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ABSTRACT. We construct a non-reflexive, 2 saturated Banach space such
that every non-reflexive subspace has non-separable dual.

1. Introduction. The aim of the present paper is to provide a new
Banach space denoted by X, which answers a question posed by H. P. Rosenthal.
More precisely H. P. Rosenthal had asked if every non-reflexive Banach space X,
which is reflexively saturated must contain a proper quasi-reflexive subspace (i.e.
a subspace Y such that 0 < dimY™*/Y < oo). We answer this question in
negative. Namely the space X4, is £? saturated and every non-reflexive subspace
has non-separable dual.

In the following paragraphs we present a historical overview of Rosen-
thal’s problem and we analyze the main features of the space X4 and its basic
properties.

The class of quasi-reflexive Banach spaces is established with the famous
James space J constructed in the early 50’s, by R. C. James [11] and is the class
of non-reflexive Banach spaces which are nearest to reflexive ones.
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As P. Civin and B. Yood [7] have proved every quasi-reflexive Banach
space is reflexively saturated, this result has been generalized by W. Johnson and
H. P. Rosenthal [13] to the class of separable Banach spaces X with separable
second dual X**.

We recall the definition of two well known classes of Banach spaces.

Definition I. A Banach space X has the RN P (Radon-Nikodym prop-
erty) if every closed and bounded subset of X is dentable. A non empty subset F
of X 1is dentable, if for every e > 0 there exists x. € F', which does not belong to
conv(F\S(z,€)).

Also

Definition II. A Banach space (X, |-||) has the PCP (Point Continuity
Property), if for every non-empty and closed subset F' of X, the identity operator
id : (Fyw) — (F,|| - ||) has at least one point of continuity.

It is known that if X is a Banach space with separable X* then X™* has
the RN P and if X has the RN P then has the PCP. It is obvious that if X is a
Banach space with separable X**, then X has the PC'P.

S. F. Bellenot [6] and C. Finet [8] proved independently, in 1987, the
following theorem:

Theorem 1. If X is a non-reflexive Banach space which has the PCP
and X* is separable, then every non-trivial w-cauchy sequence (z,)nen contains
a subsequence (x, )neny which is boundedly complete and dimY™**/Y = 1, where
Y = <xkn,n S N>

The aforementioned problem posed by Rosenthal is restated as follows.

Problem. Does every non-reflexive and reflexively saturated Banach
space X with the PC'P, contains a strictly quasi-reflexive subspace?

In the case of a Banach space X which has also separable dual the answer
is affirmative according to the theorem of Bellenot and Finet. The main goal of
this paper is to give negative answer to the problem of H. P. Rosenthal. This is
done with the construction of the space X,,4 which has the following properties.

Theorem. There exists a separable Banach space X4 with the following
properties:

(1) The space has a boundedly complete Schauder basis (ey)nen, hence the space
has the RN P.

(2) The space is (*(N) saturated, namely every closed and infinite dimensional
subspace contains an isomorphic copy of {*(N).
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(3) The space Xpqr is non-reflexive.

(4) Ewvery closed, infinite dimensional and non-reflexive subspace has non-se-
parable dual.

The norm in X, is defined to be the completion of a norm on cyy(N),
which is defined using a norming set G. The norming set G of the space X4, is
defined inductively as a subset of cgp(N). Its definition is mainly divided in two
parts.

In the first part using induction we construct a sequence (7} ),en of infi-
nitely branching trees of height w with each branch of T, consisting of a block
sequence (¢;)ien in coo(N). The T, special functionals are of the form

“(s%)

where (¢1,...,¢y) is initial segment of T, and E is an interval of N. The nodes
¢; of the tree T, are built using special segments of the previous trees and are of

the form
1 d
— i

where d € N with d < nj; and 1); successive elements of coo(N). For each ¢ as
above we denote by w(¢) the weight of ¢ which is equal to m;. To each T, special
functional z* we associate the ind(z*) be the set of the weights of ¢; that involves
in the definition of z*.

In the second stage of the definition of the norming set G we define the
functionals z*, which are of the form

d
¥ = g iz}
i=1

d
where > A? < 1, 2} T,, special functional and the sets ind(z}) pairwise disjoint.
i=1
The fact that the norming set G consists of £? convex combinations of structures
resulting of trees, a property reminding the classical James tree space [10], yields
that the space X4 is ¢? saturated and this is shown in Section 5. In Section
4 we also show that the space X,4 has a boundedly complete basis and hence

has the RN property. The latter yields that X, has also the PC property. The
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most delicated part of the proof is the main property of the space, namely that
every non-reflexive subspace Y of X4 has non-separable dual. To prove this we
use the sequence of trees (7).),cn described above. In particular we use the fact
that using only one branch of the tree T} we can produce a dyadic subtree of tree
T,11 with each node using exclusively parts of that branch for its definition.

The proof of the property that every closed, non-reflexive subspace of
Xnqr has non-separable dual, uses techniques of the theory of Hereditarily Inde-
composable Banach spaces combining with Ramsey type results, which yield the
following inequality.

Proposition. Let jo € N and (yi)ren be a block sequence of averages
with increasing lengths (as in Remark 7.1).

Then there exists an L € [N] such that for every f € (G\Fyp) with ind(f) C
{jo +1,...} we have that

{neL: ()| > mi}
Jo

Acknowledgements. I would like to thank professor S. A. Argyros for
suggesting this problem to me and for his valuable support during the preparation
of this work.

< 257m)j,.

2. Preliminaries. We make use of the following standard notation
throughout this article.
Notation

i. We denote by coo(N) the set coo(N) = {f : N = R : f(n) # 0 for finitely
many n € N}. For every x € coo(N) we denote by suppx the set suppz =
{n € N: z(n) # 0} and by ranx the minimal interval of N that contains

supp «.

ii. We denote by (ey ), the standard Hamel basis of coo(N).

iii. Let F1, Fy be two nonempty finite subsets of N. We write F1 < FEy if
max Fy < min Ey. If 21,29 € cpo(N) we write 1 < xo whenever ranz; <
ranzy. In addition for a sequence f : N — R and E an interval of N we
denote by Ef the sequence f - X, where Xg is the characteristic function
of E.
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iv. We fix two sequences of natural numbers (m;); and (n;); defined recursively

as follows. We set m; = 2* and mjq1 = mg’ and n; = 27 and Njt1 =

(2n;)%+" where 5541 = logy(m$, ), j > 1.

v. For a set A we denote by |A| the cardinality of A and by [A] the set of its
infinite subsets.

