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Abstract. We construct a non-reflexive, `2 saturated Banach space such
that every non-reflexive subspace has non-separable dual.

1. Introduction. The aim of the present paper is to provide a new
Banach space denoted by Xnqr which answers a question posed by H. P. Rosenthal.
More precisely H. P. Rosenthal had asked if every non-reflexive Banach space X,
which is reflexively saturated must contain a proper quasi-reflexive subspace (i.e.
a subspace Y such that 0 < dimY ∗∗/Y < ∞). We answer this question in
negative. Namely the space Xnqr is `2 saturated and every non-reflexive subspace
has non-separable dual.

In the following paragraphs we present a historical overview of Rosen-
thal’s problem and we analyze the main features of the space Xnqr and its basic
properties.

The class of quasi-reflexive Banach spaces is established with the famous
James space J constructed in the early 50’s, by R. C. James [11] and is the class
of non-reflexive Banach spaces which are nearest to reflexive ones.
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As P. Civin and B. Yood [7] have proved every quasi-reflexive Banach
space is reflexively saturated, this result has been generalized by W. Johnson and
H. P. Rosenthal [13] to the class of separable Banach spaces X with separable
second dual X∗∗.

We recall the definition of two well known classes of Banach spaces.

Definition I. A Banach space X has the RNP (Radon-Nikodym prop-
erty) if every closed and bounded subset of X is dentable. A non empty subset F
of X is dentable, if for every ε > 0 there exists xε ∈ F , which does not belong to
conv(F\S(xε, ε)).

Also

Definition II. A Banach space (X, ‖ · ‖) has the PCP (Point Continuity
Property), if for every non-empty and closed subset F of X, the identity operator
id : (F,w) −→ (F, ‖ · ‖) has at least one point of continuity.

It is known that if X is a Banach space with separable X ∗ then X∗ has
the RNP and if X has the RNP then has the PCP . It is obvious that if X is a
Banach space with separable X∗∗, then X has the PCP .

S. F. Bellenot [6] and C. Finet [8] proved independently, in 1987, the
following theorem:

Theorem I. If X is a non-reflexive Banach space which has the PCP
and X∗ is separable, then every non-trivial w-cauchy sequence (xn)n∈N contains
a subsequence (xkn

)n∈N which is boundedly complete and dimY ∗∗/Y = 1, where
Y = 〈xkn

, n ∈ N〉.

The aforementioned problem posed by Rosenthal is restated as follows.

Problem. Does every non-reflexive and reflexively saturated Banach
space X with the PCP , contains a strictly quasi-reflexive subspace?

In the case of a Banach space X which has also separable dual the answer
is affirmative according to the theorem of Bellenot and Finet. The main goal of
this paper is to give negative answer to the problem of H. P. Rosenthal. This is
done with the construction of the space Xnqr which has the following properties.

Theorem. There exists a separable Banach space Xnqr with the following
properties:

(1) The space has a boundedly complete Schauder basis (en)n∈N, hence the space
has the RNP .

(2) The space is `2(N) saturated, namely every closed and infinite dimensional
subspace contains an isomorphic copy of `2(N).
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(3) The space Xnqr is non-reflexive.

(4) Every closed, infinite dimensional and non-reflexive subspace has non-se-
parable dual.

The norm in Xnqr is defined to be the completion of a norm on c00(N),
which is defined using a norming set G. The norming set G of the space Xnqr is
defined inductively as a subset of c00(N). Its definition is mainly divided in two
parts.

In the first part using induction we construct a sequence (Tr)r∈N of infi-
nitely branching trees of height ω with each branch of Tr consisting of a block
sequence (φi)i∈N in c00(N). The Tr special functionals are of the form

E

(

1

2

n
∑

i=1

φi

)

where (φ1, . . . , φn) is initial segment of Tr and E is an interval of N. The nodes
φi of the tree Tr are built using special segments of the previous trees and are of
the form

1

mj

d
∑

i=1

ψi

where d ∈ N with d ≤ nj and ψi successive elements of c00(N). For each φ as
above we denote by w(φ) the weight of φ which is equal to mj . To each Tr special
functional x∗ we associate the ind(x∗) be the set of the weights of φi that involves
in the definition of x∗.

In the second stage of the definition of the norming set G we define the
functionals x∗, which are of the form

x∗ =
d
∑

i=1

λix
∗
i

where
d
∑

i=1
λ2

i ≤ 1, x∗i Tri
special functional and the sets ind(x∗i ) pairwise disjoint.

The fact that the norming set G consists of `2 convex combinations of structures
resulting of trees, a property reminding the classical James tree space [10], yields
that the space Xnqr is `2 saturated and this is shown in Section 5. In Section
4 we also show that the space Xnqr has a boundedly complete basis and hence
has the RN property. The latter yields that Xnqr has also the PC property. The
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most delicated part of the proof is the main property of the space, namely that
every non-reflexive subspace Y of Xnqr has non-separable dual. To prove this we
use the sequence of trees (Tr)r∈N described above. In particular we use the fact
that using only one branch of the tree Tr we can produce a dyadic subtree of tree
Tr+1 with each node using exclusively parts of that branch for its definition.

The proof of the property that every closed, non-reflexive subspace of
Xnqr has non-separable dual, uses techniques of the theory of Hereditarily Inde-
composable Banach spaces combining with Ramsey type results, which yield the
following inequality.

Proposition. Let j0 ∈ N and (yk)k∈N be a block sequence of averages
with increasing lengths (as in Remark 7.1).

