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ABSTRACT. In this paper, we study the Schrédinger equation associated
with the Dunkl operators, we study the dispersive phenomena and we prove
the Strichartz estimates for this equation. Some applications are discussed.

1. Introduction. Strichartz estimate is a very interesting topic in the
field of dispersive-type partial differential equations. It has wide applications in
many other topics, such as well-posedness of initial value problems, regularity
of solutions, large-time behavior of solutions, and so on. This topic has a long
history starting with seminal paper of Segal [14] and generally goes under the
name of Strichartz inequalities after the fundamental paper of Strichartz [15]
drawing the connection to the restriction theorems of Tomas and Stein. Standard
references on the subject are [6] and [8].
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In this paper we consider the Dunkl operators T3, j = 1,...,d, which
are the differential-difference operators introduced by Dunkl in [2] and called
Dunkl operators in the literature. These operators are very important in pure
Mathematics and in Physics. They provide a useful tool in the study of special
functions with root systems (see [3]).

Dunkl in [4] (see also [7]) has studied a Fourier transform Fp associated
with the Dunkl operators, called Dunkl transform defined by

Fpf(z)= o K(—iz,y) f(y)wi(y)dy,
where K represents is the Dunkl kernel and wy, is a weight function.

The aim of this paper is to study the Schrodinger equation associated with
the Dunkl operators (henceforth called by the Dunkl-Schrédinger equation). Also,
the paper establishes the Strichartz-type Schrodinger equation estimates with
applications. More precisely, we prove that, for all g in S’(R%), the following
problem

ou—1ANgu = 0
S
( { Ujt=0 = 9

d

(where Ag = z:TJ2 is the Dunkl Laplace operator) has a unique solution u in
j=1
S'(R¥+1) given by
w(-) = — 7 el Fagnt il [TD(eiH%‘tQQ)} (—) , t#0.

cplt|’ 2 2t
We also study the solution of this problem when g belongs to S(R?), &'(R%),
or the Dunkl Sobolev spaces H ;(Rd). As consequences, we establish the dis-
persive estimates for the Dunkl-Schrodinger equation. Moreover, Strichartz-type
Schrodinger estimates are proved and both problems of well posedness and the
scattering theory associated with the non linear Dunkl-Schrodinger equations are
described.

The paper is organized as follows. In Section 2, we recall the main results
about the harmonic analysis associated with the Dunkl operators. We introduce
in Section 3 the Dunkl-Schrédinger equation. In the same section, we prove that
the problem (S) has a unique solution if the initial data g belong to S’(R?), and
we present properties of solution when the initial data g belong respectively to
the spaces S(R?), £'(R?), and the Dunkl-Sobolev spaces. In Section 4, motivated
by the work of Keel and Tao [8] we describe the dispersion phenomena associated
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for the Dunkl-Schrodinger equation. Finally, Section 5 is devoted to some appli-
cations. Namely, we establish the Strichartz estimates for the Dunkl-Schrédinger
equation. Besides, we introduce a class of nonlinear Schrédinger equations as-
sociated with the Dunkl operators. In this regard, we study local and global
well-posedness and scattering theory associated with these equations.

Throughout this paper, C indicates a positive constant not necessarily
the same in each occurrence.

2. Preliminaries. This section gives an introduction to the theory of
Dunkl operators, Dunkl transform and Dunkl convolution. Main references are
2,3, 4,7, 12, 13, 16, 17, 18].

We consider R? with the Euclidean scalar product (-, -) and ||z||=+/(x, z).
For o in RN\ {0}, let o, be the reflection in the hyperplane H, C R? orthogonal
to «, i.e.

(o, 7)
leefl®

A finite set R ¢ R¥\{0} is called a root system if R NR.a = {a, —a}
and 0,R = R for all & € R. For a given root system R the reflection o,,a € R,
generates a finite group W C O(d), called the reflection group associated with R.
We fix a positive root system R, = {a € R /(a, 3) > 0} for some 3 € R\ U H,.

a€R
We will assume that (o, ) =2 for all &« € Ry. A function k : R — C on a root

system R is called a multiplicity function if it is invariant under the action of the
associated reflection group W. For abbreviation, we introduce the index

(2.2) y=qk)= Y ko).

aERL

(2.1) oa(x) =2 —2

Throughout this paper, we will assume that the multiplicity is non-nega-
tive, that is k(«) > 0 for all « € R. We write k > 0 for short. Moreover, let wy
denote the weight function

(2.3) we(a) = J] Newz),
a€ERy

which is invariant and homogeneous of degree 2vy. We introduce the Mehta-type
constant

(2.4) o = ( /R exp(— e P )i() daz)l.
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Notations. We denote by

— C(RY) the space of continuous functions on R¢.

— CP(R?) the space of functions of class C? on R¢.

— CP(RY) the space of bounded functions of class C?.

— &(RY) the space of C*-functions on R?.
— S(R?) the Schwartz space of rapidly decreasing functions on R
D(R?) the space of C*°-functions on R? which have compact support.

— S’ (RY) the space of temperate distributions on R?. It is the topological
dual of S(R?).

The Dunkl operators 7}, j = 1,...,d, on R? associated with the finite
reflection group W and multiplicity function k are given by

— f(oa(2)) 1/mpd
2. T; k(a R%).
( 5) ]f( ) axj Z <a,a:> ) f € C ( )
aERL
Some properties of the T}, j = 1,...,d, are given in the following list:
For all f and g in C'(RY) with at least one of them W-invariant, we have
(2.6) Ti(fg9) = (T f)g+ f(Tig), j=1,....d

For f in C}(RY) and g in S(RY) we have
@D [ D@l do= = [ f@To@ee de §=1...d

We define the Dunkl-Laplace operator on R? by

(2.8)
d
Akf(l') _ ZTYJQf(:L‘) _ Af(.’E) +2 Z k(O[) |:<V{OE$£; Oé> _ f(l') <_afx(>0—2a($)>
Jj=1 a€Rt ’ ’
For y € R?, the system
(29) { T]u(m,y) = ij([E,y), Jj= 1,...,d,
’U,(O,y) = 1,

admits a unique analytic solution on R, which will be denoted by K (z,y) and
called Dunkl kernel. This kernel has a unique holomorphic extension to C? x C¢.
The Dunkl kernel possesses the following properties:

i) For z,t € C%, we have K(z,t) = K(t,2); K(2,0) =1 and K(\z,t) =
K(z,At) for all X € C.
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ii) For all v € N% 2 € R? and z € C? we have
IDYK (2,2)] < ||z|" exp(|l]| | Rez]),
with

||
DY 9

=——— and |V|=v1+-+1g
2T 09 i

In particular for all z,y € R%:
K (—iz,y)| < 1.

iii) The function K (x,z) admits for all z € R? and z € C? the following
Laplace type integral representation

(2.10) Kie.2) = [ o),

where 1, is a probability measure on R? with support in the closed ball B(0, ||z||)
of center 0 and radius ||z|| (see [12]).

The Dunkl intertwining operator V}, is the operator from C(R?) into itself
given by

(2.11) Vil (2) = /R F)dpaly), forallz € R,

where p, is the measure given by the relation (2.10) (see [12]). In particular, we
have

K(x,z) = V(e"®)(x), forallz e R? andze C

In [3], Dunkl proved that Vj is a linear isomorphism from the space of homoge-
neous polynomials P,, on R? of degree n into itself satisfying the relations
0
Vi, = Vi
8$j7

V(1) = 1.

