2γ − 2

)

is sharp
d+ 2γ

2
-admissible.

Theorem 3. Let (U(t))t∈R be a bounded family of continuous operators
on L2

k(R
d) such that, we have

(4.52) ‖U(t)U ∗(t′)f‖L∞
k

(Rd) ≤
C

|t− t′|
d
2
+γ

‖f‖L1
k
(Rd).

Then, the estimates

‖U(t)u0‖Lq(R;Lr
k
(Rd)) ≤ C‖u0‖L2

k
(Rd)(4.53)

∥

∥

∥

∥

∫

R

U∗(t)f(t, ·)dt

∥

∥

∥

∥

L2
k
(Rd)

≤ C‖f‖
Lq′ (R;Lr′

k
(Rd))

(4.54)

hold for any sharp
d+ 2γ

2
-admissible exponent (q, r), where q ′,r′ are the conjugate

exponents of q and r and U ∗ is the adjoint operator of U .

Moreover, for any sharp
d+ 2γ

2
-admissible exponent pairs (q, r) and (q1, r1)

we have

(4.55)

∥

∥

∥

∥

∫

R

U(t)U∗(t′)f(t′, ·)dt′
∥

∥

∥

∥

Lq(R;Lr
k
(Rd))

≤ C‖f‖
L

q′
1(R;L

r′
1

k
(Rd))

.

Furthermore, if

(4.56) ‖U(s)U ∗(t)f‖L∞
k

(Rd) ≤
C

(1 + |t− s|)
d+2γ

2

‖f‖L1
k
(Rd),
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then (4.53), (4.54) and (4.55) hold for all
d+ 2γ

2
-admissible (q, r) and (q1, r1).

Before to demonstrate this theorem, we need the next result:

Proposition 10 (Hardy-Littlewood-Sobolev inequality). Let β be in
]0, d[. Then, if p and q are in (1,+∞) such that

1

p
+
β

d
=

1

q
+ 1,

then, a constant C exists such that

‖ ‖ · ‖−β ∗ f‖Lq(Rd) ≤ C‖f‖Lp(Rd).

P r o o f o f Th e o r em 3. We divide the proof of this theorem in two
steps:

1st step: (q, r) 6= P . We have

‖U(t)u0‖Lq(R;Lr
k
(Rd)) = sup

ϕ∈B
q,r
k

∫

Rd+1

U(t)u0(x)ϕ(t, x)dtωk(x)dx

= sup
ϕ∈B

q,r
k

〈u0,

∫

R

U∗(t)ϕ(t, ·)〉L2
k
(Rd)dt,

where Bq,r
k denotes the set of elements of D(Rd+1,C) such that the norm

‖ · ‖
Lq′ (R;Lr′

k
(Rd)) is less than or equal to 1, and U ∗ is the adjoint operator of U .

Thus, using Cauchy-Schwarz inequality, we deduce that

‖U(t)u0‖Lq(R;Lr
k
(Rd)) ≤ ‖u0‖L2

k
(Rd) sup

ϕ∈B
q,r
k

∥

∥

∥

∥

∫

R

U∗(t)ϕ(t, ·)dt

∥

∥

∥

∥

L2
k
(Rd)

.

This duality argument simply says that inequality (4.54) implies (4.53). In order
to prove (4.54), let us write

∥

∥

∥

∥

∫

R

U∗(t)ϕ(t, ·)dt

∥

∥

∥

∥

2

L2
k
(Rd)

=

∫

R2

〈U∗(t)ϕ(t, ·), U ∗(t′)ϕ(t′, ·)〉L2
k
(Rd)dtdt

′

=

∫

R2

〈U(t′)U∗(t)ϕ(t, ·), ϕ(t′ , ·)〉L2
k
(Rd)dtdt

′.

As (U(t))t∈R is a bounded family of operators on L2
k(R

d), by using the dispersive
estimate (4.52) we get, thanks to the interpolation theorem,

(4.57) ‖U(t)U ∗(t′)ϕ(t, ·)‖Lr
k
(Rd) ≤

C

|t− t′|γ(r)+1
‖ϕ(t, ·)‖

Lr′
k

(Rd)
,
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for all r ∈ [2,∞], where γ(r) =

(

d

2
+ γ

)(

1 −
2

r

)

− 1.

In the sharp γ +
d

2
-admissible case we have

1

q′
−

1

q
= −γ(r).

The relation (4.57) and Hölder’s inequality give
∥

∥

∥

∥

∫

R

U∗(t)ϕ(t, ·)dt

∥

∥

∥

∥

2

L2
k
(Rd)

≤

∫

R2

C

|t− t′|γ(r)+1
‖ϕ(t, ·)‖

Lr′
k

(Rd)‖ϕ(t′, ·)‖
Lr′

k
(Rd)dtdt

′.

We put

k(t) =

∫

R

1

|t− t′|γ(r)+1
‖ϕ(t′, ·)‖

Lr′
k

(Rd)dt
′.

Hence
∫

R2

1

|t− t′|γ(r)+1
‖ϕ(t, ·)‖

Lr′
k

(Rd)
‖ϕ(t′, ·)‖

Lr′
k

(Rd)
dtdt′ =

∫

R

k(t)‖ϕ(t, ·)‖
Lr′

k
(Rd)

dt.