3. The norming set G of the space X,,q,. In this section we define
the norming set of the space X4,

Let N= |J Lg, Ly C N, k € N, Ly, infinite and pairwise disjoint subsets
keN
of N, ©1,€ infinite subsets of N with Q; N Qs = 0 and (m;)jen, (nj)jen the

sequences defined before.
We set

Fy = {lgnle}, ¢ lanl = 1,n € N}|_J{0} and

1 " o ‘ .
F; = {%Zeiei : F finite with [F| < nj,|e| = 1,4 GF} where j € L.

K= U F|IUR,

jeLy
Wy = {(fl,...,fd) :de N,f1 < ... < fd,fl‘ c (Kl\F())} and
Ly ={I{Y : neN}
1
We observe that || f]le = p fEeF;, jeL.
J

Since W7 is countable there exists an injective coding map o1 : W7 —
{l,(Ll) : n € Qo} such that

o1(f1,..., fa) > max{k € Ly : exists i € {1,...,d} with f; € F}}

for all (f1,...,fq) € W1.
A finite or infinite sequence (f;); with f; € (K71\Fp) is said to be o} special
if

(1) fi < fi+1 for all i.

(2) fL € Lg) Flﬁf) and f;+1 € Foi(fr,t) for all 4.
nelily
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If (f;): is o1 special sequence, then we define the sequence of indices
(ind(f;)); as follows:

(1) ind(f;) € Ly for all i.
(2) f1 S Find(fl) and ind(fl) S {l}1 ne Ql}.

(3) ind(fi+1) = O'l(fl, ey fl) for all 1.

Hence in every oy special sequence we correspond the sequence of indices.
The set W7 with the relation

(f1,--, fr) <1 (91,---,9n) iffand only if k <n and f; =g; foralli=1,... k

is a tree and the set of all finite o special sequences which is denoted with T} is
a complete subtree of W7. The infinite o1 branches of the tree Ty are identified
with the set of all infinite o1 special sequences and the set of finite o7 branches
with the set of all finite o1 special sequences. The tree 77 is called the tree of
finite o1 special sequences.

A 01 special functional is a sequence of the form

<o)

where (f;); is a 01 special sequence, E interval of N and » f; is a finite or infinite

%
suim.

E " fi denotes the sequence (Z fl) XE, Where yg is the characteristic
j i

function oflE.

If E is infinite interval and (f;); is infinite sequence then the previous sum
is considered in the topology of pointwise convergence.

If F is finite interval then x* is said to be finite o1 special functional and
the set of all these functionals is denoted with S;. The set Sy is said to be the
set of finite o1 special functionals.

The set of indices of z* is defined to be the set:

ind(z*) = {ind(f;) : ENsupp(f;) # 0}

Therefore we have define the set K; C cgo(N), the tree T} of finite o1 special
sequences and the set S7 of finite o1 special functionals.
We will define inductively
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i. A sequence (K, ),en of subsets of N.
ii. A sequence (0, ),en of injective maps which are called coding maps.

iii. A sequence of trees (T}),en (each tree T, is called the tree of finite o, special
sequences).

iv. A sequence of sets (S;),en (each S, is called the set of finite o, special
functionals)

as follows:
Let r € N and we assume that the following have been defined

i. The sets K1,..., K,.

ii. The coding maps o1, ..., 0.
iii. The trees T1,...,T;.
iv. The sets S1,...,.5;.

Then the set K11 is defined as follows:

Kryy = U F; UFO

jeLr+1

where

d
1
Fj:{ﬁj;@:deN, d<mnj, ¢ << ¢g,

i € (UK> U (US) i= 1,...,d} for j € L.
=1 =1

1
We observe that || f|lec < —, f € F}, j € Ly41.
m;

Let
Lyy1 = {1 : n e N} and

Wi ={(f1,.... fa) 1 d €N, fr <--- < fu, fi € (Kr11\Fo)},
W41 is countable, so we may choose an injective coding map o,11 : Wyp1 —
{l,(fﬂ) :n € Qa} such that

Ort1(f1,.o oy fa) > max{k € L4 : exists i € {1,...,d} with f; € F}}
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for every (f1,...,fda) € Wyi1.
A finite or infinite sequence (f;); with f; € (K,41\Fp) is called o,
special sequence if

(1) fi< fi+1 for all i.

2 fie U Fl(r+1) and f;11 € F0r+1(f1,---,fd) for all 4.
neQ "

The sequence of indices of a o,11 special sequence is defined as in the case of o
special sequences.

The set W,41 endowed with a relation <,.; which is analogous of that
of W1 is a tree and the set of finite 0,11 special sequences, denoted by 7,11, is a
complete subtree of W,1. The set of infinite o,41 branches of the tree T, 41 is
identified with the set of infinite 0,1 special sequences and the set of finite o,
branches with the set of finite 0,41 special sequences.

The 0,41 special functionals are defined in a similar way as the o7 and
the set of finite 0,41 special functionals is denoted with S,11.

Analogously we define the set of indices of a ¢,41 special functional.

We set
<=(Us)u(us)

W =A{(fr,..., fa):deN, fi <---, < fq, fi € (K\Fp)}.

A block finite or infinite sequence (f;); with f; € (K\Fp) is said to be o special
sequence if and only if there exists r € N such that (f;); is a o, special sequence.
The set W endowed with the relation

and

(Fis s 1) < (g1,- - gn) if and only if

(fl?"'?fk)?(glv"'vgn) belong to some Wl and (flv"'afk:) Sl (glv'~'agn)

is a tree and the set of finite o special sequences, denoted with T, is a complete
subtree of W. The set of infinite o branches of the tree T is identified with the
set of infinite o special sequences and the set of finite o branches with the set of
finite o special sequences.

A sequence z* is said to be o (finite) special functional if and only if there
exists € N such that z* is a (finite) o, special functional.

We denote by S the set J S
reN
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We set
d
G = {Zaix;‘ :deN,a; € Q,
i=1

d
Za? <1,z € (K\Fp), ind(z]) pairwise disjoint} UFO'
i=1

The space X,q4 is the completion of (coo(N), | - [|¢) where |z||¢ = sup{|f(x)] :
feqG}.