=1,....d
(2.12) JE e

Trimeche has proved in [17] that the operator Vj can be extended to a
topological isomorphism from £(R?) into itself satisfying the relations (2.12).

Notation. We denote by Lﬁ(Rd) the space of measurable functions on
R such that

1
p
g = ([ @Pat i) <t it 1<p<so,

[fllLemay = ess sup [f(z)] < +oo.
zeR
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The Dunkl transform of a function f in Lk(Rd) is given by
(2.13) Fo(f)ly) = f(2)K (—iy, x)wy(z)dz, forally € RZ
Rd

In the following we give some properties of this transform (see [4] and [7]).
i) For f in L}(R?) we have

(2.14) HfD(f)HLzo(Rd) < HfHLi(Rd)'
ii) For f in S(R?) we have
(2.15) Fo(T; f)(y) = iy;Fp(f)(y), forallj=1,...,dandy € R

Proposition 1. The Dunkl transform Fp is a topological isomorphism
from S(R?) onto itself. If we put for f in S(R?)

2
== Ck

(2.16) Fp(f)y) =

d
= Py, yeR!

we have

FoFp = FoFp = Id.

Proposition 2. i) Plancherel formula for Fp.
For all f in S(R?) we have

e[ @R o= [ 1E©Ra©) ds

4’Y+% R4
ii) Plancherel theorem for Fp.

The renormalized Dunkl transform f — 2_(7+%)ck]:D(f) can be uniquely extended
to an isometric isomorphism on L2(R%).

Definition 1. Let y be in RY. The Dunkl translation operator f — Ty f
is defined on S(R?) by

(2.18) Fo(ryf)(z) = K (iz,y) Fp(f)(z), forall z € R%

Proposition 3. i) The operator 1,, y € R, can also be defined on E(R?)
by

(2.19) 7y f (@) = (Vi)a(Vi)y (Vi) ()@ +y)),  forallz € RY.
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(See [18]).
i) If f(x) = F(||=||) in E(RY), then we have

7 f (@) = Vi |[F(/TalP+ TolP + 20 )| (@), foralle € R.

(See [13]).
Using the Dunkl translation operator, we define the Dunkl convolution
product of functions as follows (see [16] and [18]).

Definition 2. The Dunkl convolution product of f and g in S(R?) is the
function f *xp g defined by

(2.20) f*pg(z) = /Rd 7o f (=) 9(y)wr(y)dy, forall z € RY.

This convolution is commutative and associative and satisfies the follow-
ing properties. (See [16]).

Proposition 4. i) For f and g in D(R?) (resp. S(RY)) the function
f *p g belongs to D(R?) (resp. S(RY)) and we have

(2.21) Fo(f*p 9)(y) = Fp(f)y)Fp(9)(y), forally e R™

1 1 1
i) Let 1 < p,q,r < o0, such that —+ — —— = 1. If f is in Li(Rd) and
p q T

g 1s a radial element of LZ(Rd), then fxpg € LZ(Rd) and we have

(2.22) 1 *D 9ll Ly may < If e ey 91l Lo may -

Definition 3. The Dunkl transform of a distribution T in S'(R?) is
defined by

(2.23) (Fp(r),¢) = (1, Fp(¢)), forall ¢ € S(R?).

Proposition 5. The Dunkl transform Fp is a topological isomorphism
from S'(R%) onto itself.

For f in L} (R%), we define the tempered distribution T} associated with
f by

(224 1) = | F@otnle)dn, 6 € SE).
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Definition 4. i) The Dunkl transform of a distribution 7 in S'(R%) is
defined by

(2.25) (Fp(1),0) = (1, Fp(9)), € SRY).

ii) We define Fp on S'(R?) by similar formula.
iii) The Dunkl transform of f in LY (RY) denoted also by Fp(f), is defined

by
(Fp(f).0) = (Fp(Ty),¢) = (Tr. Fp(9)), ¢ € SRY).
Thus from (2.24) we have
(2.26) Fo(£).0) = [ F@)Fo(@))an(e)ds

Definition 5. The Dunkl convolution product of a distribution S in
S'(R?) and a function ¢ in S(R?) is the function S xp ¢ defined by

(2.27) Vo eRY  Sxpo(x)= (S, ,0(x)).

Proposition 6. i) Let f be in LY(R?), p € [1,+00] and ¢ € S(RY). Then
the distribution Ty xp ¢ is given by the function f xp ¢. If we assume that f is
even for d =1 and radial for d > 2, then Ty xp ¢ € LY(RY).

ii) Assume that f € LY(RY), p € [1,+00] is even for d =1 and radial for
d > 2 and ¢1,¢9 in S(RY). Then we have

(2.28) (Ty %D ¢1, ¢2) = (Tf, b1 %D P2),

where h(z) = h(—x).
iii) Let f € LY(RY), p € [1,400] be even for d = 1 and radial for d > 2
and ¢ € S(RY). Then we have

(2.29) Fp(Ty *p ¢) = Fp(Ty) Fp().

Proof. i) Let f be in LY(R?), p € [1,+0c] and ¢ € S(RY). We have
from (2.24)

Va e Rd, Tf *D (;5(33) = <(Tf)y77-m¢(_y)>’
= [xp d(z).
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Now we assume that f is even for d = 1 and radial for d > 2. Applying Proposi-
tion 4 ii), we obtain that T xp ¢ € LY (RY).

ii) Let f € LY(RY), p € [1,400] be even for d = 1 and radial for
d > 2 and ¢1,¢9 in S (Rd). Then from Fubini-Tonelli’s theorem the function
(z,y) — f(—y)7201(y)da(x) is integrable on R? x R? with respect to the measure

wi(y)dy wg(z)dz.

Thus from Fubini’s theorem we obtain

(Ty*p ¢1,02) = /Rd » J(=y) 7201 (y)p2(x)wi. (y)dywy,(z)dx

= [ s ([ mo@anais )

= /Rd F(=)é1 %D 2 (y)wi(y)dy

= (Tj,¢1+#p ba).

iif) Let f € LY (R?), p € [1,400] be even for d = 1 and radial for d > 2
and ¢ in S(R?). Then from i) and the relations (2.28)(2.21) we have for any ¢

belongs to S(R?)

(Fo(Tr+p 9),p) = (Ty*p ¢, Fp(e)) = (Tf,¢*p Fply)

)
= Ty, Fo(Fo(9)e)) = (Fp(Tf)Fp(e),#)-

Thus we have the result. O

Let 7 be in S’(R?). We define the distributions Tit,j=1,...,d, by

(2.30)
Thus we deduce

(2.31)

(Tym, ) = —(r,Tjp), forallyy € S(RY).

(Agm, ) = (1, M), forallyy € S(RY),

These distributions satisfy the following properties

(2.32)
(2.33)

Fp(Tjr) = ay;Fp(r), j=1,....d.
Fo(Lwr) = —lyl*Fp(r).

Below, if f € L} (R?), the distribution T given by the relation (2.24), is

noted by f.
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3. Dunkl-Schrodinger equation.