Then there exists an L ∈ [N] such that for every f ∈ (G\F0) with ind(f) ⊂
{j0 + 1, . . .} we have that

∣

∣

∣

∣

∣

{

n ∈ L : |f(yk)| ≥
2

m2
j0

}∣

∣

∣

∣

∣

≤ 257m4
j0
.

Acknowledgements. I would like to thank professor S. A. Argyros for
suggesting this problem to me and for his valuable support during the preparation
of this work.

2. Preliminaries. We make use of the following standard notation
throughout this article.

Notation

i. We denote by c00(N) the set c00(N) = {f : N → R : f(n) 6= 0 for finitely
many n ∈ N}. For every x ∈ c00(N) we denote by suppx the set suppx =
{n ∈ N : x(n) 6= 0} and by ranx the minimal interval of N that contains
suppx.

ii. We denote by (en)n the standard Hamel basis of c00(N).

iii. Let E1, E2 be two nonempty finite subsets of N. We write E1 < E2 if
maxE1 < minE2. If x1, x2 ∈ c00(N) we write x1 < x2 whenever ranx1 <
ranx2. In addition for a sequence f : N → R and E an interval of N we
denote by Ef the sequence f ·XE , where XE is the characteristic function
of E.



A new hereditarily `2 Banach space 79

iv. We fix two sequences of natural numbers (mj)j and (nj)j defined recursively
as follows. We set m1 = 24 and mj+1 = m5

j and n1 = 27 and nj+1 =

(2nj)sj+1 where sj+1 = log2(m3
j+1), j ≥ 1.

v. For a set A we denote by |A| the cardinality of A and by [A] the set of its
infinite subsets.

3. The norming set G of the space Xnqr. In this section we define
the norming set of the space Xnqr.

Let N =
⋃

k∈N

Lk, Lk ⊂ N, k ∈ N, Lk infinite and pairwise disjoint subsets

of N, Ω1,Ω2 infinite subsets of N with Ω1 ∩ Ω2 = ∅ and (mj)j∈N, (nj)j∈N the
sequences defined before.

We set
F0 = {|qn|e

∗
n : |qn| = 1, n ∈ N}

⋃

{0} and

Fj =

{

1

mj

∑

i∈F

εie
∗
i : F finite with |F | ≤ nj, |εi| = 1, i ∈ F

}

where j ∈ L1.

Let

K1 =





⋃

j∈L1

Fj





⋃

F0,

W1 = {(f1, . . . , fd) : d ∈ N, f1 < . . . < fd, fi ∈ (K1\F0)} and

L1 = {l(1)n : n ∈ N}

We observe that ‖f‖∞ =
1

mj
, f ∈ Fj , j ∈ L1.

Since W1 is countable there exists an injective coding map σ1 : W1 −→

{l
(1)
n : n ∈ Ω2} such that

σ1(f1, . . . , fd) > max{k ∈ L1 : exists i ∈ {1, . . . , d} with fi ∈ Fk}

for all (f1, . . . , fd) ∈W1.
A finite or infinite sequence (fi)i with fi ∈ (K1\F0) is said to be σ1 special

if

(1) fi < fi+1 for all i.

(2) f1 ∈
⋃

n∈Ω1

F
l
(1)
n

and fi+1 ∈ Fσ1(f1,...,fi) for all i.
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If (fi)i is σ1 special sequence, then we define the sequence of indices
(ind(fi))i as follows:

(1) ind(fi) ∈ L1 for all i.

(2) f1 ∈ Find(f1) and ind(f1) ∈ {l1n : n ∈ Ω1}.

(3) ind(fi+1) = σ1(f1, . . . , fi) for all i.

Hence in every σ1 special sequence we correspond the sequence of indices.
The set W1 with the relation

(f1, . . . , fk) ≤1 (g1, . . . , gn) if and only if k ≤ n and fi = gi for all i = 1, . . . , k

is a tree and the set of all finite σ1 special sequences which is denoted with T1 is
a complete subtree of W1. The infinite σ1 branches of the tree T1 are identified
with the set of all infinite σ1 special sequences and the set of finite σ1 branches
with the set of all finite σ1 special sequences. The tree T1 is called the tree of
finite σ1 special sequences.

A σ1 special functional is a sequence of the form

x∗ =
1

2

(

E
∑

i

fi

)

where (fi)i is a σ1 special sequence, E interval of N and
∑

i

fi is a finite or infinite

sum.

E
∑

i

fi denotes the sequence

(

∑

i

fi

)

χE , where χE is the characteristic

function of E.

If E is infinite interval and (fi)i is infinite sequence then the previous sum
is considered in the topology of pointwise convergence.

If E is finite interval then x∗ is said to be finite σ1 special functional and
the set of all these functionals is denoted with S1. The set S1 is said to be the
set of finite σ1 special functionals.

The set of indices of x∗ is defined to be the set:

ind(x∗) = {ind(fi) : E ∩ supp(fi) 6= ∅}.

Therefore we have define the set K1 ⊂ c00(N), the tree T1 of finite σ1 special
sequences and the set S1 of finite σ1 special functionals.

We will define inductively
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i. A sequence (Kr)r∈N of subsets of N.

ii. A sequence (σr)r∈N of injective maps which are called coding maps.

iii. A sequence of trees (Tr)r∈N (each tree Tr is called the tree of finite σr special
sequences).

iv. A sequence of sets (Sr)r∈N (each Sr is called the set of finite σr special
functionals)

as follows:
Let r ∈ N and we assume that the following have been defined

i. The sets K1, . . . ,Kr.

ii. The coding maps σ1, . . . , σr.

iii. The trees T1, . . . , Tr.

iv. The sets S1, . . . , Sr.