Hölder inequality implies that
∫

R2

1

|t− t′|γ(r)+1
‖ϕ(t, ·)‖

Lr′
k

(Rd)‖ϕ(t′, ·)‖
Lr′

k
(Rd)dtdt

′

≤ ‖ϕ‖
Lq′ (R;Lr′

k
(Rd))

(
∫

R

|k(t)|qdt

)
1
q

.

On the other hand from Hardy-Littlewood-Sobolev inequality we have
∫

R

|k(t)|qdt ≤ C‖ϕ‖q

Lq′ (R;Lr′
k

(Rd))
.

Finally we deduce (4.53).
Assuming the condition (4.56), then (4.57) can be improved to

‖U(t)U ∗(t′)ϕ(t, ·)‖Lr
k
(Rd) ≤

C

(1 + |t− t′|)γ(r)+1
‖ϕ(t, ·)‖

Lr′
k

(Rd),

and now Young’s inequality gives the result when

1

q′
<

1

q
− γ(r),

or in other words when (q, r) is nonsharp admissible. This concludes the proof of
(4.53), (4.54) when (q, r) 6= P . In the same way we prove (4.55).
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2nd step: (q, r) = P . The idea is use that the estimate

∥

∥

∥

∥

∫

R

U∗(t)f(t, ·)dt

∥

∥

∥

∥

L2
k
(Rd)

≤ C‖f‖
L2(R;Lr′

k
(Rd))

with r =
2d+ 4γ

d+ 2γ − 2

is implied by the following fact. If B denotes the bilinear form defined by

B(f, g) =

∫

R2

〈U(t′)U∗(t)f(t, ·), g(t′, ·)〉L2
k
(Rd)dtdt

′

then B is a continuous on L2(R;Lr′

k (Rd)).

Let us decompose B into a sum of a simple operators Bj, namely

B(f, g) =
∑

j∈Z

Bj(f, g)

with

Bj(f, g) =

∫

2j≤|t−t′|≤2j+1

〈U(t′)U∗(t)f(t, ·), g(t′, ·)〉L2
k
(Rd)dtdt

′.

The key point of the proof is the following lemma:

Lemma 1. A neighborhood V of (r−1, r−1) exists such that, for any
(a, b) ∈ V , and j ∈ Z one holds

|Bj(f, g)| ≤ C2−jβ(a,b)‖f‖
L2(R;La′

k
(Rd))

‖g‖
L2(R;Lb′

k
(Rd))

with β(a, b) =

(

d

2
+ γ

)(

1 −
1

a
−

1

b

)

− 1.

P r o o f. Using rescaling, it suffices to prove the lemma for j = 0. First of
all, using (4.57), we get, for any a ≥ 2,

|B0(f, g)| ≤ C

∫

1≤|t−t′|≤2
‖U(t)U ∗(t′)f(t, ·)‖La

k
(Rd)‖g(t

′, ·)‖
La′

k
(Rd)dtdt

′

≤ C

∫

1≤|t−t′|≤2
‖f(t, ·)‖

La′
k

(Rd)
‖g(t′, ·)‖

La′
k

(Rd)
dtdt′.

By Cauchy-Schwarz inequality, we get, for any a ≥ 2,

(4.58) B0(f, g) ≤ C‖f‖
L2(R;La′

k
(Rd))‖g‖L2(R;La′

k
(Rd)).

Now, let us prove that, for any a > r, we have

(4.59) |B0(f, g)| ≤ C‖f‖
L2(R;La′

k
(Rd))

‖g‖L2(R;L2
k
(Rd)).
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By the definition of B0, we have

|B0(f, g)| =

∫

1≤|t−t′|≤2
〈U∗(t)f(t, ·), U ∗(t′)g(t′, ·)〉L2

k
(Rd)dtdt

′

=

∫

R

〈
∫

R

U∗(t)ft′(t, ·)dt, U
∗(t′)g(t′, ·)

〉

L2
k
(Rd)

dt′

with

ft′(t, ·) = 1{1≤|t−t′ |≤2}(t)f(t, ·).

Then, applying Cauchy-Schwarz inequality, we obtain

|B0(f, g)| ≤

∫

R

∥

∥

∥

∥

∫

R

U∗(t)ft′(t, ·)dt

∥

∥

∥

∥

L2
k
(Rd)

‖g(t′, ·)‖L2
k
(Rd)dt

′.

Using the estimate (4.54) with (q(a), a) sharp
d+ 2γ

2
-admissible and a < r, we

have

|B0(f, g)| ≤

∫

R

‖ft′‖Lq(a)′ (R;La′
k

(Rd))
‖g(t′, ·)‖L2

k
(Rd)dt

′.

By the definition of ft′ , this gives, with Fa′(t) = ‖f(t, ·)‖
La′

k
(Rd), that

|B0(f, g)| ≤ C

∫

R

(

∫

1≤|t−t′|≤2
Fa′(t)q(a)′dt

)
1

q(a)′

‖g(t′, ·)‖L2
k
(Rd)dt

′

≤ C

∫

R

(

1{1≤|τ |≤2} ∗ F
q(a)′

a′

)
1

q(a)′
(t′)‖g(t′, ·)‖L2

k
(Rd)dt

′.