Remarks 3.1.
1) The sets F}, j € N are closed in restrictions to finite intervals of N.

2) G is closed in restrictions to finite intervals of N.

4) The basis (e )nen of X4 is bimonotone and |le,||¢ =1, n € N.

(1)

(2)

(3) If f € G then || f]loo < 1.

(4)

(5) The sets F;, j € Ly are compact in the topology of pointwise convergence.

4. The basis (en)nen of X4 is boundedly complete. In this
section we prove that the basis (e, )nen of Xpqr is boundedly complete. The proof
is based on the definition of X,

Proposition 4.1. The basis (e, )nen of Xngr s boundedly complete.

Proof. Assume that the conclusion of the proposition fails. Then there
exist M > 0, €9 > 0, (ap)nen sequence of real numbers, (m,)nen strictly increas-

ing sequence of natural numbers and u,, = ‘mfl a;e;, n € N, block of (e)nen
such that e

(4.1) loaner + -+ anenllc < M,n € N

and

(4.2) €0 < ||lun|lg,n € N.

We distinguish the following cases.
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1. Suppose that there exist €; > 0 and L C N infinite with €; < ||up||oo,

n € L.
We assume without loss of generality that €1 < |[uy |00, n € N.
For each n € N there exists t,, € supp(uy,,) such that
let,, (un)| > €1.
We set
1 nj nj
fi= WZEZ‘GZ, lei| =1,i=1,...,n;, v;= Zuz
J =1 i=1
and

kj = max supp(up, ).

Then f; € G, j € N and

j
n; .
L €1 < fi(v)) ZozleZ < Zaiei <M, jely
m; 5
G
nj
a contradiction, since lim — = oo.
J m]

2. Suppose that for every € > 0 and every L C N infinite, there exists
n € L with ||up]|e < €.

It is obvious that lim ||uy, ||cc = 0. We will prove inductively that
n
lim sup {|¢(u,)|: ¢ € (K;US)}=0, [eN.
n
Let j € L;. We will show that

1iTansup{\f(un)!  feF}=0.

Let f € F;. Then f = — Z ee;, || =1,i € F, |F| <n;. Therefore
mj icF

(Z emf) (up)
i€G

limsup{|f(un)| : f € F;} =0, jé& L.

1 )] = —

1 n;
‘ < _,njHunHoo = _HunHoo
m; m

J J

and thus
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Let I € N and we assume that
(4.3) limsup{|¢(un)| : ¢ € (K; US;)} =0, i=1,...,L

We will show that if j € L;y; then limsup{|f(u,)|: f € F;} =0.
n
Let f € Fj. Then

! !
Z¢lvd<njv¢1< <¢d,¢¢€<UK¢)U<US¢>, i=1,...
Ji=1 i=1 i=1

We have that

e '(miiqs)

i=1

l

Z sup{[o(un)| : ¢ € (K; U )}

hence
!
sup{|[f(un)| : f € Fj} < %Zsup{lsb(un)l t¢ € (K US;)}
J =1

Equation (4.3) yields
(4.4) liTILnsup{|f(un)] : feF} =0, je L.
The next step is to show that

lim sup{[¢(un)| : ¢ € Sit1} =0

Assume the contrary. Then there exist €; > 0 and M; C N infinite such that

€1 < sup{|o(un)|: & € Si+1}, n € M.

85

Without loss of generality we may assume that €; < sup{|¢(u,)| : ¢ € Si11},

n € N.

The last inequality yields that for every n € N there exists ¢,, € S;4+1 with

ran(¢p) C ran(uy) and €; < |¢p (un)|.
We distinguish the following cases.

2A. The set A = {ind(¢,) : n € N} is finite.

Let | ind(¢n) = {j1,.--,Jk} C Liy1. We have that
neN

|n(un)| < sup{|f(un)| : f € Fj} + - +sup{|f(un)| : f € Fj, },n €N
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From equation (4.4) we get that lim |¢,,(uy)| = 0, a contradiction, since
n

€1 < |¢n(un)’v n € N.

2B. The set A = {ind(¢,,) : n € N} is infinite.
We may assume without loss of generality that ind(¢,) # ind(¢,,) for
every n # m. We choose ¢ € N such that

2
(4.5) qg>—-M.
€1

We have that e€; < |¢1(u1)|. Let
¢n222+¢%,n2 2

where ind(22) C ind(¢1), n > 2 and minind(2) > maxind(¢;), n > 2.
The set A is infinite, so there exist i9 > 2 with ind(zﬁ%) #0,n > is.
Since €1 < |¢n(uy)|, n > iy it follows that for every n > iy we get

€1

: or 142 (un)] > 2.

€1
|20 (un)| > =

2

If the set {n € N:n >iyand |22 (uy,)| > %1} is infinite, then following the steps
of case (1) we come to a contradiction.

If the set {n EN: n>iy and |22(u,)| > %1} is finite then there exist
jo > 19 such that

min ind(%?é) > max ind(¢1) and |¢J22 (ujy)] > %1

Let
bn=z0+Y2, n>jo+1

where ind(z3) C ind(¢;) U ind(w]i), n > jo + 1 and minind(x3) > max(ind(¢1)
U ind(d}i)), n > jo + 1.
Without loss of generality we assume that ind(¢3) # 0, n > ja + 1.
Since €1 < |¢pn(un)|, n > jo + 1 it follows that for every n > jo + 1 we get
that
2 > 5 or [Ui(u)| > 5
If the set {n EN: n>jo+1and |2 (u,)| > %1} is infinite, then following the

steps of case (1) we come to a contradiction.
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If the set {n EN:n>jo+1and |23 (u,)| > %1} is finite there exists
J3 > jo with
min md( ) > max(ind(¢1) U 1nd(1/) )

and .
3 1
03, (u)] > 2.
2
Hence we come to a contradiction or we construct functionals 12 A ,w? , with
q
C . .. . €
disjoint indices, ran(vy;,) C ran(uj), i = 2,...,¢> and |¢;Z (uj,)| > 51,
i=2,...,¢%

The functional
q2
€1 Z €; . 2
f:E¢1+ ijiv |€i|:1a t=1,...,q
i=2

belongs to G. We consider the vector

q2
U =u+ E Uy, -
1=2

We have that
@ €

@] = | Zéxu) + 30 o ()] = g

i=2

and from (4.5) we get that |f(u)| > M, a contradiction.
Therefore we have proved that lim sup{|¢(uy,)| : ¢ € Siy1} = 0.
n

In a similar way we prove that lim sup{|¢(u,)|: ¢ € S1} = 0.
n
It is not hard to see that

1i£nsup{\¢ up)| s p € (UK) U <QS>} =0, leN.