Notations. We denote by:

— D'(R%) the space of distributions on R%. Tt is the topological dual of
D(RY).

— H} (R%) the Dunkl-Sobolev spaces defined for s € R, by

{ves®): 1+ e Fp) e LR},

We provide this space with the scalar product

(s = [ (04 161 Fol) OFp 0N e
and the norm
Hqu,k = <u’u>s,k'

— Hjy (R = {ue D'(RY) : gu e HYRY), Vo e DRY}.
— C(R; Hi(RY)) the space of continuous functions from R into Hj(R?).

— E(R; S(R?)) the space of C* functions from R into S(R9).
— &(R; S’ (RY)) the space of C™ functions from R into S’(R?).

We consider the following equation where the unknown is a function u
(with complex values) of (t,z) € R x R?

(S){itu—zﬁku i 0
[t=0 = g

Theorem 1. Let g be in S'(RY). There exists a unique solution u in
E(R; S'(RY)) such that

(s { ou — iApu 0, in D'(Rx R%)
Ujt=0 = g

Proof. First we prove the existence. For ¢t € R, we put
(3.34) uy = Fple e £ (g)).

From (2.25) we have

(ut, ¢) = (Fplg), e M Fp ().
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Thus we deduce that u; € £(R; S’ (R?)), and Fp(ug) € E(R; S’ (RY)).
We recall that u is defined by

() = [ s wlt, ), 6 € SR,
R
Then for any 9 in S(R?*1), we have from (2.31)

(Opu —ilgu, ) = —(u, 0 +ilpth) = — /R<Utvat¢<ta ) Filg(t,-))dt
= _/R<‘7:D(ut)7-7:—D(at1/1(t7') Fin(L,-))) dt

=~ [P (), @0~ il IPFB,)) dr.
R
But
o (e MV Fpy(t,)) = [0 — illE)?) Fpu (e, &) | e e,
Thus

O — iDgu, ) = — /R (Fo(g).00 (e VP Fpu(t, ) ) di

_ _/Rat (Fola), e 1P Fpp(t, ) ) di = 0.

Thus we have proved that u is solution of (.5).
Now we prove the uniqueness, or equivalently that u = 0 is the unique
solution of problem

ou—ilgu = 0, in E(R;S'(RY))
Ujt=0 =

Indeed for all ¥ in S(R% 1) we have

0 = (Bpu — iDyu, ) = — /R<ut, (8 + ilp)(t, -))dt.
But
(0, ) = (600, )+ G, D, ),

hence

(3.35) oz—/R%@t,W, -)>dt+/

R

[l () — i, Da(t, )t
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As p(—o0,-) = (400, ) = 0, we then obtain
(3.36) [ [0t = itus, S, ]t =o

Moreover, using that FD(ugl)) = (Fp(uz))M and the relations (3.36), (2.15) we
deduce

[ [ Fote. ) + itFplwn). |- PFp(e. )] de =0,

Vip € S(RIH),

(3.37)

If we take 1 such that Fpi(t, €) = el p(€)x(t) with ¢ in S(RY), y in S(R),
we obtain

/R[«]:D(Ut))(l),eit”'290>+i<.7:p(ut),]~H2eit”'290> X()dt =0,

Vx € S(R).

(3.38)

Thus we deduce that

% (Fp (), M2 ) = (Fp (ue)) D, P 0y 1+ il Fp(u), || - |21 )
(3.39)

=0, YyecSRY.

Hence for all ¢ in S(R?), the function t — (Fp(uy), e’ p) is constant.
Finally, since ug = 0 then

(Fp(uy), e’ o) = (Fp(ug), @) =0, Vt € R; Vi € S(RY).

From this we deduce that ©w =0. O

Proposition 7. Let g be in S(R?). The solution u given by Theorem 1
belongs to £(R; S(RY)) and it is given by :

2

(3.40) u(t,w) = —E5 | K iz, )e I Fp (g)(Ewr(€)de.
4773 JRA

Proof. Let g be in S(R?). Formula (3.34) gives that u; belongs to S(R?)
and that u.(z) is equal to the second member term of (3.40). Thus it is easy to
see that the function (,x) s us(x) is > on R x RY. Below we will write u(t, )
instead of w(x).
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Moreover from Proposition 1 and the relations (2.9), (2.6), (2.7) we have,

C2 . —it 2. o
(i) Thult,z) = /R YK (i, eI (1) Fp g) (€ wn (€) e
C2 . 2
= [ K(in, €)(—Te) [ i6)“ Fn (9)(€) | wn (€)d
47 T3 JRd
(3.41) - / K (i, €)hyu(t, €)1 0y (6)de,
Rd

where h,, , is an element of £(R; S(R?)).
Using (3.41) and dominated convergence theorem it is easy to see that
the solution u belongs to £(R; S(R?)). O

Proposition 8. Let g be in Hj] (RY), s € R, and let the solution u given
by Theorem 1 belong to C(R; Hi(RY)). Forp in N, (ugp)) € C(R; HE_QP(R‘{)) and
we have

e, lglls.f, VE € R
(3.42) { (p)s °
lug Ns—2pp < Cpllgllsk, V€ R; Vp e N™.

A

Proof. Formula (3.34) gives that, for all ¢ in R,
Fp(u) = e 1" Fp(g)

Thus it is easy to deduce (3.42).
Now we will prove that for p in N, (u§p)) belongs to C(R; H; *P(R?)).
Indeed, let (t,,), be a sequence that converge to ¢y in R. We have

o 2 . 2
e, — o l13 5 = /Rd(l L+ E)2) et 6 — omitollEl® 2| 7 (g)(€) Peon (€)dE.
The dominate convergence theorem gives that lim |jus, — ugl|2, = 0. On the
n—oo ’

other hand, from (3.34) we have

. . 2

Fou”) = (=illglPye "I Fn(g)

From this we obtain

o) — ) 3, = /R Syl — et 2 g 717 (g) (€)oo (€) e

n

Thus the dominated convergence theorem gives the result. O
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Theorem 2. Let g be in S'(R?). The solution u given by Theorem 1 can
be written, fort #£ 0, as
1 112 M

) — —i(d+27y) T sgnt i'=— i o
(3.43) w () RSt Fontei []—'D(e % g)] (%).

Proof. First we prove this formula for g € D(R?). Indeed, the relation
(3.34) can be written as

(3.44) u(t,) = [Fple %) «p g] ().
Now we are going to calculate
Fp (e MIENRy,

From [13, p. 2424], we have for any positive a

. 1 I-12
Fp(elEl?y = et
crpa) 2

Let us observe that for z € C, z = |z|e?® with positive real part, by taking the

1 10 :
branch z2 = |z|2¢'2, the two functions

— 2 1 1112
z— Fpe %) and 2 —e 4z
CkZ’y_'_?

are holomorphic on the domain Rez > 0. As they coincide on the real axis,
they coincide in the whole domain. Now, if ¢ positive, considering a sequence of
zn with positive real part which tends to it, we get, as the Dunkl transform is
continuous on tempered distributions that

F (o itlel? 1 iy il
D(@ ) = ——7e et A,
th’y+§
In the case when ¢ is negative, we have, following the same way, that
1

ck\tP*%

2
I-1

Fp (e itlel*y = eid+2N) g pitg

Thus, we have

12
]-"_D(e_it”ﬁHQ) _ 1 _ e_i(d+2ry)%sgnt€i%'
etz
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Hence, from (3.44) we obtain
1

et

2
LIl

efi(dJrQ'y)%sgnt( it *p g) (LE)

e’L

(3.45) u(t,z) =

On the other hand, since g € D(R?), we have

L2 —ix izl +lyl?
(¢ ng) 0= [ 5 (Gh0) ™ gtwantuiay
Rd t

= 1t f’D(e At g) 5 ) -
Hence
1 i(d+2y) T sgnt i 1212 2 z
(3.46) u(t,z) = 7€ 459 et []:D(e a g)] (—) .
ck’t”H-Q 2t

Thus formula (3.43) is proved in the case g € D(RY).