Then, Cauchy-Schwarz inequality implies that

|B0(f, g)| ≤ C
∥

∥

∥
1{1≤|τ |≤2} ∗ F

q(a)′

a′

∥

∥

∥

1
q(a)′

L
2

q(a)′ (R)
‖g‖L2(R;L2

k
(Rd)).

As q(a)′ < 2 and 1{1≤|τ |≤2} ∈ L1(R), Young’s inequality implies that

∥

∥

∥
1{1≤|τ |≤2} ∗ F

q(a)′

a′

∥

∥

∥

L
2

q(a)′ (R)
≤ C‖Fa′‖

q(a)′

L2(R)
.

Thus, inequality (4.59) is proved. The lemma will then follow by interpolation
between (4.58) and (4.59). �
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End o f t h e p r o o f o f Th e o r em 3. Again we use the atomic de-
composition of f(t, ·) and g(t, ·). Then we have

f(t, x) =
∑

n∈Z

cn(t)fn(t, x) and g(t, x) =
∑

m∈Z

dm(t)gm(t, x).

Proceeding as in [8] and using that

d

2
+ γ − 1 =

d+ 2γ

r
,

we infer for any (a, b) ∈ V ,

|Bj(cnfn, dmgm)| ≤ C‖cn‖L2(R)‖dm‖L2(R)2
−jβ(a,b)2−n( 1

r′
− 1

a′ )2−m( 1
r′
− 1

b′ )

≤ 2(−j(d
2
+γ)+n)( 1

r
− 1

a)2(−j( d
2
+γ)+m)( 1

r
− 1

b )‖cn‖L2(R)‖dm‖L2(R).

Then, choosing a and b such that
(

−j

(

d

2
+ γ

)

+ n

)(

1

r
−

1

a

)

< 0 and

(

−j

(

d

2
+ γ

)

+m

)(

1

r
−

1

b

)

< 0,

we get that, if r < +∞, then

|Bj(cnfn, dmgm)| ≤ C‖cn‖L2(R)‖dm‖L2(R)2
−2ε|j( d

2
+γ)−n|2−2ε|j( d

2
+γ)−m|

≤ C‖cn‖L2(R)‖dm‖L2(R)2
−ε|j( d

2
+γ)−n|2−ε|n−m|.

This gives

|B(f, g)| ≤ C
∑

j,n,m

‖cn‖L2(R)‖dm‖L2(R)2
−ε|j(d

2
+γ)−n|2−ε|n−m|

≤ C
∑

n,m

‖cn‖L2(R)‖dm‖L2(R)2
−ε|n−m|.

Using weighted Cauchy-Schwarz inequality, we deduce that

|B(f, g)| ≤ C

(

∑

n

‖cn‖
2
L2(R)

)
1
2
(

∑

m

‖dm‖2
L2(R)

)
1
2

≤ C

(
∫

R

‖(cn(t))n‖
2
l2dt

)
1
2
(
∫

R

‖(dm(t))m‖2
l2dt

)
1
2

.

As r′ < 2, we have ‖(cn(t))n‖l2 ≤ ‖(cn(t))n‖lr
′ . Using the properties of atomic
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decomposition, we get

|B(f, g)| ≤ C

(
∫

R

‖(cn(t))n‖
2
lr

′dt

)
1
2
(
∫

R

‖(dm(t))m‖2
lr

′dt

)
1
2

≤ C‖f‖
L2(R;Lr′

k
Rd))

‖g‖
L2(R;Lr′

k
(Rd))

.

Theorem 3 is proved. �

5. Applications.

5.1. Strichartz-type Schrödinger estimates. The main application
of Theorem 3 is the following result:

Theorem 4. Suppose that d ≥ 1 and that (q, r) and (q1, r1) are
d+ 2γ

2
-

admissible pairs. If u is a solution to the problem

(5.60)

{

∂tu− i4ku = F (t, x), (t, x) ∈ [0, T ] × R
d

u|t=0 = g

for some data, g, F and time 0 < T <∞, then

(5.61) ‖u‖Lq([0,T ];Lr
k
(Rd)) + ‖u‖C([0,T ];L2

k
(Rd))

≤ C

(

‖g‖L2
k
(Rd) + ‖F‖

L
q′1 ([0,T ];L

r′
1

k
(Rd))

)

.

Conversely, if the above estimate holds for all g,F ,T , then (q, r) and (q1, r1) must

be
d+ 2γ

2
-admissible.

Remark. i) The case T = ∞ in (5.61) can be handled by the usual
limiting argument.

ii) We note that the Strichartz estimates for the Dunkl-wave equation
have been studied in [11].

P r o o f. We will prove the sufficient condition first. Indeed we assume
that (q, r) satisfy the condition of the theorem, and that u is a solution of (5.60).