Hence we may construct a subsequence (uy, )ien of (un)nen such that

l l
=1 i=1
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From (4.2) we get that €y < ||up,|lg,! € N, so for every | € N there exist f; € G
with ran(f;) C ran(uy,) and €y < |f;(un,)|. We choose ¢ € N such that

2
(4.6) q>—M.
€0

We have that %0 < €9 < |fi(up,)|- Let

r1 = maxind(fi)

and
fi=2 +f,1>2
where ind(z7) C {1,...,r1}, 1 >2and ind(¢?) C {r1 +1,...}, 1 > 2.
We assume that the special functionals in ZIQ,Z > 2 belong to S1U---US;,.
We have that ey < |f;(un,)], I > 2, hence for every [ > 2 it follows that

€0 €0
5 < [ (wn)] or T < Jf (un,) .

We set

A% = {ZEN: 1 >2and |27 (uy,)| > %0}

The set A? is finite. Assume the contrary. Then we may choose I; € A? with
€ € €
l1 > max{ry,i;} and thus 50 < ’2121 (un, )| <11 0 0

12011 < i1 @ contradiction.
Therefore there exist jo > 2 such that

€0 :
] ]22(Un].2)| > and 1nf(¢j22) C{ri+1,...}.

Let
ro = maxind(z/)]i) and fj = 2} + P, 1> jo+ 1

where ind(z7) C {1,...,r2}, I > jo+1and ind(¢P) C {ra+1,...}5, 1> jo+ 1. It
is obvious that ro > 7y.

We assume that the special functionals in zlg, I > jo + 1 belong to Sy U
-+ U .S;,. We have that

|filun)| > €0, 1>j2+1
so for every [ > jo + 1 it follows that

€0 €0
) > 2 or [0 ()] > 2
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We set

A3:{l€N:l2jg+1 and \zl?’(unl)]>%0}.

The set A3 is finite. If is infinite then we may choose Iy > max{ry, iz}, so

€0 €0
l 2l2+1 2[2 “+1

€
2

< Iy (g, )| < 72
a contradiction. .
Hence there exist js > jo such that |¢]3 (unjg)] > 50

We may construct functionals 1?2

Gy ,w] , with disjoint indices and

) € .
’w;z(unh)’>_ Z=1,...,q2,

We consider the functional
€ ¢ €
1 P .
F=LA+Y S el =1 il
i=2

which belongs to G and the vector

q2
U ="u + g U, -
i=2

We have that )
eo €0
F)] > iz =g
and from (4.6) it follows that |f(u)| > M, a contradiction. Therefore (e, )nen is
boundedly complete.

5. The space X,4, is £? saturated. In this section we prove that
the sequence (F})jer, is JTG (Definition 5.1) and X, is £2 saturated.

Definition 5.1. A sequence (F});en oy of subsets of coo(N) is said to
be James tree generating (JTG) provided that satisfies the following conditions:

(1) Fo = {lanle}, : lgn| = 1,n € N} U{0} and each F; is nonempty, countable,
symmetric, closed in restrictions to intervals of N and compact in the
topology of pointwise convergence.
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(2) Setting 7; = sup{||flle : f € F}}, j € N, the sequence (7j)jen is strictly
o0

- 2
decreasing and ]21 77 <1

(3) For every block sequence (zy)ken of coo(N), every j € N|J{0} and every
6 > 0 there exists a vector x €< xy, : k € N> such that

e}

5sup{f(az) fe UE} > sup{f(z): f € F;}.

1=0

Lemma 5.1. The sequence (F});cr, oy s JTG.
Proof. 1. Each F}, j € Ly is countable, closed in restrictions to intervals
of N and compact in the topology of pointwise convergence.
2. Setting 7 = sup{|f oo : / € Fy}. j € Ly then 3> 72< 1.
jeL
3. For every block sequence (xk)gen of coo(N), every j € L1 J{0} and
every d > 0 there exists a vector z € (zy : k € N) such that

sosup @l fe | U F| Ry >swllf@l: feF

Jj€L

We shall prove the last property. Assume the contrary. Then there exists
a block sequence (xg)ren of coo(N) with ||zk||x, = 1, K € N, j € L1 U {0} and
there exists 6 > 0 such that for every vector x € (xj : k € N) with z # 0 it follows
that

0 ||zlr; < sup{|f(z): f € Fj}.

Therefore
n n
- Zakxk < Z QLT for every n > 1 and aq, ..., a, real numbers.
k=1 K1 k=1 F;

)
It is obvious that 3 < |zkllF;, k€ N.
Let 5 € L;. We observe that
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Assume that there exists k € N with

1
Let f € Fj. Then f = — >~ eef, |[F| < ny, |e| = 1,4 € F. We have

mj ieF
that 1 15 15 5
m; m;
< « — . < =—. . p. ==
£ < o Dl < o G AP S - Gy = 5

el
a contradiction.

om;
Since 2—] < ||zkllco, kB € N it follows that for every k € N there exists
j

tr € supp(z) such that

om;
e (wp)| > =—2.
i (@) 2 5
n; s
From the fact that lim —- = oo it follows that there exists j; > j with —2- >
J M mj,
2
2n]
2,,2"
6*m;
1 ™1
We consider the functional f = >.ef, € Fj and the vector
My k=1
n]'l

x = Y exy where |eg| = 1,k.

k=1
We have that n.
j
0 ||zl < ll2llr < o

On the other hand

2 2
njl'6mj>62nj 6mj:&

0 >4 >0

a contradiction. Also if j = 0 we come to a contradiction.

Lemma 5.2. Let Y = (y, : n € N) be a block subspace in X, and let
e > 0. Then there exists a vector y € Y such that |ly||c = 1 and |x*(y)| < € for
every x* € K.