We assume now g is in S’(R9). There exists (g,), in D(R?) such that g,
converge to g in S'(R%). Let u, be the solution of problem (S) with initial data
gp- From Proposition 7, we have u, € £(R; S(R?)) and according to the first case,
uy, is given by formula (3.46). Consider the right member of (3.46).

One has

im im : ! (od
e g, —e 4 g in S(RY),
therefore
12 12

Fp(et gp) o Ay — Fp(e' 3t g) o Ay in S’(Rd),

. o x R el
where A; : R¢ — R? is the application z — % As the multiplication by e* 4 is

continuous &’ (R?) — S’(R?), we deduce that the right-hand side of (3.46) taken
with g, converges to the same expression with g, in S’ (R4). On the other hand,
according to the uniqueness in Theorem 1, the solution u, of the problem (S),
with initial data g, is given by (up): = ]:—D(e*"t”'HQ]:D(gp)), as Fp(gp) converges
to Fp(g) in 8'(R?) and e~ I* F5(g,) converges to e~I'* Fp(g) in &'(RY), (u,);
converges to u; in S'(RY) where u is the solution of (S) with initial data g.
Therefore the formula (3.46) implies (3.43). O

Corollary 1. If g is in Li(Rd), then we have the dispersion estimate:

1
—— ll9ll Ly ma)-
2

(3.47) [t e ey <
CEDE e
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Proof. The previous Theorem and relation (2.14) give the result. O

Notation. We denote by &'(R%) the space of distributions on R? with
compact support.
Another important application of Theorem 1 is the following.

Corollary 2. i) If g € £&'(R?) and u is the solution of problem (S), then,
us € E(RY), for all t # 0.
ii) Let g(x) = e~ with A > 0. Then

1 d _ifoidym
us = —Nt2e70+3)5g,
4N Ck

Ll 2
Proof. i) If g € &'(RY), then e’%g € &'(R?), and from Paley-Wiener
Theorem for the distribution with compact support (see [18]) we have

Ll 2
Fp (e’utg) € £(RY) and formula (3.43) gives i).

ii) For t = oo e have

Then

This gives the result. O

Remark. From the previous Corollary we remark that the regularity
of solution, for ¢ # 0 depends on the behavior at infinity of the initial data and
not of its regularity. This phenomenon is known under the name of distribution
to infinite speed.

Proposition 9. Let g be in L%(Rd) and we assume that, for all p € N%,
we have xtg € Lz(Rd). Then for t # 0, u; € E(RY), where u is the solution of
problem (S).

Proof. By a simple calculation we prove that
[0y — il @y +2itT;] =0, j=1,...,d,
where [A, B] = AB — BA.
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By iteration of the previous identity we obtain
(3.48) [0y — il\p, (@ + 2itT)*] = 0, ¥V € N<,

Moreover, using Proposition 8 we obtain that the solution u of system (.5) belongs
to C(R; L (R%)). Next, we consider V,(¢,z) = (x + 2itT)"u(t,z). We have V,, is
an element of C(R;S’(R%)) and V,,(0,-) belongs to LZ(R?). On the other hand
using the identity (3.48) we obtain (0; — iA)V,, = 0. Hence from Proposition 8
we deduce that,

(3.49) V, € C(R; L{(RY)), u € N

As

(3.50) (x 4 2T = Z P, 5(t, 2)T? + (2it)MTH,
1BI<Iul—1

where P, g is a polynomial in (¢,2). Then using the relations (3.49),(3.50), the
fact that u is in C'(R; L2(R%)) and by induction on p we obtain that T4'u; belongs
to L2 (R?), for ¢ # 0.

"Thus, by Theorem 3.3 of [7] we obtain

up € Hlsoc,k(Rd)? s € Na 4 7é 0.

As ﬂ Hfoc’k(Rd) C £(R?) (Theorem 3.4 of [7]), the result is proved. O
s>0

4. Dispersion phenomena.

Notations. For any interval I of R (bounded or unbounded) and a Ba-
nach space X, we define the mixed space-time L9([; X') Banach space of (classes
of) measurable functions u : I — X such that [ul| a(7,x) < oo, with

1

sy = ([ lute)lde) ", if1< <o

[ulleezx) = esssupllu(t,)lx.
tel
C(I; X) the space of continuous functions I — X. When I is bounded, C'(I; X)
is a Banach space with the norm of L>°(/, X).
C.(I,S(R%)) is the space of continuous functions from I into S(R?) com-
pactly supported in I, equipped with the topology of uniform convergence on the
compact subintervals of I.
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d-+2
+ ,y—admissible

Definition 6. We say that the exponent pair (q,r) is
d—+ 2
i 7) # (2,00,1) and

1 d+2yv  d+2y
4.51 - < .
( ) q + 2r 7 4

if g,r > 2, <qm

+ 2~

d
If equality holds in (4.51), we say that (q,7) is sharp -admissible, otherwise

we say that (q,r) is nonsharp -admissible. Note in particular that when

d+ 2v > 2 the endpoint
P2 2d + 4y
d+2y—2

d+ 2y

s sharp -admissible.

Theorem 3. Let (U(t))ier be a bounded family of continuous operators
on L2(RY) such that, we have

* 4/
(4.52) [U@U(E) f || Lo (may < m”f”%(ﬂ@)-
Then, the estimates
(4.53) ||U(t)U0”Lq(R;L;(Rd)) < CHUOHLi(Rd)

IN

(4.54) ’ ClIfIl Lo (R;LY (R9))

/ U*(t)f(t,-)dt
R

L3 (RY)

hold for any sharp -admissible exponent (q,r), where ¢’ ,r" are the conjugate
exponents of ¢ and r and U* is the adjoint operator of U.