We write u as

(5.62) u(t, x) = Ik(t)g(x) +

∫ t

0
Ik(t− s)F (s, x)ds, (t, x) ∈ [0, T ] × R

d,

where Ik(t) is the unitary operator defined by

(5.63) Ik(t)(v) :=
1

ck|t|
γ+ d

2

e−i(d+2γ) π
4
sgn tei

‖·‖2

4t

[

FD(ei
‖·‖2

4t v)
] ( ·

2t

)

.
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It is properly defined on L1
k(R

d) and L2
k(R

d). Below, we note by Φk the operator
defined by

(5.64) Φk(F )(t, x) :=

∫ t

0
Ik(t− s)F (s, x)ds.

The energy estimate

‖Ik(t)g‖L2
k
(Rd) = ‖g‖L2

k
(Rd)

follows from Proposition 8, and the estimate

‖Ik(t− s)g‖L∞
k

(Rd) ≤
C

|t− s|γ+ d
2

‖g‖L1
k
(Rd)

follows from Corollary 1. Replacing the C([0, T ];L2
k(Rd)) norm in the above by

the L∞([0, T ];L2
k(Rd)) norm, the all estimates will follow from Theorem 3.

We now address the question of continuity in L2
k. The continuity of Ik(·)g

follows from Proposition 2. To show that the quantity Φk(F ) is continuous in
L2

k, one can use the identity

Φk(F )(t+ ε) = Ik(ε)
[

Φk(F )(t) + Φk(1[t,t+ε]F )(t)
]

,

the continuity of Ik(ε) as an operator on L2
k, and the fact that

‖1[t,t+ε]F‖
L

q′1 ([0,T ];L
r′
1

k
(Rd))

→ 0 as ε→ 0.

We finish the proof of necessity as in [8]. �

Corollary 3. Let I be an interval of R (bounded or not). If (q, r) and

(q1, r1) are
d+ 2γ

2
-admissible pairs, then there exits a constant C such that

‖Ik(·)g‖Lq (R;Lr
k
(Rd)) ≤ C‖g‖L2

k
(Rd), ‖Φk(F )‖Lq(I;Lr

k
(Rd)) ≤ C‖F‖

L
q′
1 (I;L

r′1
k

(Rd))
.

Proposition 11. If p ∈ [2,∞] and t 6= 0, then Ik(t) maps Lp′

k (Rd)
continuously to Lp

k(R
d) and

(5.65) ‖Ik(t)g‖L
p
k
(Rd) ≤

1

(c2k|t|
2γ+d)(

1
2
− 1

p
)
‖g‖

L
p′

k
(Rd)

.
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P r o o f. It follows from Corollary 1 and Proposition 8 that

‖Ik(t)g‖L∞
k

(Rd) ≤
1

ck|t|
(γ+ d

2
)
‖g‖L1

k
(Rd) and ‖Ik(t)g‖L2

k
(Rd) = ‖g‖L2

k
(Rd).

The general case is obtained by interpolation between the cases p = 2 and
p = ∞. �

Proposition 12. Let I be an interval of R (bounded or not). Assume

2 < r <
2d+ 4γ

d+ 2γ − 2
(2 < r ≤ ∞ if d = 1) and let (q1, r1) ∈ (1,∞)2 satisfy

1

q1
+

1

r1
= (d+ 2γ)

(

1

2
−

1

r

)

.

Then Φk(F ) ∈ Lq1(I;Lr
k(Rd)) for every F ∈ Lr′1(I;Lr′

k (Rd)). Moreover, there
exits a constant C independent on I such that

(5.66) ‖Φk(F )‖Lq1 (I;Lr
k
(Rd)) ≤ C‖F‖

L
r′1 (I;Lr′

k
(Rd))

,

for every F ∈ Lr′1(I;Lr′

k (Rd)).

P r o o f. By density, we need to prove (5.66) for F ∈ Cc(I;S(Rd)). It
follows from (5.65) that

‖Φk(F )(t, ·)‖Lr
k
(Rd) ≤

∫ t

0

1

(c2k|t− s|2γ+d)(
1
2
− 1

r
)
‖F (s, ·)‖

Lr′
k

(Rd)
ds,

and so (5.66) is an immediate consequence of Proposition 10. �

5.2. Well-posedness results for NLDS. In this subsection, Strichartz
estimates are a powerful tool to prove local and global well-posedness results for
the nonlinear Dunkl-Schrödinger equations. We begin with the model case of the
pure power nonlinearity, i.e., we consider a Cauchy problem of the form

(5.67)

{

∂tu(t, x) − i4ku(t, x) = F (u(t, x)), (t, x) ∈ I × R
d

u|t=0 = g ∈ L2
k(R

d),

where d ≥ 2, u is complex-valued function defined on I×R
d and the nonlinearity

F ∈ C(C,C) satisfies

(5.68) F (0) = 0, |F (u) − F (v)| ≤ C(|u|p + |v|p)|u− v|, p > 0.

We recall the definition of well-posedness.



Dispersion phenomena in Dunkl-Schrödinger equation and applications 51

Definition 7. We say that the problem (5.67) is locally well-posed in
L2

k(R
d) if, for every g in L2

k(R
d), one can find time T > 0 and a unique solution

u ∈ C([−T, T ], L2
k(R

d))
⋂

X to (5.67) which depends continuously on the data,
with X some additional Banach space. The equation is globally well-posed if these
properties hold with T = ∞.