Proof. Since the sequence (F});cr, jfo} 18 JTG, it follows that the iden-

tity operator id : Xg, — Y, s, is strictly singular. For a proof we refer
Lemma B.11 in [1].
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d d
The set G; = {Z apy td € Nyoy, € Q, Y o2 < 1,25 € S1 UK\ Fo)
k=1 k=1

and ind(z}) pairwise disjoint} |J Fo defines a norm || - ||, on ¢oo(N) by the rule

lzlla, = sup{f(z): f € G}

The space X, is the completion of (coo(N), | - |lay)-

Similarly the space Y, |, is the completion of (coo(N), |||, s, ), Where
S K is the norming set of this space.

Hence the identity operator id : X4 — Y, g, is strictly singular.

We will prove the lemma by induction.

Let r € N, r > 1 and we assume that the identity operators id : X,4r —
Yk, s>t < r are strictly singular. The space Yk, g, is the completion of the
space (coo(N), || - [|x,ys,) The norming set for this norm is the set K;JS;.

We will prove that the identity operator id : X4 — Yk, , is strictly
singular.

Assume the contrary. Then there exists ¢g > 0 and (w, : n € N) block
subspace of X4, such that for every w € (wy, : n € N) with ||w||¢ = 1 there exists
f € Kyppr with e < |f(w)].

Therefore for every w € (wy, : n € N) with ||w||g = 1 there exists f € K,

r+1

with
(5.1) €0 < 1f(w)] < vl

It is not hard to see that the identity operator

5.2 id : X Y/ r is strictly singular.
(5.2) i ngr — (_U Ki)U(_U l) is strictly singular
i=1 i=1
From (5.2) we may choose z; € (w, : n € N) with |z1|l¢ = 1 such that
21k, s, < %0, i=1,...,r and from (5.1) we get that
€0 .
21l ks < 5 < l21llKyers G=1,...,m

There exists I finite subset of L,;; such that

1 €0

m; 2 [zl

for every j € (Ly41\I1),
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where || - ||1 is the {; norm.
Consequently

€
|f(z1)] < 50 for every f € Kr+1\ Us|UR

jel

93

From (5.1) and (5.2) we may choose a vector zo € (wy, : n € N) with 2o > 21,

||z2|lc = 1 such that

€0 Mminl 0 .
— — < =1,...
92 Mmax Iy 2 ||Z2”Kr+l7 ? )

1 d
Let fe€ U Fj. Then f=—"-3 ¢i, ¢1 < -+ < da, d <y, 1,
i=1

Jj€l mj
@ (0r)u(Ge)
Using (5.3) we have that

6_0 Mmin I <€_0

d
— - Z@(Zé) <X
7 li=1

|f(22

—my 22 ngaxrn 22

Hence

|f(z2)] < % for every f € U F;.
jel

There exists I finite subset of L,41, such that

1 €0

1
— - for every j € (Ly+1\12).
22zl '

Hence

€
|f(2z2)] < 2—2 for every f € Kr+1\ U F; UFO

j€l2

, 4 belong

From (5.1) and (5.2) we may choose a vector z3 € (wy, : n € N) with z3 > 29,

|zsllc =1 and

€0 mmln(h UIQ)

5.4 z3|ls; < S
(5.4) lzslls: < o3 M1 U 1)

<H23HK’F+17 1=1,...
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Using (5.4) we observe that
€0
|f(z3)] < 3 for every f € U F;.
je(liUI2)
There exists I3 finite subset of L, 1 such that

1 €0

— for every j € 1\3).
23 ||23||1 ( T+\ )

Hence
€
e <5 forevery fe K\ | [ UF|UR
JEI3

Therefore we inductively construct a sequence (zx)ken such that z; € (w, : n €
N), k€ N, zp < 211, k €N, ||zk]|¢ = 1, and a sequence (I;)ren of finite subsets
of L4+ such that

€0 .
(1) sz”KiUSi <= < ||Zki”Kr+1 keN,i=1,...,r

2
@) |f ()l < 55, f € [ K1\ ((g FJ> UF()) keN.
(3) [f(zk)] < ka fe U Fj, ke N.

jehU-UIk_1

We will prove that
|21 4+ - + 2l K,yy <1+ € for each k € N.

Let ke Nand ¢ € K, 41.
We distinguish the following cases.

(1) Let ¢ € ( 7‘+1\ U FJ) Then
j U Ik

jen y...

k
621+ 20| S J6(z0)] + ..+ 16(z1)] 32223 <1+e.
=
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(2) Let o€ |J Fjor e U F;. Then
jeh Jjel\(1 U Uli-1)

[P(z1 + ..+ 2)| < |9(z1)] + (|o(22)] + - [d(21)]) < 1+ €o.

(3) Let ¢ € U F;, 1 <i<k—1. Then
jelipi\(I1U...U L)

6(21 + -+ 2)| < [D(z)| + -+ |9(20) + (I0(zi41)] + |D(zig2 + -+ + 21)])
% k
€0 €0
j=1 j=it2
We have that z; +--- + 2z € (w, :n €N), k€ N.

atod , k € N we have that

For the vector v, = T
21+ -+ zlle

%0 < |lvk|l K., hence 650“21 + -+ zlla <llzr + - + 2|k, for every k€ N.
For the vector z; we have

T <11z < ., for some fi € Kysn.
The functional f; belongs to J Fj.

jeh
For the vector z5 we have that

€0

5 < | f2(22)| for some fo € K, 41.

We observe that fo e | |J F;— U Fj .
JEI2 Jj€nh

For each k € N we choose fr € | U F; U F; | with ran fj, C
JEIk JjehU. I

ran z;, and %0 < | fx(zk)|-
Let ¢ € N. The functional

q2
€
f:Z—-fi where |¢;| =1
i1 4
belongs to G. Hence

|21+ ...+ 22l > fler + .o+ 2p2) >

oD
=
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We have that

2

%Oq < %)Hzl +. oA zelle <llsr 4. A z2llk, o S1+e, geN
a contradiction.

We have proved that the operator id : X,,4 — Yk, is strictly singular.
Following the same steps as in Lemma B.11 in [1] we get that if Z be a block
subspace of X4, then there exists z € Z with ||z||¢ = 1 such that |z*(2)| < € for
every z* € S;41. Hence the identity operator id : Xpqr — Yk, ys,,, is strictly
singular. We have proved that the operators id : Xpnqr — Yg,ys,,n € N are
strictly singular.

We shall show that the identity operator id : X,4, — Yk is strictly
singular.