2
7 _admissible exponent pairs (q,r) and (q1,71)

Moreover, for any sharp

we have

(4.55)

/R UU* () ()t

<O goo
La(R;LT (RY)) (R;L,H (RY))

Furthermore, if

C
S iy

(4.56) 1U()U* () f|| Lo (may <
(1+[t—s]) 2
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d+ 2
then (4.53), (4.54) and (4.55) hold for all i 7 _admissible (q,r) and (q1,71).
Before to demonstrate this theorem, we need the next result:

Proposition 10 (Hardy-Littlewood-Sobolev inequality). Let § be in
10,d[. Then, if p and q are in (1,+00) such that
1 1
4+ é = 4+ 1’
p d q
then, a constant C' exists such that

1177 % fll oy < ClUF Nl 2o gay-

Proof of Theorem 3. We divide the proof of this theorem in two

steps:
1%t step: (g,r) # P. We have
U@l = s [ U@l aE i)z
peB" JRIT

= sup (o, | UMt
peBD" R
where B} denotes the set of elements of D(R*"!,C) such that the norm
-l o (R:L7' (Ra)) 15 less than or equal to 1, and U* is the adjoint operator of U.
g
Thus, using Cauchy-Schwarz inequality, we deduce that

/ U* (1)t )t
R

HU@)UOHLQ(R;L’I;(Rd)) < HUOHL%(Rd) Sugr
weB’

i L2(R4)

This duality argument simply says that inequality (4.54) implies (4.53). In order
to prove (4.54), let us write

As (U(t))ter is a bounded family of operators on Li(Rd), by using the dispersive
estimate (4.52) we get, thanks to the interpolation theorem,

2

/ U*(t)p(t,)dt
R

= /<U*(t)90(ta'),U*(t/)go(t/,-)>L2(Rd)dtdt/
L2(RY) R2 k

= /RQ<U<t/)U*(t)(p(t,-),(p(t/,-)>Li(Rd)dtdt/.

* C
(4.57) [U@U™ ()t ')HL;(Rd) < m\\s@(t, ')HL’I;/(Rd)v
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2
for all r € [2, 00], where (1) = <g +’y> <1 - _) —1.
r
In the sharp v + §—admissible case we have

1 1
———:—’}/7“.
qg q (r)

The relation (4.57) and Hoélder’s inequality give

We put

!/
,*

2
c
. /R g oo 190y @l )l oy dtdt'
k

/ U*(t)p(t,-)dt
R

1 / /
k(t) :/Rm”@(tr)h;’md)dt-
Hence
1
/RQ WW(@ )HL;;’ (Rd) H90<t/7 ) HLZ/ (Rd)dtdt/ = /R k<t> H‘P(ta )HLZ/ (Rd)dt.

Hoélder inequality implies that

1
/R2 m”@(ﬂ Ny @yl aydtdt’

1
q
< ”QOHL‘Z/(R;LZ'(Rd)) </R |k3(t)|th) .

On the other hand from Hardy-Littlewood-Sobolev inequality we have

[ O < Ul

Finally we deduce (4.53).
Assuming the condition (4.56), then (4.57) can be improved to

N C
”U(t)U (t/)so(t’ ')HLZ(RO‘) < (1 + ‘t — t/’)y(r)_}_l ”(p(t, )HL;’ (R4)

and now Young’s inequality gives the result when

1 1

- < - =),

q¢ q )
or in other words when (g, r) is nonsharp admissible. This concludes the proof of
(4.53), (4.54) when (g,7) # P. In the same way we prove (4.55).
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274 step: (¢,r) = P. The idea is use that the estimate

is implied by the following fact. If B denotes the bilinear form defined by

B(f.g) = [ (U@ OF(E). 00 ) syt

2d + 4~

< CHfHL?(R;L};/(Rd)) with r = m

/ U*(t)f(t,-)dt
R

L2 @)

then B is a continuous on L?(R; L} (R%)).
Let us decompose B into a sum of a simple operators B, namely

B(f,9) =Y Bj(f.9)

JEZL

with
Bi(f.9) = / | UL gt )) 2 eyt
2 <|t—t!|<2i+1 F

The key point of the proof is the following lemma:

Lemma 1. A neighborhood V of (r=1,r~') ewists such that, for any
(a,b) € V, and j € Z one holds

1B; (f:9) < C27 N [l o 1 ) 91l 2 sy ey

with B(a,b) = (g—i-”y) (1—2—%) —1.

Proof. Using rescaling, it suffices to prove the lemma for j = 0. First of
all, using (4.57), we get, for any a > 2,

Bo(f,9)| < C U OU* ()£ (Mg ey |9 )| ot eyt
I<[t—t|<2 F

IN

¢ ||f(ta ')HLz’(Rd)”g(tlv ')"L%'(Rd)dtdt/.

1<]t—t/]<2

By Cauchy-Schwarz inequality, we get, for any a > 2,
(458) Bo(f, g) < CHf”l?(R;LZ/ (R4)) ”g||L2(R;L‘,:/ (R%))"
Now, let us prove that, for any a > r, we have

(4'59) ’Bo(f, g)’ < CHfHL2(R;L;:’(Rd))HQHLQ(R;L%(J}@))'
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By the definition of By, we have

|Bo(f,9)| /<|t t/|<2<U*(t)f(t,-),U*(t’)g(t’, )) 12 (mey dtdt’

_ /R < /R U* (1) ft/(t,-)dt,U*(t’)g(t’,-)>L2(Rd) d’

fo(t, ) = La<p—p<ay () f (L, ).

Then, applying Cauchy-Schwarz inequality, we obtain

with

‘BO f g ’ </ H/ ft’ H Hg(t/,'>HL%(Rd)dt/.
L2(RY)

d+ 2
Using the estimate (4.54) with (¢(a),a) sharp Rt

have

-admissible and a < r, we

[Bo(f9)] S/RHft’HLQ(G)'(R;LZ/(Rd))Hg(tla')HL%(Rd)dt/'

By the definition of fy, this gives, with Fi/(t) = || f(¢,-)| ;. (R4 that
k
1
, a(a)’ , ,
Bofal < ¢ [ ([ R @) g e
R 1<|t—t'|<2
<

1
c /R (Terstrr<ay + FE ) @)llgt's ) g uey e
Then, Cauchy-Schwarz inequality implies that

_1
q(a)’
2

|Bo(f,9)l <€ H1{1§\r|§2} « Fo
La(@) (R)

H9HL2(R;L% (Rd))-

As q(a)’ <2 and 1{<jrj<0y € L'(R), Young’s inequality implies that

Hl{lslﬂsz} « } 2 <O |45

La@’ (R)

Thus, inequality (4.59) is proved. The lemma will then follow by interpolation
between (4.58) and (4.59). O
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End of the proof of Theorem 3. Again we use the atomic de-
composition of f(¢,-) and g(t,-). Then we have

ft,x) = ch(t)fn(t,x) and g¢(t,x) Z A, () g (t, )

nez MEZ

Proceeding as in [8] and using that

4 1=
2 /y - r 9

we infer for any (a,b) € V,

1By (cnfsdgm)| < Cllea| 2 ldmll 2 gy2 97 P2 (o mar )27l =ar)

ﬁl»—‘

< 9(=i(5+)+n) (3 =2) o (=i (5+7)+m) (3 -
Then, choosing a and b such that
(d 1 1 (d 1 1
—Jjl=z+7)+n)|{-——] <0 and —Jlz+7y)+m)|-—-) <0,
2 roa 2 r b
we get that, if r < +o00, then

|Bj(Cnfnsdmgm)| < Cllenll g2 lldm| 2 272 F (5 +7) 222 (5+7) —m|

—<li(5+7)—nlg—eln—ml

< Cllenllp2mlldm 2 )2
This gives
—elj(¢ —n|o—¢e|ln—m
’B(fug)’ S C Z HCnHL2(R)HdeL2(R)2 5’.7(2+’Y) ’2 6' |
7,n,m
< O lleallzwylldmll 2y2~" .