Theorem 5. If p ∈

(

0,
4

d+ 2γ

]

, then for every g ∈ L2
k(R

d), there exist

Tmax, Tmin ∈ (0,∞] and a unique, maximal solution u of (5.67) belonging to

C((−Tmin, Tmax);L
2
k(R

d))
⋂

Lq
loc((−Tmin, Tmax);L

r
k(Rd))

for every sharp
d+ 2γ

2
-admissible pair (q, r). Moreover, the following properties

hold:

(i) There exists δ0 > 0 such that if g ∈ L2
k(R

d) satisfies ‖g‖L2
k
(Rd) ≤ δ0,

then the corresponding maximal L2
k-solution is global, i.e., Tmax = Tmin = ∞.

Moreover, u belongs to Lq(R;Lr
k(R

d)) for every sharp
d+2γ

2
-admissible pair (q, r).

(ii) u depends continuously on g in the following sense: If gn → g in
L2

k(R
d) and if un denotes the solution of (5.67) with g replaced by gn, then un → u

in Lq((−S, T ), Lr
k(Rd)) for every sharp

d+ 2γ

2
-admissible pair (q, r) and every S,

T satisfying −Tmin < −S < 0 < T < Tmax.

P r o o f. We proceed in three steps.

Step 1: (Local existence). For the existence, we use a fixed point argu-
ment.

• If p ∈

(

0,
4

d+ 2γ

)

, fix T,M > 0 and set

XM :=
{

u ∈ Lq((−T, T );Lp+2
k (Rd))

⋂

L∞((−T, T );L2
k(Rd)) :

‖u‖L∞((−T,T );L2
k
(Rd)) + ‖u‖

Lq((−T,T );Lp+2
k

(Rd)) ≤M
}

,

where (q, p + 2) is sharp
d+ 2γ

2
-admissible pair. Note that by Theorem 4 and

Corollary 3, this space is never empty. Moreover, it is easily checked that XM is
a complete metric space when equipped with the distance

d(u, v) = ‖u− v‖L∞((−T,T );L2
k
(Rd)) + ‖u− v‖

Lq((−T,T );Lp+2
k

(Rd))
.
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For simplify, we put

‖v‖XM
= ‖v‖L∞((−T,T );L2

k
(Rd)) + ‖v‖

Lq((−T,T );Lp+2
k

(Rd))

if v ∈ XM . Take g ∈ L2
k(R

d). We wish to find conditions on T and M which
imply that Hk, given by

Hk(u)(t, ·) := Ik(t)g(·) +

∫ t

0
Ik(t− s)F (u(s, ·))ds,

is a strict contraction on XM . By our nonlinearity assumption (5.68) and Theo-
rem 4 the following estimate holds

(5.69) ‖Hk(u)‖XM
≤ C

(

‖Ik(·)g‖XM
+ ‖u‖p+1

L
(p+1)q′1 ((−T,T );L

(p+1)r′
1

k
(Rd))

)

.

with (q1, r1) a sharp
d+ 2γ

2
-admissible couple.

• If p ∈

(

0,
4

d+ 2γ

)

, we take r1 = p + 2 and (q1 = q, p + 2) a sharp
d+ 2γ

2
-

admissible pair such that q > p + 2. Then applying Corollary 3 and Hölder’s
inequality in time we obtain

(5.70) ‖Hk(u)‖XM
≤ C‖g‖L2

k
(Rd) + CT

q−p−2
q ‖u‖p+1

Lq((−T,T );Lp+2
k

(Rd))
.

Hence for every u ∈ XM one has

‖Hk(u)‖XM
≤ C‖g‖L2

k
(Rd) + CT

q−p−2
q Mp+1.

Choosing M = 2C‖g‖L2
k
(Rd), we see that if T is sufficiently small (depending on

‖g‖L2
k
(Rd)) then Hk(u) ∈ XM for all u ∈ XM . Moreover, arguing as above we

obtain

(5.71) d(Hk(u),Hk(v)) ≤ CT
q−p−2

q Mpd(u, v),

for all u, v ∈ XM . Thus Hk is a contraction in XM provided T is small enough,

more precisely if T ≤

(

1

2CMp

)
q

q−p−2

. Hence Hk has a fixed point u, which is the

unique solution of (5.67) in XM , and there exist Tmax, Tmin ∈ (0,∞] such that u
belongs to

C((−Tmin, Tmax);L
2
k(R

d))
⋂

Lq
loc((−Tmin, Tmax);L

r
k(Rd))
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for the sharp
d+ 2γ

2
-admissible pair (q, p+ 2), with

Tmax = sup{T > 0, there exists a solution of (5.67) on [0, T ]},

Tmin = sup{T > 0, there exists a solution of (5.67) on [−T, 0]}.

Moreover, from Theorem 4 and by the argument we use to prove (5.70), it is easy

to see that u ∈ Lq1

loc((−Tmin, Tmax);L
r1
k (Rd)) for every sharp

d+ 2γ

2
-admissible

pair (q1, r1).

• If p =
4

d+ 2γ
, let g ∈ L2

k(R
d). Since Ik(·)g ∈ Lp+2(R;Lp+2

k (Rd)) , by Corol-

lary 3, we have

(5.72) ‖Ik(.)g‖Lp+2((−T,T );Lp+2
k

(Rd)) → 0 as T ↓ 0.