Then the set Kr+1 is defined as follows:

Kr+1 =





⋃

j∈Lr+1

Fj





⋃

F0

where

Fj =

{

1

mj

d
∑

i=1

φi : d ∈ N, d ≤ nj, φ1 < · · · < φd,

φi ∈

(

r
⋃

i=1

Ki

)

⋃

(

r
⋃

i=1

Si

)

, i = 1, . . . , d

}

for j ∈ Lr+1.

We observe that ‖f‖∞ ≤
1

mj
, f ∈ Fj , j ∈ Lr+1.

Let
Lr+1 = {l(r+1)

n : n ∈ N} and

Wr+1 = {(f1, . . . , fd) : d ∈ N, f1 < · · · < fd, fi ∈ (Kr+1\F0)},

Wr+1 is countable, so we may choose an injective coding map σr+1 : Wr+1 −→

{l
(r+1)
n : n ∈ Ω2} such that

σr+1(f1, . . . , fd) > max{k ∈ Lr+1 : exists i ∈ {1, . . . , d} with fi ∈ Fk}
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for every (f1, . . . , fd) ∈Wr+1.

A finite or infinite sequence (fi)i with fi ∈ (Kr+1\F0) is called σr+1

special sequence if

(1) fi < fi+1 for all i.

(2) f1 ∈
⋃

n∈Ω1

F
l
(r+1)
n

and fi+1 ∈ Fσr+1(f1,...,fd) for all i.

The sequence of indices of a σr+1 special sequence is defined as in the case of σ1

special sequences.

The set Wr+1 endowed with a relation ≤r+1 which is analogous of that
of W1 is a tree and the set of finite σr+1 special sequences, denoted by Tr+1, is a
complete subtree of Wr+1. The set of infinite σr+1 branches of the tree Tr+1 is
identified with the set of infinite σr+1 special sequences and the set of finite σr+1

branches with the set of finite σr+1 special sequences.

The σr+1 special functionals are defined in a similar way as the σ1 and
the set of finite σr+1 special functionals is denoted with Sr+1.

Analogously we define the set of indices of a σr+1 special functional.

We set

K =

(

⋃

r∈N

Kr

)

⋃

(

⋃

r∈N

Sr

)

and

W = {(f1, . . . , fd) : d ∈ N, f1 < · · · , < fd, fi ∈ (K\F0)}.

A block finite or infinite sequence (fi)i with fi ∈ (K\F0) is said to be σ special
sequence if and only if there exists r ∈ N such that (fi)i is a σr special sequence.

The set W endowed with the relation

(f1, . . . , fk) ≤ (g1, . . . , gn) if and only if

(f1, . . . , fk), (g1, . . . , gn) belong to some Wi and (f1, . . . , fk) ≤i (g1, . . . , gn)

is a tree and the set of finite σ special sequences, denoted with T , is a complete
subtree of W . The set of infinite σ branches of the tree T is identified with the
set of infinite σ special sequences and the set of finite σ branches with the set of
finite σ special sequences.

A sequence x∗ is said to be σ (finite) special functional if and only if there
exists r ∈ N such that x∗ is a (finite) σr special functional.

We denote by S the set
⋃

r∈N

Sr.
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We set

G =

{

d
∑

i=1

aix
∗
i : d ∈ N, ai ∈ Q,

d
∑

i=1

a2
i ≤ 1, x∗i ∈ (K\F0), ind(x∗i ) pairwise disjoint

}

⋃

F0.

The space Xnqr is the completion of (c00(N), ‖ · ‖G) where ‖x‖G = sup{|f(x)| :
f ∈ G}.

Remarks 3.1.

(1) The sets Fj , j ∈ N are closed in restrictions to finite intervals of N.

(2) G is closed in restrictions to finite intervals of N.

(3) If f ∈ G then ‖f‖∞ ≤ 1.

(4) The basis (en)n∈N of Xnqr is bimonotone and ‖en‖G = 1, n ∈ N.

(5) The sets Fj , j ∈ L1 are compact in the topology of pointwise convergence.

4. The basis (en)n∈N of Xnqr is boundedly complete. In this
section we prove that the basis (en)n∈N of Xnqr is boundedly complete. The proof
is based on the definition of Xnqr.

Proposition 4.1. The basis (en)n∈N of Xnqr is boundedly complete.

P r o o f. Assume that the conclusion of the proposition fails. Then there
exist M > 0, ε0 > 0, (an)n∈N sequence of real numbers, (mn)n∈N strictly increas-

ing sequence of natural numbers and un =
mn+1
∑

i=mn+1
aiei, n ∈ N, block of (en)n∈N

such that

(4.1) ‖α1e1 + · · · + αnen‖G ≤M,n ∈ N

and

(4.2) ε0 < ‖un‖G, n ∈ N.

We distinguish the following cases.
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1. Suppose that there exist ε1 > 0 and L ⊂ N infinite with ε1 ≤ ‖un‖∞,
n ∈ L.

We assume without loss of generality that ε1 ≤ ‖un‖∞, n ∈ N.
For each n ∈ N there exists tn ∈ supp(un) such that

|etn(un)| ≥ ε1.

We set

fj =
1

mj

nj
∑

i=1

εie
∗
ti
, |εi| = 1, i = 1, . . . , nj , vj =

nj
∑

i=1

ui

and
kj = max supp(unj

).