Using weighted Cauchy-Schwarz inequality, we deduce that
1 1
2 2
c (Z HCRH%Z(R)> (Z Hdm”%Z(R)>

e ([ et ledt) ([ 1 mupdt)é.

As r" < 2, we have |[(cn(t))nlliz < [[(cn(t))nll;~- Using the properties of atomic

IN

1B(f,9)|

IN
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decomposition, we get

IN

o ([ ewtt) mﬂﬁ) ([ mmﬂﬁ)l

CHfHLz R;L} R )HQHL? R;LY (R4))*

|B(f,9)|

IN

Theorem 3 is proved. O

5. Applications.
5.1. Strichartz-type Schrodinger estimates. The main application
of Theorem 3 is the following result:
d—+ 2y
R

Theorem 4. Suppose that d > 1 and that (q,r) and (q1,7m1) are
admissible pairs. If u is a solution to the problem
{ ou —ilpu = F(t,x), (t,x) € [0,T] x R?
Ujt=0 = g

for some data, g, F and time 0 <T < oo, then

(5.60)

(5.61) HUHL‘I([O,T];L’,;(Rd)) + HUHC([O,T};Li(Rd))

< / .
_C@m%WW“HMMMMHM)

Conversely, if the above estimate holds for all g,F,T, then (q,r) and (q1,71) must
d+2
be

il -admissible.

Remark. i) The case T = oo in (5.61) can be handled by the usual
limiting argument.

ii) We note that the Strichartz estimates for the Dunkl-wave equation
have been studied in [11].

Proof. We will prove the sufficient condition first. Indeed we assume
that (g, r) satisfy the condition of the theorem, and that u is a solution of (5.60).
We write u as

(5.62) u(t,z) = Ip(t)g(z) + /Ot Ti(t — s)F(s,x)ds, (t,z) € [0,T] x RY,

where Zj(t) is the unitary operator defined by

663 T)) = — e @it ()| ()
. et '
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It is properly defined on Lk(Rd) and L? (RY). Below, we note by ®, the operator
defined by

t

(5.64) OL(F)(t, z) = / Ii(t — s)F (s, x)ds.
0

The energy estimate

HIk(t)gHL%(Rd) = HQHL%(W)
follows from Proposition 8, and the estimate
C

H_'Z'k(t — S)gHLzo(Rd) < _’t B s‘7+% HgHLi(Rd)

follows from Corollary 1. Replacing the C([0,7]; L?(R%)) norm in the above by
the L>°([0,7; L2 (R?)) norm, the all estimates will follow from Theorem 3.

We now address the question of continuity in L?. The continuity of Zy(-)g
follows from Proposition 2. To show that the quantity ®;(F') is continuous in
L%, one can use the identity

O (F)(t +¢) = Ti(e) | Pr(F) (1) + Pr(Lit et F)(H) |

the continuity of Z;(¢) as an operator on L2, and the fact that

||1[t,t+a]1[7HLq/1([Oﬂ;L:1 w1y 0 as &— 0.

We finish the proof of necessity as in [8]. O

Corollary 3. Let I be an interval of R (bounded or not). If (q,r) and

V—admissible pairs, then there exits a constant C' such that

(q1,71) are

ITC)olln gy < Clollgpear, 196 E) incrzgwn < OIF gy ot

Proposition 11. Ifp € [2,00] and t # 0, then Ji(t) maps LZ/(Rd)
continuously to LY (R?) and
1

(e =)

(5.65) 1Fk()gl r (ray < HQHLQ’(Rd)'
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Proof. It follows from Corollary 1 and Proposition 8 that

~ 1 ~
19k (£)gl Lee (ray < WHQHL}JR‘U and [Tk ()9l 2 ey = 9/l L2 ra)-
The general case is obtained by interpolation between the cases p = 2 and

p=o00. O

Proposition 12. Let I be an interval of R (bounded or not). Assume

2d + 4
2<r< d++'y—72 2<r<ooifd=1)and let (q1,71) € (1,00)? satisfy
1 1 1 1
St —droy(2-2).
Q1+7’1 (+7)(2 7’)

Then ®(F) € L (I; LL(RY) for every F € L (I Lz/(Rd)). Moreover, there
exits a constant C independent on I such that

(566) ||(bk(F)HLq1 (I;L};(Rd)) S CHFHLTll (];L::/(Rd))’

for every  F e L"\(I; L} (RY)).

Proof. By density, we need to prove (5.66) for F € C.(I;S(R?)). Tt
follows from (5.65) that

1
Ci|t B s|27+d)(%’%) | F(s, ‘)HL;’(Rd)dS,

t
I2uE)E e < [

0 (

and so (5.66) is an immediate consequence of Proposition 10. O

5.2. Well-posedness results for NLDS. In this subsection, Strichartz
estimates are a powerful tool to prove local and global well-posedness results for
the nonlinear Dunkl-Schrédinger equations. We begin with the model case of the

pure power nonlinearity, i.e., we consider a Cauchy problem of the form
(5.67) ou(t,r) —ilpu(t,z) = F(u(t,z)), (t,z) €I xR?
. Ujt=0 = g€ L(RY),

where d > 2, u is complex-valued function defined on I x R¢ and the nonlinearity
F € C(C,C) satisfies
(5.68) F(0)=0, |F(u)—F)|<C(lu’+ |vfP)lu—n2|, p>0.

We recall the definition of well-posedness.
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Definition 7. We say that the problem (5.67) is locally well-posed in
L%(Rd) if, for every g in L%(Rd), one can find time T > 0 and a unique solution
u € C([-T,T),L2(RY)) N X to (5.67) which depends continuously on the data,
with X some additional Banach space. The equation is globally well-posed if these
properties hold with T = oo.

Theorem 5. Ifp € < }, then for every g € Lz(Rd), there exist

0 4
Td+ 2y
Tiax, Tmin € (0,00] and a unique, mazimal solution u of (5.67) belonging to

C((=Tmins Tmax); Li (Rd)) m quoc((_Tminv Tnax); L, (Rd))

for every sharp
hold:

-admissible pair (q,r). Moreover, the following properties

(i) There exists 69 > 0 such that if g € L2(RY) satisfies ||g”Li(Rd) < 0o,
then the corresponding mazximal Li—solution 18 global, i.e., Thax = Tmin = 00.

d+2
Moreover, u belongs to L4(R; L (R%)) for every sharp i -admissible pair (q,r).