Therefore there exist M,T > 0 such that

(5.73) ‖Ik(.)g‖Lp+2((−T,T );Lp+2
k

(Rd)) < M.

Let us consider the set

XM :=
{

u ∈ Lp+2((−T, T );Lp+2
k (Rd)) : ‖u‖

Lp+2((−T,T );Lp+2
k

(Rd)) ≤ 2M
}

.

It is easily checked that XM is a complete metric space when equipped with the
distance

d(u, v) = ‖u− v‖
Lp+2((−T,T );Lp+2

k
(Rd)).

As above, by Theorem 4, the following estimate holds

‖Hk(u)‖Lp+2((−T,T );Lp+2
k

(Rd))

≤ C
(

‖Ik(.)g‖Lp+2((−T,T );Lp+2
k

(Rd))
+ ‖u‖p+1

L(p+2)((−T,T );L
(p+2)
k

(Rd))

)

,

where we have taken q = q1 = r = r1 = p+ 2. Hence, for every u ∈ XM :

‖Hk(u)‖Lp+2((−T,T );Lp+2
k

(Rd)) ≤ C‖Ik(·)g‖Lp+2((−T,T );Lp+2
k

(Rd)) + CMp+1.

From relations (5.72) and (5.73) above, we see that if T is small enough, then
we can choose M such that Hk(u) belongs to XM for all u ∈ XM . As above we
prove also that Hk is a contraction on the space XM provided T is sufficiently
small. Thus Hk has a fixed point u, which is the unique solution of (5.67) in XM .
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Moreover, from Theorem 4 it is easy to see that there exist Tmax, Tmin ∈ (0,∞]
such that

u ∈ C((−Tmin, Tmax);L
2
k(R

d))
⋂

Lq1

loc((−Tmin, Tmax);L
r1
k (Rd)),

for every sharp
d+ 2γ

2
-admissible pair (q1, r1).

Step 2: (Uniqueness). We first note that the uniqueness is a local prop-
erty, so that we need only to establish it on possibly small intervals. To see this,
we argue for positive times, the case for negative times being the same. Suppose
that u1, u2 ∈ C([0, T ];L2

k(Rd))
⋂

Lq
loc((0, T );Lr

k(Rd)) are two solutions of (5.67)

and assume that u1(t) 6= u2(t) for some t ∈ [0, T ]. Let t0 = inf
{

t ∈ [0, T ], u1(t) 6=

u2(t)
}

. Since both u1 and u2 are continuous into L2
k(R

d), this definition makes

sense and u1(t0) = u2(t0) = χ. Moreover, the curves U1(t) = u1(t + t0) and
U2(t) = u2(t+ t0) both satisfy the equation w = Ik(·)χ+Φk(F (w)) on [0, T − t0].
As above we apply Theorem 4 and the argument of proof of (5.70), to obtain that
for all t ∈ [t0, T ],

‖u1 − u2‖Lq((t0 ,t);Lp+2
k

(Rd))

≤ C(t− t0)
4−(d+2γ)p

4

2
∑

i=1

‖ui‖
p

Lq((t0 ,t);Lp+2
k

(Rd))
‖u1 − u2‖Lq((t0 ,t);Lp+2

k
(Rd))

,

where

(

q =
4(p+ 2)

p(d+ 2γ)
, p+ 2

)

is a sharp
d+ 2γ

2
-admissible pair. For t > t0, but

sufficiently close to t0, it follows that

C(t− t0)
4−(d+2γ)p

4

2
∑

i=1

‖ui‖
p

Lq((t0 ,t);Lp+2
k

(Rd))
< 1,

and so that ‖u1 − u2‖Lq((t0 ,t);Lp+2
k

(Rd))
= 0. This contradicts the choice of t0, and

thus proves that u1(t) = u2(t) for all t ∈ [0, T ].
Step 3: (Global existence). As above, by Theorem 4 the following Stri-

chartz estimate holds

(5.74) ‖Hk(u)‖X ≤ C
(

‖g‖L2
k
(Rd) + ‖F (u)‖

Lq′ (R;Lr′
k

(Rd))

)

,

with (q, r = p+ 2) a sharp
d+ 2γ

2
-admissible and

X = C(R;L2
k(R

d))
⋂

Lq(R;Lr
k(R

d)) the Banach space with norm

‖v‖X = ‖v‖Lq(R;Lr
k
(Rd)) + ‖v‖C(R;L2

k
(Rd)).
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By our nonlinearity assumption (5.68) and Hölder inequality we have

(5.75) ‖Hk(u)‖X ≤ C
(

‖g‖L2
k
(Rd) + ‖u‖p+1

Lq (R;Lr
k
(Rd))

)

.

As above, we have proved that Hk maps the Banach space X into itself, and
moreover the ball XM into itself, provided M and ‖g‖L2

k
(Rd) are small enough,

where

XM =
{

u ∈ X : ‖u‖X < M
}

.