Then fj ∈ G, j ∈ N and

nj

mj

· ε1 ≤ fj(vj) = fj





kj
∑

i=1

αiei



 ≤

∥

∥

∥

∥

∥

∥

kj
∑

i=1

αiei

∥

∥

∥

∥

∥

∥

G

≤M, j ∈ L1

a contradiction, since lim
j

nj

mj
= ∞.

2. Suppose that for every ε > 0 and every L ⊂ N infinite, there exists
n ∈ L with ‖un‖∞ < ε.

It is obvious that lim
n

‖un‖∞ = 0. We will prove inductively that

lim
n

sup {|φ(un)| : φ ∈ (Kl ∪ Sl)} = 0, l ∈ N.

Let j ∈ L1. We will show that

lim
n

sup{|f(un)| : f ∈ Fj} = 0.

Let f ∈ Fj . Then f =
1

mj

∑

i∈F

εie
∗
i , |εi| = 1, i ∈ F , |F | ≤ nj. Therefore

|f(un)| =
1

mj

∣

∣

∣

∣

∣

(

∑

i∈G

εie
∗
i

)

(un)

∣

∣

∣

∣

∣

≤
1

mj

nj‖un‖∞ =
nj

mj

‖un‖∞

and thus
lim
n

sup{|f(un)| : f ∈ Fj} = 0, j ∈ L1.
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Let l ∈ N and we assume that

(4.3) lim
n

sup{|φ(un)| : φ ∈ (Ki ∪ Si)} = 0, i = 1, . . . , l.

We will show that if j ∈ Ll+1 then lim
n

sup{|f(un)| : f ∈ Fj} = 0.

Let f ∈ Fj . Then

f =
1

mj

d
∑

i=1

φi, d ≤ nj, φ1 < · · · < φd, φi ∈

(

l
⋃

i=1

Ki

)

⋃

(

l
⋃

i=1

Si

)

, i = 1, . . . , d.

We have that

|f(un)| =

∣

∣

∣

∣

∣

(

1

mj

d
∑

i=1

φi

)

(un)

∣

∣

∣

∣

∣

≤
nj

mj

l
∑

i=1

sup{|φ(un)| : φ ∈ (Ki ∪ Si)}

hence

sup{|f(un)| : f ∈ Fj} ≤
nj

mj

l
∑

i=1

sup{|φ(un)| : φ ∈ (Ki ∪ Si)}.

Equation (4.3) yields

(4.4) lim
n

sup{|f(un)| : f ∈ Fj} = 0, j ∈ Ll+1.

The next step is to show that

lim
n

sup{|φ(un)| : φ ∈ Sl+1} = 0.

Assume the contrary. Then there exist ε1 > 0 and M1 ⊂ N infinite such that

ε1 < sup{|φ(un)| : φ ∈ Sl+1}, n ∈M1.

Without loss of generality we may assume that ε1 < sup{|φ(un)| : φ ∈ Sl+1},
n ∈ N.

The last inequality yields that for every n ∈ N there exists φn ∈ Sl+1 with
ran(φn) ⊂ ran(un) and ε1 < |φn(un)|.

We distinguish the following cases.

2A. The set A = {ind(φn) : n ∈ N} is finite.
Let

⋃

n∈N

ind(φn) = {j1, . . . , jk} ⊂ Ll+1. We have that

|φn(un)| ≤ sup{|f(un)| : f ∈ Fj1} + · · · + sup{|f(un)| : f ∈ Fjk
}, n ∈ N.



86 Giorgos Petsoulas

From equation (4.4) we get that lim
n

|φn(un)| = 0, a contradiction, since

ε1 < |φn(un)|, n ∈ N.

2B. The set A = {ind(φn) : n ∈ N} is infinite.

We may assume without loss of generality that ind(φn) 6= ind(φm) for
every n 6= m. We choose q ∈ N such that

(4.5) q >
2

ε1
·M.

We have that ε1 < |φ1(u1)|. Let

φn = z2
n + ψ2

n, n ≥ 2

where ind(z2
n) ⊂ ind(φ1), n ≥ 2 and min ind(ψ2

n) > max ind(φ1), n ≥ 2.

The set A is infinite, so there exist i2 ≥ 2 with ind(ψ2
n) 6= ∅, n ≥ i2.

Since ε1 < |φn(un)|, n ≥ i2 it follows that for every n ≥ i2 we get

|z2
n(un)| >

ε1
2

or |ψ2
n(un)| >

ε1
2
.

If the set
{

n ∈ N : n ≥ i2 and |z2
n(un)| >

ε1
2

}

is infinite, then following the steps

of case (1) we come to a contradiction.

If the set
{

n ∈ N : n ≥ i2 and |z2
n(un)| >

ε1
2

}

is finite then there exist

j2 > i2 such that

min ind(ψ2
j2

) > max ind(φ1) and |ψ2
j2

(uj2)| >
ε1
2
.

Let

φn = z3
n + ψ3

n, n ≥ j2 + 1

where ind(z3
n) ⊂ ind(φ1) ∪ ind(ψ2

j2
), n ≥ j2 + 1 and min ind(ψ3

n) > max(ind(φ1)

∪ ind(ψ2
j2

)), n ≥ j2 + 1.

Without loss of generality we assume that ind(ψ3
n) 6= ∅, n ≥ j2 + 1.

Since ε1 < |φn(un)|, n ≥ j2 + 1 it follows that for every n ≥ j2 + 1 we get
that

|z3
n(un)| >

ε1
2

or |ψ3
n(un)| >

ε1
2
.