Let € > 0 and let a sequence (€, )nen of positive numbers with lim €, = 0.

n
It is not hard to see that for every n € N the operator id : X,4 —
Y( LK) UL, S:) is strictly singular. Therefore there exists a block sequence

i=1 i

(J:n)neN of (yn)neN with HanG =1,n € Nand |m*($n)’ < €n,

ot € KmUsl)U---U(KnUSn)}, neN.

We claim that:

If 6 > 0, then there exists an infinite subset M of N such that for every
o branch b, it follows that the set {n € M : [b*(z,)| > d} contains at most 1
element.

Assume the contrary. Then there exists § > 0 such that for every infinite
subset M of N there exist o branch b such that the set {n € M : [b*(z,)| > d}
contains at least 2 elements.

Applying Ramsey theorem for doubletons we may find an L C N infinite,
such that for every pair n < m € L there exist o branch by, ;, with [}, . (2n)] > 6
and [by, ., (T)] > 0.

Since 1171;11 €, = 0 there exist ng € N with €, < d,n > nyg.

We set L1 = L()[no,o0) and let ny = min L;.

It is obvious that €, < d,n > n;1 and for each n < m € Ly there exist o
branch by, ,, with [by, . (7,)] > 6 and [}, ,, (zm)| > 9.

Let my € Ly with my > n;.

There exist a o branch by, m, = b1 with |b](x,,)| > § and |b] (2, )| > 9.

Let 7 = E1b} where Eq = [min supp(x,, ), max supp(Zm, )]-

Then |x}(xy,,)| > 6 and |z7(x,, )| > 0.



A new hereditarily ¢?> Banach space 97

Since the functional z7 does not belong to (K1 |JS1)U - UEm, U Sm,)
there exists do > m; with 27 € (K4, | Sa,)\Fo.

Let mg € Ly with my > ds.

There exists a o branch by, ;m, = by with |b5(x,,,)| > § and |b5(xm, )| > 6.

Let % = Esb% where Ey = [min supp(xy,, ), max supp(Tm,)]-

Then |z5(xp,)| > 0 and |23(24,,)| > 0. The functional z3 does not belong
o (KiUS1)U- U HEmy U Sm,), so the functionals =7, x5 have disjoint indices.

We inductively construct a sequence (z}),en of o special functionals with
disjoint indices and |z (2, )| > d,n € N.

Let g € N. The functional

q2

€ o .
f Zq’b ’61":1’ Z:1,...,q2

belongs to G. We have that

Therefore

a contradiction.

Using again the same techniques as in Lemma B.11 in [1] and the fact
that the operators id : X,4 — Y( n KU, S:) T € N are strictly singular
we get a vector y € (y,,n € N) with ||yHG =1land [z*(y)| <€ z* € K.

The following Lemma is similar to a corresponding result in [1, Lemma
B.13].

Lemma 5.3. For every x € coo(N) and every e > 0 there exists d € N
such that for every g € (G\Fy) withind(g)N{1,...,d} = 0 we have that |g(z)| < e.

Combining Lemmas 5.2 and 5.3 we may construct in every block subspace
of X4 a block sequence which is equivalent with the usual basis of £2(N). The
proof of Theorem 5.1 follows the lines of Theorem B.14 in [1].

Theorem 5.1. Let Y be a closed, infinite dimensional subspace of Xyqr-
Then for every € > 0 there exists a subspace of Y, which is 1+ € isomorphic to £2.
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6. The dual space X7, 4 In this section is studied the structure of
X},qr- Proposition 6.1 is similar to Proposition B.15 ([1]). The proof of Proposi-
tion 6.1 makes use of the fact that X, does not contain an isomorphic copy of
H(N).

Proposition 6.1. For the dual space X

*

ngr We have that

Xoqr = Span{e;, : n € N} U{b": b o infinite branch}.

Also the basis (en)nen of Xngr is weakly null.

Proof. The space X, is £? saturated, so does not contain an isomorphic
copy of ¢!. From Haydon’s [9] theorem we get that

(6.1) By, == convextBy; .

Since G is the norming set of the space X, it follows that

*

— W
Bx: =convG .
nqr

*

It is not hard to see that B X5, = conv G" , hence exthg;km C G Combining
this with (6.1) we get that
x5, = (G,

nqr
¥ 0

As is shown in Proposition B.15 in [1] the following holds: G = Fj U{ > axl
i=1

o0
> a? <1,o; € Q, ] finite or infinite o special functionals with disjoint indices},
i=1
hence the first part of the proposition is proved.
For the second part of Proposition it clearly suffices to show that lim b*(e,,)
n

= 0 for every o branch b.
If b is finite o branch then the sequence (b*(ey))nen-
Let b = (fn)nen an infinite branch. From the fact that lim || f,||cc = 0 it
n

follows that (b*(ey))nen is a null sequence.

7. Rapidly increasing sequences in X,4.. We begin by the defi-
nition of a Rapidly Increasing Sequence (RIS).

Definition 7.1. Let (z,,)nen be a block sequence in X,q4, and C, e positive
numbers. The sequence (xy)nen will be called (C,€) RIS (Rapidly Increasing
Sequence) if the following hold
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(1) ||znlle < C,n € N.

(2) There exists a strictly singular sequence of natural numbers (jn)nen such
[supp(an)| <en e Nand ifn e N, f e (K\Fy) with w(f) = my,
mjn+1

i < jn then |f(x,)| < —

)

that

We notice that for an f € (K\Fy) of the form f = i i fi» d < nj, fi € (K\Fy),
i=1,...,n; we say that f has weight m; and we w%t:elw(f) =m;.

Definition 7.2. Let jo € N and (zp)nen be a (C,e) RIS with 0 < € <
% and (jn)n its associated sequence of natural numbers. We will call (xy,)nen

Jo
jo-separated if the following are satisfied:
L. j1 > jo.
2. For every functional f € (K\Fy) with w(f) > mj, we have that

{nGN: |f(zn)] > m%}

<1.

Jo

3. For every special functional z* with ind(z*) C {jo + 1,...}, we have that

10
|{n eN: |z¥(zy)| > —2}
M

4. For every f € G with ind(f) C {jo+1,...}, we have that

|{nEN: F ()] > m%}
Jo

The next step is to prove that for a jo € N and a bounded block sequence
of averages with increasing lengths in X,,,, there exists a subsequence which is
Jo-separated.