We assume now that ui ∈ X is such that

‖ui‖X < M,

with M small enough, and also that ‖g‖L2
k
(Rd) < δ. By (5.75) we note that

‖Hk(u)‖X ≤ Cδ + CMp+1 < M,

provided M , δ are such that CM p <
1

2
and Cδ <

M

2
. We have also

‖Hk(u1) −Hk(u2)‖X ≤ C‖F (u1) − F (u2)‖Lq′ (R;Lr′
k

(Rd))

≤ C‖u1 − u2‖Lq (R;Lr
k
(Rd))

(

‖u1‖
p

Lq (R;Lr
k
(Rd))

+ ‖u2‖
p

Lq (R;Lr
k
(Rd))

)

≤ ‖u1 − u2‖XM
2CMp ≤

1

2
‖u1 − u2‖XM

provided M is so small that 2CM p <
1

2
. Thus, if initial data are small enough

i.e. ‖g‖L2
k
(Rd) < δ, then the map Hk is a contraction and this implies that

there exists a unique solution u(t, x) of the Cauchy problem (5.67) such that

u(t, x) ∈ Lq(R;Lr
k(R

d)) with a couple (q, r) which is sharp
d+ 2γ

2
-admissible

pair when 1 < p ≤
4

d+ 2γ
. As observed above one can see easily that this is the

unique solution in u(t, x) ∈ C(R,L2
k(R

d)) with small initial data in L2
k . Thus

we have proved the global existence as claimed. The proof of the continuous
dependence uses the same idea as in [9]. �

Proposition 13 (Continuation principle). We assume that F is as in
Theorem 5. If g ∈ L2

k(R
d) and if u is the maximal solution of (5.67), then we

have:

i) If p ∈

(

0,
4

d+ 2γ

)

and Tmax < ∞ (respectively, Tmin < ∞), then

‖u(t)‖L2
k
(Rd) → ∞ as t ↑ Tmax (respectively, as t ↓ Tmin).
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ii) If p =
4

d+ 2γ
and Tmax < ∞ (respectively, Tmin < ∞), then

‖u‖Lq((0,Tmax);Lr
k
(Rd)) = ∞ (respectively, ‖u‖Lq((−Tmin,0);Lr

k
(Rd)) = ∞) for every

sharp
d+ 2γ

2
-admissible pair (q, r) with r ≥ p+ 2.

P r o o f. i) If p ∈

(

0,
4

d+ 2γ

)

, it follows from Step 1 of the proof of The-

orem 5 and the uniqueness property that Tmax − t ≥

(

1

4C2‖u(t, ·)‖p

L2
k
(Rd)

)
q

q−p−2

.

Suppose now that Tmax < ∞, then ‖u(t)‖L2
k
(Rd) ≥

(

1

4C2(Tmax − t)
q−p−2

q

)
1
p

. As

q > p + 2, we obtain ‖u(t)‖L2
k
(Rd) → ∞ as t ↑ Tmax. One shows by the same

argument that if Tmin <∞, then ‖u(t)‖L2
k
(Rd) → ∞ as t ↓ Tmin.

ii) If p =
4

d+ 2γ
, we show the blowup alternative by contradiction. Sup-

pose that Tmax < ∞ and that ‖u‖
L(p+2)((0,Tmax);L

(p+2)
k

(Rd))
< ∞. Let 0 ≤ t ≤

t+ τ < Tmax. It follow that

Ik(τ)u(t, ·) = u(t+ τ, ·) −

∫ τ

0
Ik(τ − s)F (u(t+ s, ·))ds.

By Theorem 4 we deduce that there exists C such that

‖Ik(·)u(t)‖L(p+2)((0,Tmax−t);L
(p+2)
k

(Rd))
≤ ‖u‖

L(p+2)((t,Tmax);L
(p+2)
k

(Rd))

+ C‖u‖p+1

L(p+2)((t,Tmax);L
(p+2)
k

(Rd))
.

Therefore for t close enough to Tmax,

‖Ik(·)u(t)‖L(p+2)((0,Tmax−t);L
(p+2)
k

(Rd))
≤
M

2
.

By Step 1 in the proof of Theorem 5, u can be extended beyong Tmax, which is
a contradiction. This shows that ‖u‖

L(p+2)((0,Tmax);L
(p+2)
k

(Rd))
= ∞. Let now (q, r)

be a sharp
d+ 2γ

2
-admissible pair such that r > p + 2. It follows from Hölder’s

inequality that for any T < Tmax,

‖u‖
L(p+2)((0,T );L

(p+2)
k

(Rd))
≤ ‖u‖λ

L∞((0,T );L2
k
(Rd))‖u‖

1−λ
Lq((0,T );Lr

k
(Rd))

,

with λ =
2(r − p− 2)

(p+ 2)(r − 2)
. Letting T ↑ Tmax, we obtain ‖u‖Lq((0,Tmax);Lr

k
(Rd)) = ∞.
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One shows by the same argument that if Tmin <∞, then ‖u‖Lq((−Tmin,0);Lr
k
(Rd)) =

∞. �

Corollary 4. Let F be as above and Re(uF (u)) = 0. Then in the subcri-

tical case 0 < p <
4

d+ 2γ
the problem (5.67) is globally well-posed for arbitrary

L2
k data.

P r o o f. A simple calculation shows the conservation of charge (i.e.,
‖u(t)‖L2

k
(Rd) = ‖g‖L2

k
(Rd) for |t| ≤ T ). Replacing g by u(t0) for any t0 ∈

(−Tmin, Tmax), we obtain that ‖u(t)‖L2
k
(Rd) is locally constant, hence constant.