If the set
{

n ∈ N : n ≥ j2 + 1 and |z3
n(un)| >

ε1
2

}

is infinite, then following the

steps of case (1) we come to a contradiction.
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If the set
{

n ∈ N : n ≥ j2 + 1 and |z3
n(un)| >

ε1
2

}

is finite there exists

j3 > j2 with

min ind(ψ3
j3

) > max(ind(φ1) ∪ ind(ψ2
j2

))

and

|ψ3
j3

(uj3)| >
ε1
2
.

Hence we come to a contradiction or we construct functionals ψ2
j2
, . . . , ψq2

j
q2

with

disjoint indices, ran(ψji
) ⊂ ran(uji

), i = 2, . . . , q2 and |ψi
ji

(uji
)| >

ε1
2

,

i = 2, . . . , q2.

The functional

f =
ε1
q
· φ1 +

q2
∑

i=2

εi
q
ψji

, |εi| = 1, i = 1, . . . , q2

belongs to G. We consider the vector

u = u1 +

q2
∑

i=2

uji
.

We have that

|f(u)| =

∣

∣

∣

∣

∣

∣

ε1
q
φ1(u1) +

q2
∑

i=2

εi
q
ψji

(uji
)

∣

∣

∣

∣

∣

∣

≥
1

q
q2
ε1
2

= q
ε1
2

and from (4.5) we get that |f(u)| > M , a contradiction.
Therefore we have proved that lim

n
sup{|φ(un)| : φ ∈ Sl+1} = 0.

In a similar way we prove that lim
n

sup{|φ(un)| : φ ∈ S1} = 0.

It is not hard to see that

lim
n

sup

{

|φ(un)| : φ ∈

(

l
⋃

i=1

Ki

)

⋃

(

l
⋃

i=1

Si

)}

= 0, l ∈ N.

Hence we may construct a subsequence (unl
)l∈N of (un)n∈N such that

|f(unl
)| <

ε0
l2l+1

, l ∈ N, f ∈

(

l
⋃

i=1

Ki

)

⋃

(

l
⋃

i=1

Si

)

.
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From (4.2) we get that ε0 < ‖unl
‖G, l ∈ N, so for every l ∈ N there exist fl ∈ G

with ran(fl) ⊂ ran(unl
) and ε0 < |fl(unl

)|. We choose q ∈ N such that

(4.6) q >
2

ε0
M.

We have that
ε0
2
< ε0 < |f1(un1)|. Let

r1 = max ind(f1)

and
fl = z2

l + ψ2
l , l ≥ 2

where ind(z2
l ) ⊂ {1, . . . , r1}, l ≥ 2 and ind(ψ2

l ) ⊂ {r1 + 1, . . .}, l ≥ 2.
We assume that the special functionals in z2

l , l ≥ 2 belong to S1∪· · ·∪Si1 .
We have that ε0 < |fl(unl

)|, l ≥ 2, hence for every l ≥ 2 it follows that

ε0
2
< |z2

l (unl
)| or

ε0
2
< |ψ2

l (unl
)|.

We set
A2 =

{

l ∈ N : l ≥ 2 and |z2
l (unl

)| >
ε0
2

}

.

The set A2 is finite. Assume the contrary. Then we may choose l1 ∈ A2 with

l1 > max{r1, ii} and thus
ε0
2
< |z2

l1
(unl1

)| < r1
ε0

l12l1+1
<

ε0
2l1+1

, a contradiction.

Therefore there exist j2 ≥ 2 such that

|ψ2
j2

(unj2
)| >

ε0
2

and inf(ψ2
j2

) ⊂ {r1 + 1, . . .}.

Let
r2 = max ind(ψ2

j2
) and fl = z3

l + ψ3
l , l ≥ j2 + 1

where ind(z3
l ) ⊂ {1, . . . , r2}, l ≥ j2 + 1 and ind(ψ3

l ) ⊂ {r2 + 1, . . .}, l ≥ j2 + 1. It
is obvious that r2 > r1.

We assume that the special functionals in z3
l , l ≥ j2 + 1 belong to S1 ∪

· · · ∪ Si2 . We have that

|fl(unl
)| > ε0, l ≥ j2 + 1

so for every l ≥ j2 + 1 it follows that

|z3
l (unl

)| >
ε0
2

or |ψ3
l (unl

)| >
ε0
2
.



A new hereditarily `2 Banach space 89

We set

A3 =
{

l ∈ N : l ≥ j2 + 1 and |z3
l (unl

)| >
ε0
2

}

.

The set A3 is finite. If is infinite then we may choose l2 > max{r2, i2}, so

ε0
2
< |z3

l2
(unl2

)| < r2
ε0

l22l2+1
<

ε0
2l2+1

a contradiction.

Hence there exist j3 > j2 such that |ψ3
j3

(unj3
)| >

ε0
2

.

We may construct functionals ψ2
j2
, . . . , ψq2

j
q2

with disjoint indices and

|ψi
ji

(unji
)| >

ε0
2
, i = 1, . . . , q2.

We consider the functional

f =
ε1
q
f1 +

q2
∑

i=2

εi
q
ψi

ji
, |εi| = 1, i = 1, . . . , q2

which belongs to G and the vector

u = u1 +

q2
∑

i=2

unji
.

We have that

|f(u)| ≥
ε0
2

1

q
q2 = q

ε0
2

and from (4.6) it follows that |f(u)| > M , a contradiction. Therefore (en)n∈N is
boundedly complete.