The proof of the following lemma follows the same steps as in [5, Lemma

< 2.

< 257mj,.

I1.23].
Lemma 7.1. Let x € X4 be a (M, k)-average, M > 0,k € N, i.e. an

1
average of the form x = E($1 + -+ x1), where
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i x1,...,2 € {en,n €N)
. <. <axg
i, |zl <M,i=1,...,k

and f € (K\Fy) with w(f) = m;. Then

el < o (1452,

my

Lemma 7.2. Let e > 0 and (xy,)nen be a block sequence in X,4, such that
each z, is a (M,l,) average, where (I,)nen is a strictly increasing sequence of

3
natural numbers. Then there exists a subsequence of (T )neny which is (T,e>

RIS.
The proof of Lemma 7.2 follows the lines of Proposition I1.25 in [5].

Remark 7.1. Let (2;)ren be a normalized block sequence in X4
We set

where ‘Fk’ =ng, Fy < Fi41,k € N.

Since |lyxllc < 1,k € N and X,,4 does not contain an isomorphic copy of
¢* (Theorem 5.1), it follows from Rosenthal’s £! theorem [15] that there exists a
subsequence of (yx)ken which is w-Cauchy.

Without loss of generality we may assume that (yg)ren is w-Cauchy.

We set xx, = yorp—1 — Yok, k € N. The sequence (x)ien is weakly null and
|lzklle <2, k€ N.

If f e (K\Fy) with w(f) = m; then Lemma 7.1 yields

o)l < ) + ] < 2 (14 ) ke

7

Hence if € > 0, then from Lemma 7.2 it follows that there exists an L € [N] such
that the sequence (zp)ker is (3,€) RIS.

Therefore without loss of generality we can assume that every (zj)ren
which is a (3, ¢€) RIS is weakly null.

For the rest of this paper we will assume that every (3, €) RIS we consider
is weakly null, unless stated otherwise.
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5
Lemma 7.3. Let jo € N and (vp)ren be a (3,¢€) RIS with 0 < € < —5-.
m#
Jo
Assume that the sequence (jp)n associated to the RIS sequence satisfies j1 > jo.
Then for every f € (K\Fy) with w(f) > mj, we have that

{keN:\fm)rz%}

M,

<1

For a proof of Lemma 7.3 we refer Lemma 5.2 in [14].
Lemma 7.4. Let jo € N and (xg)ren be a (3,¢) RIS with 0 < € <

—5~. Assume that the sequence (jn)n associated to the RIS sequence satisfies
ms

o
j1 > jo. Then there exists a L € [N] such that for every special functional x*,

10
kelL:|xz* >
{ rx<mk>\_m2}

Jo
The proof of Lemma 7.4 follows the lines of Lemma 5.3 in [14].

with ind(xx) C {jo + 1,...}, we have that < 2.

Proposition 7.1. Let jo € N and (yi)ren be a block sequence of averages
with increasing lengths (as in Remark 7.1).
Then there exists an L € [N] such that for every f € (G\Fy) with ind(f) C

2
{keL:wyk)rzm—z < 257m?

Jo
The proof of the above Proposition is identical of Proposition 5.1 in [14].
All the above yield the following

{jo+1,...} we have that

)
Proposition 7.2. Let jo € N, 0 < € < —5 and (yr)ren be a block
m#

Jo
sequence of averages with increasing lengths. (as in Remark 7.1). We set xp =
Yok—1 — Yok, k € N. Then there exists an L € [N] such that (xy)rer is (3,€) RIS
and jo-separated.

Analogous Proposition can be found in [14]. (Proposition 5.2)
)
Remark 7.2. Let jo € N, 0 < € < —5- and (yx)ren be a block sequence
m*
0
of averages with increasing lengths. (as in Remark 7.1).

In the sequel we will assume without loss of generality that there exists
an L € [N] such that (yg)rer is (3,€) RIS and jo-separated.

8. The basic inequality. The purpose of this section is to prove Basic
Inequality, which will be used in the next chapter. Similar results exist in the



102 Giorgos Petsoulas

papers [3], [2], [14]. The Basic Inequality is a method, which has been developed
and attributes estimates of sums of block sequences with certain properties to
estimates of sums of the basis of a mixed type Tsirelson space.

Specificly if (zg)ren is a (C, €) R. I. S. (0 <e< -
J0

) sequence in
X,qr, which is jo separated, then calculations of the form f <Z /\kxk>, f e
k

(Unen Kn) \Fo are transformed into calculations of the form g; <Z ])\k|ek> and
k

g2 (Z \/\k]ek) where g1 € W, g2 € coo(N) with ||g2|lec < €.
k

The set W is the norming set of the space T', which is called the auxiliary
e, + - teg,.
space. In this space we estimate sums of the form : 2 where j € N
nj

and ky < ... < kp; are natural numbers.

Definition 8.1. We denote by W the minimal subset of coo(N) such that:
(1) {enef,n €N, ey =1} C W.

1
(2) W is closed under the operations (Agn]., —) , 6. eforeveryjeN, d<
Mj /jeN

1

2n; and for every f1 < --- < fq in W it follows that — (f1+ -+ fq) €
m;

w.

1
(3) W is closed under the operation <A4, 5) , d.e. for everyd € N with d < 4
1
and for every f1 < -+ < fq in W it follows that 5(]"1 +-F fa) e W.

The set W defines a norm on coo(N) by the rule ||z|lw = sup{|f(x)| : f € W},
x € coo(N). The completion of (coo(N), || - |[w) is denoted by T'.

Lemma 8.1. Let f € W, j € N and k1 < ... < ky; natural numbers.

Then 5
(A
=1 — if w(f)=my, i >
m;
1 M 1
Also ||— > ex, || =—
TLJ r=1 w m]
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For a proof of the above Lemma we refer to Lemma 3.16 and Proposition
3.19 in [4].