The global existence follows from the blowup alternative. �

5.3. Scattering for NLDS. In this subsection, we consider the nonlinear
Dunkl-Schrödinger equation

(5.76) ∂tu(t, x) − i4ku(t, x) = F (u(t, x)), (t, x) ∈ R × R
d,

with F satisfying (5.68). Let t0 ∈ R, and consider (5.76) together with the initial
data:

(5.77) Ik(−t)u(t)|t=t0 = g.

We use the convention: if t0 = +∞ (resp. t0 = −∞), then we denote g = u+

(resp. g = u), and solving (5.76)-(5.77) means that we construct wave operators.
If t0 = 0, then we denote g = u0, and (5.76)–(5.77) is the standard Cauchy
problem.

In all these cases, we seek mild solutions to (5.76)–(5.77), that is, we solve

(5.78) u(t, ·) = Ik(t)g(·) +

∫ t

t0

Ik(t− s)F (u(s, ·))ds =: Ak(u)(t).

Actually, using our general methods [5], it is possible to prove scattering for small
L2

k(R
d) data. Thus we can prove:

Proposition 14. Let d ≥ 2, p =
4

d+ 2γ
and t0 ∈ R. There exists δ0

such that if g ∈ L2
k(R

d) with ‖g‖L2
k
(Rd) < δ0, then the unique global solution u(t)

has the scattering property: there exists u± ∈ L2
k(R

d) such that

‖u(t) − Ik(t)u±‖L2
k
(Rd) → 0 as t→ ±∞.

If t0 = +∞ (resp. t0 = −∞), then u+ = g (resp. u− = g).
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P r o o f. According to the proof of Theorem 5, for p =
4

d+ 2γ
and small

initial data in L2
k, there exists a unique solution u of (5.76)–(5.77) such that

u ∈ C(R;L2
k(R

d))
⋂

Lq(R;Lr
k(R

d)) with a couple (q, r) which is sharp
d+ 2γ

2
-

admissible. Scattering then follows from the Cauchy criterion. Indeed, using
Theorem 4, for t1 ≤ t2, we have

‖Ik(−t2)u(t2, .) − Ik(−t1)u(t1, ·)‖L2
k
(Rd) =

∥

∥

∥

∥

∫ t2

t1

Ik(−s)F (u(s, ·))ds

∥

∥

∥

∥

L2
k
(Rd)

≤ C‖u‖p+1
Lq([t1,t2];Lr

k
(Rd))

for all (q, r) sharp
d+ 2γ

2
-admissible. Notice that the right-hand side goes to

zero when t1, t2 → ±∞ since u ∈ Lq(R;Lr
k(R

d)) for all couples (q, r) therefore

sharp
d+ 2γ

2
-admissible. The result follows easily, since the group Ik is unitary

on L2
k(R

d). �

In the following we prove that if F (u) = −iu|u|p with 0 < p ≤
2

d+ 2γ
then wave operator does not exist.

Proposition 15. Let d ≥ 2, 0 < p ≤
2

d+ 2γ
and T > 0. Let u ∈

C(]−∞,−T ];L2
k(Rd)) be a solution of (5.76) such that there exists u− ∈ L2

k(R
d)

and

‖u(t) − Ik(t)u−‖L2
k
(Rd) → 0 as t→ −∞.

Then u ≡ 0 and u− ≡ 0.

P r o o f. Let χ ∈ D(Rd) and t1 ≤ t2 ≤ −T : by assumption

〈χ, Ik(−t2)u(t2, .) − Ik(−t1)u(t1, ·)〉 = −i

〈

χ,

∫ t2

t1

Ik(−s)|u|
puds

〉

= −i

∫ t2

t1

〈Ik(s)χ, |u|
pu〉ds
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goes to zero as t1, t2 → −∞. But for s→ −∞ we have

Ik(s)χ ∼ C(k)
e

i‖x‖2

4s

|s|γ+ d
2

FD(χ)
( x

2s

)

,

u(s) ∼ Ik(s)u− ∼ C(k)
e

i‖x‖2

4s

|s|γ+ d
2

FD(u−)
( x

2s

)

.

Therefore,

〈Ik(s)χ, |u|
pu〉 ∼

C(k)

|s|(γ+ d
2
)p
〈FD(χ), |FD(u−)|pFD(u−)〉.

This function of s is not integrable, unless

〈FD(χ), |FD(u−)|pFD(u−)〉 = 0.

Since χ ∈ D(Rd) is arbitrary, this means that FD(u−) ≡ 0 ≡ u−. The assumption
and the conservation of mass then imply u ≡ 0. �
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[18] K. Trimèche. Paley-Wiener theorems for Dunkl transform and Dunkl
translation operators. Integral Transform. Spec. Funct. 13 (2002), 17–38.

[19] K. Yajima. Existence of solutions for Schrödinger evolution equations.
Comm. Math. Phys. 110 (1987), 415–426.

H. Mejjaoli

Department of Mathematics

Faculty of Sciences of Tunis

CAMPUS 1060 Tunis, Tunisia

e-mail: hatem.mejjaoli@ipest.rnu.tn

Received August 18, 2008

Revised December 12, 2008