5. The space Xnqr is `
2 saturated. In this section we prove that

the sequence (Fj)j∈L1 is JTG (Definition 5.1) and Xnqr is `2 saturated.

Definition 5.1. A sequence (Fj)j∈N
�
{0} of subsets of c00(N) is said to

be James tree generating (JTG) provided that satisfies the following conditions:

(1) F0 = {|qn|e
∗
n : |qn| = 1, n ∈ N}

⋃

{0} and each Fj is nonempty, countable,
symmetric, closed in restrictions to intervals of N and compact in the
topology of pointwise convergence.
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(2) Setting τj = sup{‖f‖∞ : f ∈ Fj}, j ∈ N, the sequence (τj)j∈N is strictly

decreasing and
∞
∑

j=1
τ2
j ≤ 1.

(3) For every block sequence (xk)k∈N of c00(N), every j ∈ N
⋃

{0} and every
δ > 0 there exists a vector x ∈< xk : k ∈ N > such that

δ sup

{

f(x) : f ∈
∞
⋃

i=0

Fi

}

> sup{f(x) : f ∈ Fj}.

Lemma 5.1. The sequence (Fj)j∈L1
�
{0} is JTG.

P r o o f. 1. Each Fj , j ∈ L1 is countable, closed in restrictions to intervals
of N and compact in the topology of pointwise convergence.

2. Setting τj = sup{‖f‖∞ : f ∈ Fj}, j ∈ L1 then
∑

j∈L1

τ2
j ≤ 1.

3. For every block sequence (xk)k∈N of c00(N), every j ∈ L1
⋃

{0} and
every δ > 0 there exists a vector x ∈ 〈xk : k ∈ N〉 such that

δ · sup







|f(x)| : f ∈





⋃

j∈L1

Fj





⋃

F0







> sup{|f(x)| : f ∈ Fj}.

We shall prove the last property. Assume the contrary. Then there exists
a block sequence (xk)k∈N of c00(N) with ‖xk‖K1 = 1, k ∈ N, j ∈ L1 ∪ {0} and
there exists δ > 0 such that for every vector x ∈ 〈xk : k ∈ N〉 with x 6= 0 it follows
that

δ · ‖x‖K1 ≤ sup{|f(x)| : f ∈ Fj}.

Therefore

δ ·

∥

∥

∥

∥

∥

n
∑

k=1

αkxk

∥

∥

∥

∥

∥

K1

≤

∥

∥

∥

∥

∥

n
∑

k=1

αkxk

∥

∥

∥

∥

∥

Fj

for every n ≥ 1 and α1, . . . , αn real numbers.

It is obvious that
δ

2
< ‖xk‖Fj

, k ∈ N.

Let j ∈ L1. We observe that

‖xk‖∞ ≥
δmj

2nj

, k ∈ N.
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Assume that there exists k ∈ N with

‖xk‖∞ <
δmj

2nj
.

Let f ∈ Fj . Then f =
1

mj

∑

i∈F

εie
∗
i , |F | ≤ nj, |εi| = 1, i ∈ F . We have

that

|f(xk)| ≤
1

mj

∑

i∈F

‖xk‖∞ <
1

mj
·
δmj

2nj
· |F | ≤

1

mj
·
δmj

2nj
· nj =

δ

2

a contradiction.

Since
δmj

2nj
≤ ‖xk‖∞, k ∈ N it follows that for every k ∈ N there exists

tk ∈ supp(xk) such that

|e∗tk (xk)| ≥
δmj

2nj

.

From the fact that lim
j

nj

mj

= ∞ it follows that there exists j1 > j with
nj1

mj1

>

2n2
j

δ2m2
j

.

We consider the functional f =
1

mj1

nj1
∑

k=1

e∗tk ∈ Fj1 and the vector

x =
nj1
∑

k=1

εxk where |εk| = 1, k.

We have that
δ · ‖x‖K1 ≤ ‖x‖Fj

≤
nj

mj

.

On the other hand

δ‖x‖K1 ≥ δ · f(x) ≥ δ ·
nj1

mj1

·
δmj

2nj

> δ
2n2

j

δ2m2
j

·
δ2mj

2nj

=
nj

mj

a contradiction. Also if j = 0 we come to a contradiction.

Lemma 5.2. Let Y = 〈yn : n ∈ N〉 be a block subspace in Xnqr and let
ε > 0. Then there exists a vector y ∈ Y such that ‖y‖G = 1 and |x∗(y)| < ε for
every x∗ ∈ K.

P r o o f. Since the sequence (Fj)j∈L1
�
{0} is JTG, it follows that the iden-

tity operator id : XG1 −→ YK1
�

S1
is strictly singular. For a proof we refer

Lemma B.11 in [1].
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The set G1 =

{

d
∑

k=1

αkx
∗
k : d ∈ N, αk ∈ Q,

d
∑

k=1

α2
k ≤ 1, x∗k ∈ S1

⋃

(K1\F0)

and ind(x∗k) pairwise disjoint

}

⋃

F0 defines a norm ‖ · ‖G1 on c00(N) by the rule

‖x‖G1 = sup{f(x) : f ∈ G1}.

The space XG1 is the completion of (c00(N), ‖ · ‖G1).

Similarly the space YK1
�

S1
is the completion of (c00(N), ‖·‖K1

�
S1

), where
S1
⋃

K1 is the norming set of this space.

Hence the identity operator id : Xnqr −→ YK1
�

S1
is strictly singular.

We will prove the lemma by induction.