Proposition 8.1 (basic inequality). Let jo € N, jo > 3 and (xk)ren @

) . .
(Cye) RIS sequence on Xngr, 0 < € < —5, C > 1 which is jo-separated with
m=
Jo
minsupp(z1) > mj,.
Let also (An)nen is a sequence of real numbers.
Then for every [ € (UneN Kn) \Fy there exist g1, g2 on coo(N) with non-
negative coordinates where

(1) g1 € W with w(g1) = w(f)

5
2) llgzlloo < —
m#
Jo
such that for every n € N we have that

f (Z Ak%) < 2C(g1 + 92) (ZP\JJ%)
k=1

The proof of the above Basic Inequality follows the arguments of Ba-
sic inequality(Proposition 6.1) in [14]. The only difference is that in the set
(UneN Kn) \Fp do not appear £? convex combinations as in the case of Basic
Inequality in [14]. Consequently the proof of Basic Inequality in this paper is
simpler than the corresponding one. Also the norming set W of the auxiliary
space T is more simple. Finally we notice that the Condition 4 of Definition
7.2 is unnecessary in the proof of Basic Inequality in this paper. However this
condition is necessary in the following lemma.

Lemma 8.2. Let jo € N with jo > 1 and (vi)ren a (C,€) R.L1S sequence
)
on Xnpgr, 0 < € < —5-, C' > 1 which is jo-separated.
m

Let also k1 < e < knjo natural numbers.
Then there exists M > 0 which depends only on C' > 0 such that

Tk 0 Tk <M

G My

Mo

d d
Proof. Let f € (G\Fy). Then f = > a;a} where oy € Q, Y. a? <1
=1 i=1

1=
and z7 € S,i =1,...,d have pairwise disjoint indices.
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d d
Let f = fo+g-+h where w(fo) = mjy, 9 = > oz}, and h = > T -
i=1 i=1
Tpy + -0+ Ty,
We set x = n
Mo
From Lemma 7.1 we get that
C 2n; 3C
ool < - (14 20 ) - 22,
myj, Njo Mo
Since (xp)ken is jo-separated we have that
C - 25Tm% + 2 (nj, — 25Tm? )
Jo 2 A0 Jo C 2 C+2
[h(z)] < " < 4222
Mo Mo Mo mj,
Also
d
l9(2)] <D |75 g (@) < D Ifilw)]
i=1 icA
where fi € (U,en Kn) \Fo with w(f;) = m; and |A] < jo.
Let i € A. Using basic inequality we get that
e e,
)l <2004+ 6 ( )
Mo
, . , )
where, gi € W,w(g}) = w(f;) and [|g5[|cc < —5. Hence
m=
jo
2 )
|fi(z)] <20( + —5-) and thus
mgmg, mjo
2 ) 2 ;Y
lg(x)| < 2C Z( — +—2> s2c( , +J0—2>
= \mimj,  m3, mj, ms,
2 ) 14C
< 2C< + > =
Mjo My Mo
18C' + 2 M
Finally |f(x)| < 7—’_, so letting M = 18C + 2 we get that ||z|¢ <
My, Jo

9. Every non-reflexive subspace of X,,. has non separable
dual. We pass to the final section where we prove the next Theorem.
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Theorem 9.1. Let Y a closed, infinite and non-reflexive subspace of
Xngr- Then Y™ is non-separable.

Proof. It is enough to prove the conclusion for the block subspaces of
Xngr-

Let Y = (yn,n € N) a non-reflexive block subspace of X,4,. Since the
subspace Y is non-reflexive, James classical theorem [12] yields that the se-
quence (Yn)nen is not shrinking. Therefore there exist (z,)nen a block sequence
of (Yn)nen, €0 > 0 and z* € X7 . such that:

nqr
i Jall = LneN
ii. € <|z*(zn)|,n €N

Using Proposition 6.1 it is not hard to prove that there exist e; > 0 and an
infinite o branch b such that for the functional b* holds

€1 <b*(zn), meN

Let b be a o, branch, where r € N.
We will prove that Y* is non-separable. It is enough to show that if
Z = (zp,n € N) then Z* is non-separable.

1
We consider the sequence vy = — > z;, k € N where F, C N, |Fi| = ng,
ng 1€ F},
Fk < Fk+1, k € N
We observe that

(1) [Jvklle <1,k €N.

(2) b*(vg) = b (i 3 zl> > ¢y, ke N.

N 1€ Fy
Since b*(v) > €1, k € N it follows that for every k € N there exists
xy, € Sy with ran(z}) C ran(vg) such that e; < zy (vg).

We notice that x} is the restriction of b* on the interval ran(vy) = [minsupp(v),
max supp(vg)].

Using the dyadic tree we construct along of his branches uncountable
or+1 special sequences such that considering these as functionals on Z, any two
of them have big distance.
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)
We notice that for a j € N, 0 < € < —5 there exists an L € [N] such that
m=

j
(vk)ker is (3,€) RIS and j-separated (Remark 7.2).
Let D the dyadic tree. Inductively we construct (x4, fa,Ja)acp (the
induction is in the lexicographic order of D) such that

1 1
(1) For every o € D we have that o, = — Y v;and fo = — > «} where

Mo i€ha Mj, ieAq

Aa C N, ’Aa‘ = Njg,-

(2) jp € Q1, jp > 1, mj, > 257 and for every o € D with o # ) it follows that
Ja = or+1((f3)p<a)-

(3) if & <jep B then Ay < Ag.

(4) if a € D and S, = {b,c} are the immediate successors of a then A, < Ay,
A, < A. and Ay, A. are successive.

Ja

)
(5) if a € D then (v;)ien, is (3,€) RIS (0 <e< —2> and j, separated.
m

We observe that fo(zq) > 6—1 for every a« € D and also from Lemma 8.2 we

Jo
have that ||z,|l¢ < M for all « € D.
Let (fa)acky, (fa)ach, 2 0ry1 special sequences and by, by different bran-
ches of the dyadic tree.

We consider the functionals g5, = > fo and gy, = Y. fa-
a€by acbs
Since by # by we may assume that there exists a € (by\b2). We have that

(951 = 95,)(%a) _ g0y (Ta) _ fal®a) _ € mj. _ €0
lzallc lzallc  lzalle = mje M M

lgen|z = gbs | 2]l =

Corollary 9.1. The space Xpq does not contain any quasi-reflexive and
non-reflerive subspace.

Proof. Assume the contrary. Then there exists a quasi-reflexive and
non-reflexive subspace Y of X4, i. €. 0 < dimY™* /Y < oco. From this it
follows that Y**/Y is separable and since Y is also separable we get that Y ** is
separable. Therefore Y* is separable which contradicts to Theorem 9.1.
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