(73) u depends continuously on g in the following sense: If g, — g in
L%(Rd) and if u, denotes the solution of (5.67) with g replaced by g,,, then u, — u

d
in LI((=S,T), L% (RY)) for every sharp
T satisfying —Tmin < =S <0< T < Thax-

2
Y _admissible pair (q,r) and every S,

Proof. We proceed in three steps.
Step 1: (Local existence). For the existence, we use a fixed point argu-

ment.

oprE( ),ﬁxT,M>Oandset

0.2
"d+ 2y

Xop = {u € LI(=T,T); LY (RD) () LX((~T, T); L} (RY)) -

el zoe (- rryzz ey + il pagrmysrze2ay < M},

2
where (q,p + 2) is sharp ’y—admissible pair. Note that by Theorem 4 and

Corollary 3, this space is never empty. Moreover, it is easily checked that X is
a complete metric space when equipped with the distance

d(u,v) = [lu — ’UHLOO((—T,T);L%(Rd)) + flu— ’UHLq((_T7T);LZ+2(Rd))'
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For simplify, we put
HUHXA{ = H'UHL‘X’((fT,T);Li(Rd)) + HUHLq((fT’T);Li‘FQ(Rd))

if v € Xp. Take g € LZ(R?). We wish to find conditions on T and M which
imply that Hy, given by

Hi(u)(t,) = Tu(t)g(") + /0 Tit — 5)F(u(s, ))ds,

is a strict contraction on Xjs. By our nonlinearity assumption (5.68) and Theo-
rem 4 the following estimate holds

) p+1
(669 [Hu(w)lx, <C (um Ml + 17 o e (Rd))) -

d+2
with (q1,71) a sharp + 7 _admissible couple.

+ 2y

d
e lfpe <0, we take r1 = p+ 2 and (¢1 = ¢q,p + 2) a sharp

4
d+2v)’
admissible pair such that ¢ > p + 2. Then applying Corollary 3 and Hoélder’s
inequality in time we obtain

a—p—2 1
(5.70) i@l < Cllgllzgga + CT" 0l v g

Hence for every w € Xy one has

g—p—2

[ He(u)l|x,, < CHgHLi(Rd) +CT ¢ MPH,

Choosing M = 2C¢g|| L2 (Rd), We see that if T is sufficiently small (depending on
1912 (ma)) then Hi(u) € X for all u € Xp. Moreover, arguing as above we
obtain

q—p—2

q

(5.71) d(Hy,(w), Hy(v)) < CT "0 MPd(u, v),

for all u,v € X;. Thus Hy, is a contraction in Xj; provided T is small enough,

1 \a»z
2C MP
unique solution of (5.67) in Xy, and there exist Tiax, Tmin € (0, 00] such that u
belongs to

more precisely if T < . Hence H;. has a fixed point u, which is the

C((=Tmins Tmax); Li (Rd)) m quoc((_Tminv Tnax); L, (Rd))
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+ 2y

for the sharp -admissible pair (¢, p + 2), with

Tiax = sup{T > 0, there exists a solution of (5.67) on [0, 7},

Tmin = sup{T > 0, there exists a solution of (5.67) on [—T',0]}.

Moreover, from Theorem 4 and by the argument we use to prove (5.70), it is easy

d+2
((=Tmin, Tmax); Ly (R9)) for every sharp +

to see that u € quolc -admissible
pair (q1,71).

o Ifp = ,let g € LE(RY). Since Zy(-)g € LPH2(R; LPT*(R?)) | by Corol-

d+ 2y
lary 3, we have

(5.72) HIk(')gHLP“((—T,T);L’,;“‘Q(Rd)) —0 as T]0.
Therefore there exist M,T > 0 such that

(5.73) HIk(-)QHLp+2((,T,T);L§+2(Rd)) < M.

Let us consider the set

Xop = {u € DT 1) FP(RD)  ull s <2M}.

(=T\T);Ly T2 (R4))

It is easily checked that Xj; is a complete metric space when equipped with the
distance

d(u,v) = flu— U|’LP+2((—T,T);LZ+2(R11))'

As above, by Theorem 4, the following estimate holds

[ Hr(w) HLp+2((_T7T);Lz+2(Rd))

p+1
< O(IT Ol oo g @y + 0y iy )

where we have taken ¢ = g1 = r = r; = p + 2. Hence, for every u € X:
1M osa 2@y < OWTRON s rrysaz ey + OMPT

From relations (5.72) and (5.73) above, we see that if 7' is small enough, then
we can choose M such that Hy(u) belongs to X, for all u € Xjs. As above we
prove also that Hj is a contraction on the space Xj,; provided T is sufficiently
small. Thus Hy, has a fixed point u, which is the unique solution of (5.67) in X ;.
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Moreover, from Theorem 4 it is easy to see that there exist Tiax, Tmin € (0, 00]
such that
1 € C((~Tnin, Tmax); L (RY)) [ L

loc

((_Tminv Tnax); Lzl (Rd))a

2
for every sharp 7 _admissible pair (q1,71).
Step 2: (Uniqueness). We first note that the uniqueness is a local prop-
erty, so that we need only to establish it on possibly small intervals. To see this,
we argue for positive times, the case for negative times being the same. Suppose

that uy,us € C([0,T]; LZ(]Rd) N LL ((0,T); LE(R?)) are two solutions of (5.67)
and assume that u; (t) # ua(t) for some ¢t € [0, 7). Let tp = inf {t € [0,T], ui(t) #

ug(t)}. Since both u; and uy are continuous into L?(R?), this definition makes

sense and uj(tg) = wa(ty) = x. Moreover, the curves U;(t) = ui(t + tg) and
Us(t) = ug(t+tg) both satisfy the equation w = Z(-)x + ®x(F(w)) on [0, T —to).
As above we apply Theorem 4 and the argument of proof of (5.70), to obtain that
for all t € [to, T7,

Hul - u2||Lq ((to, t)'Lp+2(Rd))
(d+ )P
< C(t - to) Z ” l”Lq (to.t) Lp+2(Rd) ”Ul - UQHLQ((to,t);Lg"'Z(Rd))’

4 2
where (q = ﬂ,

p(d + 2v)
sufficiently close to tg, it follows that

4- (d+ )P
C(t —to) ENAmtmyHW» <1,

and so that |ju; — “2||LQ((t0,t);L’,;+2(Rd)) = 0. This contradicts the choice of ¢y, and

thus proves that uj(t) = ug(t) for all ¢ € [0, T].
Step 3: (Global existence). As above, by Theorem 4 the following Stri-
chartz estimate holds

(5.74) 1@l < € (gl g + 1F@ o gy )

d+2
p+ 2> is a sharp + 7 _admissible pair. For t > tg, but

-admissible and

d+2
with (¢, = p+ 2) a sharp + 2
X = C(R; L3(R)) N LY(R; L} (R?)) the Banach space with norm

Jollx = H”HLQ(R;L;(W)) + HUHC(R;Li(Rd))'
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By our nonlinearity assumption (5.68) and Hoélder inequality we have

(5.75) 1Ha)llx < € (Hgllza gy + Nl e,y ey ) -

As above, we have proved that H; maps the Banach space X into itself, and
moreover the ball X, into itself, provided M and ||g|| 12 (rd) are small enough,
where

Xar = {u eX:|ulx < M}.
We assume now that u; € X is such that
sl x < M,

with M small enough, and also that “g”Li(Rd) < 0. By (5.75) we note that
| Hr(u)||x < C6+CMPT < M,
: 1 M
provided M, § are such that CMP < 3 and Cd < - We have also
[Peur) — Hiwa)x < CHF () — Flus)l o ey
< CHul - u2||L‘1 (R; L7 (R4)) (”ul”iq(R;L;(Rd)) + HUQHqu (R;Lz(Rd)O
1
< llur — u2llx, 20MP < Slur — 2| xy

1
provided M is so small that 2CMP < 3 Thus, if initial data are small enough

ie. HgHLi(Rd) < ¢, then the map Hj is a contraction and this implies that
there exists a unique solution u(t,x) of the Cauchy problem (5.67) such that

d
u(t,z) € LY(R; LY (R?)) with a couple (g,r) which is sharp

-admissible

4
pair when 1 < p < i1y As observed above one can see easily that this is the

v
unique solution in u(t,z) € C(R,L?(R%)) with small initial data in L? . Thus

we have proved the global existence as claimed. The proof of the continuous
dependence uses the same idea as in [9]. O

Proposition 13 (Continuation principle). We assume that F is as in
Theorem 5. If g € LZ(RY) and if u is the maximal solution of (5.67), then we
have:

i) If p € <O, d—i—2'y> and Thax < oo (respectively, Ty < o0), then

Hu(t)HL% Ry — 00 as t T Tinax (respectively, ast | Tinin).
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4
i) If p = it and Tymax < o0 (respectively, Tymin < 00), then
”UHLQ((O,TMX), r(R) = OO (respectively, HuHLq( Tonin:0); L} (RD)) = o) for every
d+2
sharp i Y _admissible pair (q,r) with r > p+ 2.