Let r ∈ N, r > 1 and we assume that the identity operators id : Xnqr −→
YKi

�
Si
, i ≤ r are strictly singular. The space YKi

�
Si

is the completion of the
space (c00(N), ‖ · ‖Ki

�
Si

). The norming set for this norm is the set Ki

⋃

Si.

We will prove that the identity operator id : Xnqr −→ YKr+1 is strictly
singular.

Assume the contrary. Then there exists ε0 > 0 and 〈wn : n ∈ N〉 block
subspace of Xnqr such that for every w ∈ 〈wn : n ∈ N〉 with ‖w‖G = 1 there exists
f ∈ Kr+1 with ε0 ≤ |f(w)|.

Therefore for every w ∈ 〈wn : n ∈ N〉 with ‖w‖G = 1 there exists f ∈ Kr+1

with

(5.1) ε0 ≤ |f(w)| ≤ ‖w‖Kr+1 .

It is not hard to see that the identity operator

(5.2) id : Xnqr −→ Y � r�
i=1

Ki � � � r�
i=1

Si � is strictly singular.

From (5.2) we may choose z1 ∈ 〈wn : n ∈ N〉 with ‖z1‖G = 1 such that

‖z1‖Ki

�
Si
<
ε0
2

, i = 1, . . . , r and from (5.1) we get that

‖z1‖Ki

�
Si
<
ε0
2
< ‖z1‖Kλ+1

, i = 1, . . . , r.

There exists I1 finite subset of Lr+1 such that

1

mj

<
ε0
2

·
1

‖z1‖1
for every j ∈ (Lr+1\I1),
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where ‖ · ‖1 is the l1 norm.

Consequently

|f(z1)| <
ε0
2

for every f ∈



Kr+1

∖









⋃

j∈I1

Fj





⋃

F0







 .

From (5.1) and (5.2) we may choose a vector z2 ∈ 〈wn : n ∈ N〉 with z2 > z1,
‖z2‖G = 1 such that

(5.3) ‖z2‖Ki

�
Si
<
ε0
22

·
mmin I1

nmax I1

≤
ε0
2
< ‖z2‖Kr+1, i = 1, . . . , r.

Let f ∈
⋃

j∈I1

Fj . Then f =
1

mj
·

d
∑

i=1
φi, φ1 < · · · < φd, d ≤ nj, φ1, . . . , φd belong

to

(

r
⋃

i=1
Ki

)

⋃

(

r
⋃

i=1
Si

)

.

Using (5.3) we have that

|f(z2)| =
1

mj
·

∣

∣

∣

∣

∣

d
∑

i=1

φi(z2)

∣

∣

∣

∣

∣

≤
nj

mj
·
ε0
22

·
mmin I1

nmax I1

≤
ε0
22
.

Hence

|f(z2)| <
ε0
22

for every f ∈
⋃

j∈I1

Fj .

There exists I2 finite subset of Lr+1, such that

1

mj
<
ε0
22

·
1

‖z2‖1
for every j ∈ (Lr+1\I2).

Hence

|f(z2)| <
ε0
22

for every f ∈



Kr+1

∖









⋃

j∈I2

Fj





⋃

F0







 .

From (5.1) and (5.2) we may choose a vector z3 ∈ 〈wn : n ∈ N〉 with z3 > z2,
‖z3‖G = 1 and

(5.4) ‖z3‖Si
<
ε0
23

·
mmin(I1

�
I2)

nmax(I1
�

I2)
≤
ε0
2
< ‖z3‖Kr+1 , i = 1, . . . , r.
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Using (5.4) we observe that

|f(z3)| ≤
ε0
23

for every f ∈
⋃

j∈(I1
�

I2)

Fj .

There exists I3 finite subset of Lr+1 such that

1

mj

<
ε0
23

·
1

‖z3‖1
for every j ∈ (Lr+1\I3).

Hence

|f(z3)| ≤
ε0
23

for every f ∈



Kr+1

∖









⋃

j∈I3

Fj





⋃

F0







 .

Therefore we inductively construct a sequence (zk)k∈N such that zk ∈ 〈wn : n ∈
N〉, k ∈ N, zk < zk+1, k ∈ N, ‖zk‖G = 1, and a sequence (Ik)k∈N of finite subsets
of Lr+1 such that

(1) ‖zk‖Ki

�
Si
<
ε0
2
< ‖zk‖Kr+1 k ∈ N, i = 1, . . . , r.

(2) |f(zk)| <
ε0
2k

, f ∈

[

Kr+1

∖

((

⋃

j∈Ik

Fj

)

⋃

F0

)]

, k ∈ N.

(3) |f(zk)| <
ε0
2k

, f ∈
⋃

j∈I1
�
···

�
Ik−1

Fj, k ∈ N.

We will prove that

‖z1 + · · · + zk‖Kr+1 ≤ 1 + ε0 for each k ∈ N.

Let k ∈ N and φ ∈ Kr+1.

We distinguish the following cases.

(1) Let φ ∈

(

Kr+1

∖

⋃

j∈I1
�

...
�

Ik

Fj

)

. Then

|φ(z1 + . . . + zk)| ≤ |φ(z1)| + . . . + |φ(zk)| ≤
k
∑

j=1

ε0
2j

≤ 1 + ε0.
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(2) Let φ ∈
⋃

j∈I1

Fj or φ ∈
⋃

j∈Ik\(I1
�

...
�

Ik−1)

Fj . Then

|φ(z1 + . . . + zk)| ≤ |φ(z1)| + (|φ(z2)| + . . . |φ(zk)|) ≤ 1 + ε0.