4
Proof. i)Ifp € (O, m), it follows from Step 1 of the proof of The-
Y

q

1 q—p—2
orem 5 and the uniqueness property that Tiax —t > 5 .
At N oy

2
AC2 (Tipax — t) 4
q > p+ 2, we obtain Hu(t)HLi(Rd) — 00 as t T Tax. One shows by the same

1 P
Suppose now that T, < 0o, then H’U,(t)HL%(Rd) > ( — > . As

argument that if Ty, < oo, then ||U(t)”Li(Rd) — 00 as t | Thin.

4
i) If p= T2 we show the blowup alternative by contradiction. Sup-

pose that Thax < oo and that |ul|
t+ 7 < Tmax. It follow that

To(r)ult,) = u(t +7,°) — /O Ty(r — $)F(ult + 5,-))ds.

By Theorem 4 we deduce that there exists C' such that

L(P+2) (0 Tmax) L(p+2)(Rd)) < 0. Let O S t S

S ||UHL(17+2)((t Tmax);Ll(cva?) (Rd))
Cllul?
LP+2) ((t,Tinax); L(p+2) (RAY))’

”Ikz ()U(t) HL(erQ) ((O,Tmax*t);LngrQ) (Rd))

Therefore for ¢ close enough to Tiax,

M
||Ik(')u(t)||L(p+2)((O,Tmax—t);LierQ)(R‘i)) < ?

By Step 1 in the proof of Theorem 5, u can be extended beyong Ti,.x, which is

a contradiction. This shows that \\u]]L(p+2)((0 T )L (1)) = O Let now (g, r)
sdmax )L

be a sharp ’y—admissible pair such that » > p + 2. It follows from Holder’s

inequality that for any T" < Thax,

”“||L(p+2)((o T);LP*+?) (Rd)) = ||“”Loo ((0,T);L2 (R%)) ”“”Lq ((0,T);L7 (RY))?

2(r—p—2)

with A = m

. Lettlng T T Tmax, we obtain HU/HLQ((O,Tmax);LZ(Rd)) =0
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One shows by the same argument that if Ty, < 0o, then ||u||Lq((,Tmm’O);LZ(Rd)) =
oco. O

Corollary 4. Let F be as above and Re(uF(u)) = 0. Then in the subcri-

4
tical case 0 < p < 172 the problem (5.67) is globally well-posed for arbitrary
Y
Li data.
Proof. A simple calculation shows the conservation of charge (i.e.,
()l z2ray = llgllr2@ay for |t| < T). Replacing g by u(to) for any to €

(—Timins Tmax), we obtain that ||u(t)]] L2 (RY) is locally constant, hence constant.
The global existence follows from the blowup alternative. O

5.3. Scattering for NLDS. In this subsection, we consider the nonlinear
Dunkl-Schrédinger equation

(5.76) ou(t, ) —ilpu(t,z) = F(u(t,z)), (t,x) € R x R,

with F satisfying (5.68). Let tq € R, and consider (5.76) together with the initial
data:

(5.77) Li(—t)u(t) =1, = 9-

We use the convention: if ty) = 400 (resp. tp = —o0), then we denote g = u,
(resp. g = u), and solving (5.76)-(5.77) means that we construct wave operators.
If to = 0, then we denote g = ug, and (5.76)—(5.77) is the standard Cauchy
problem.

In all these cases, we seek mild solutions to (5.76)—(5.77), that is, we solve

t

(5.78)  ult,) = Tul(t)g() + / Tyt — $)F(u(s, ))ds = Ag(u)(0).
to

Actually, using our general methods [5], it is possible to prove scattering for small

L2(R9) data. Thus we can prove:

and tg € R. There exists oy

4
Proposition 14. Letd > 2, p = F)
g

such that if g € L(R?) with 191l 2 ey < b0, then the unique global solution u(t)
has the scattering property: there exists u4 € Lz(Rd) such that

||u(t) — Ik(t)ﬂi”[/%(Rd) —0 ast— too.

If tg = +o0 (resp. to = —0), then uy = g (resp. u_ = g).
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and small

Proof. According to the proof of Theorem 5, for p =
d+ 2y

initial data in L7, there exists a unique solution u of (5.76)-(5.77) such that

d+2
u € C(R; LE(R?)) (N LY(R; L; (R?)) with a couple (g,r) which is sharp +oy
admissible. Scattering then follows from the Cauchy criterion. Indeed, using
Theorem 4, for t; < t9, we have

/ 2 Ti(—s)F(u(s,-))ds

t1

+1
< C||UHZ[)/q([t1’t2];Lz(Rd))

Te(—ta)utta,) ~ T-t)ulen Mgy = |
12 (R4)

+ 2y

d
for all (q,r) sharp -admissible. Notice that the right-hand side goes to

zero when t1,ts — oo since u € LI(R; L} (R?)) for all couples (¢,r) therefore

d+2
sharp + 7 _admissible. The result follows easily, since the group Zj is unitary

on L(RY). O

In the following we prove that if F(u) = —iu|u|P with 0 < p < 7159
gl

then wave operator does not exist.

2
Proposition 15. Letd > 2, 0 < p < 7 and T > 0. Let u €

+ 2y
C(] — oo, =T); L3(R%)) be a solution of (5.76) such that there exists u_ € L3 (R?)

and
||u(t) — Ik-(t)u_HL%(Rd) —0 ast— —oc.
Then v =0 and u_ = 0.
Proof. Let x € D(RY) and t; <ty < —T: by assumption

06 Z(—t2)ulte, ) = Ip(—t)u(ty, ")) = —i <X7/21k(—8)\u!pud8>

t1

- / Y (Tu(s)x [ulPu)ds

t1
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goes to zero as t1,to — —oo. But for s — —oco we have

ill=)?
e 4s T
T~ O, g ol (5)-

Therefore,

o0, 1 )PPl ).

7 Py) ~
< k(S>X7‘u’ u) ’S‘(V—'—%

This function of s is not integrable, unless
(Fo(x), [Fp(u)[PFp(u-)) = 0.

Since x € D(RY) is arbitrary, this means that Fp(u_) = 0 = u_. The assumption
and the conservation of mass then imply v =0. O
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