(3) Let φ ∈
⋃

j∈Ii+1\(I1
�

...
�

Ii)

Fj , 1 < i < k − 1. Then

|φ(z1 + · · · + zk)| ≤ |φ(z1)| + · · · + |φ(zi)| + (|φ(zi+1)| + |φ(zi+2 + · · · + zk)|)

≤
i
∑

j=1

ε0
2j

+ 1 +

k
∑

j=i+2

ε0
2j

≤ 1 + ε0

We have that z1 + · · · + zk ∈ 〈wn : n ∈ N〉, k ∈ N.

For the vector vk =
z1 + · · · + zk

‖z1 + · · · + zk‖G

, k ∈ N we have that

ε0
2
< ‖vk‖Kr+1, hence

ε0
2
‖z1 + · · · + zk‖G < ‖z1 + · · · + zk‖Kr+1 for every k ∈ N.

For the vector z1 we have

ε0
2
< |f1(z1)| ≤ ‖z1‖Kr+1 for some f1 ∈ Kr+1.

The functional f1 belongs to
⋃

j∈I1

Fj .

For the vector z2 we have that

ε0
2
< |f2(z2)| for some f2 ∈ Kr+1.

We observe that f2 ∈

(

⋃

j∈I2

Fj −
⋃

j∈I1

Fj

)

.

For each k ∈ N we choose fk ∈

(

⋃

j∈Ik

Fj

∖

⋃

j∈I1
�

...Ik−1

Fj

)

with ran fk ⊂

ran zk and
ε0
2
< |fk(zk)|.

Let q ∈ N. The functional

f =

q2
∑

i=1

εi
q
· fi where |εi| = 1

belongs to G. Hence

‖z1 + . . . + zq2‖G ≥ f(z1 + . . . + zq2) ≥
ε0
2

1

q
· q2 =

ε0
2
q.



96 Giorgos Petsoulas

We have that

ε20
4
q ≤

ε0
2
‖z1 + . . . + zq2‖G < ‖z1 + . . . + zq2‖Kr+1 ≤ 1 + ε0, q ∈ N

a contradiction.
We have proved that the operator id : Xnqr −→ YKr+1 is strictly singular.

Following the same steps as in Lemma B.11 in [1] we get that if Z be a block
subspace of Xnqr then there exists z ∈ Z with ‖z‖G = 1 such that |x∗(z)| < ε for
every x∗ ∈ Sr+1. Hence the identity operator id : Xnqr −→ YKr+1

�
Sr+1

is strictly
singular. We have proved that the operators id : Xnqr −→ YKn

�
Sn
, n ∈ N are

strictly singular.

We shall show that the identity operator id : Xnqr −→ YK is strictly
singular.

Let ε > 0 and let a sequence (εn)n∈N of positive numbers with lim
n
εn = 0.

It is not hard to see that for every n ∈ N the operator id : Xnqr −→
Y(

� n
i=1 Ki)

�
(

� n
i=1 Si) is strictly singular. Therefore there exists a block sequence

(xn)n∈N of (yn)n∈N with ‖xn‖G = 1, n ∈ N and |x∗(xn)| < εn,

x∗ ∈
[(

K1

⋃

S1

)

⋃

· · ·
⋃

(

Kn

⋃

Sn

)]

, n ∈ N.

We claim that:

If δ > 0, then there exists an infinite subset M of N such that for every
σ branch b, it follows that the set {n ∈ M : |b∗(xn)| ≥ δ} contains at most 1
element.

Assume the contrary. Then there exists δ > 0 such that for every infinite
subset M of N there exist σ branch b such that the set {n ∈ M : |b∗(xn)| ≥ δ}
contains at least 2 elements.

Applying Ramsey theorem for doubletons we may find an L ⊂ N infinite,
such that for every pair n < m ∈ L there exist σ branch bn,m with |b∗n,m(xn)| ≥ δ
and |b∗n,m(xm)| ≥ δ.

Since lim
n
εn = 0 there exist n0 ∈ N with εn < δ, n ≥ n0.

We set L1 = L
⋂

[n0,∞) and let n1 = minL1.

It is obvious that εn < δ, n ≥ n1 and for each n < m ∈ L1 there exist σ
branch bn,m with |b∗n,m(xn)| ≥ δ and |b∗n,m(xm)| ≥ δ.

Let m1 ∈ L1 with m1 > n1.
There exist a σ branch bn1,m1 = b1 with |b∗1(xn1)| ≥ δ and |b∗1(xm1)| ≥ δ.

Let x∗1 = E1b
∗
1 where E1 = [min supp(xn1),max supp(xm1)].

Then |x∗1(xn1)| ≥ δ and |x∗1(xm1)| ≥ δ.
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Since the functional x∗1 does not belong to (K1
⋃

S1)
⋃

· · ·
⋃

(Km1

⋃

Sm1)
there exists d2 > m1 with x∗1 ∈ (Kd2

⋃

Sd2)\F0.

Let m2 ∈ L1 with m2 > d2.

There exists a σ branch bn1,m2 = b2 with |b∗2(xn1)| ≥ δ and |b∗2(xm2)| ≥ δ.

Let x∗2 = E2b
∗
2 where E2 = [min supp(xn1),max supp(xm2)].

Then |x∗2(xn1)| ≥ δ and |x∗2(xm2)| ≥ δ. The functional x∗2 does not belong
to (K1

⋃

S1)
⋃

· · ·
⋃

(Km2

⋃

Sm2), so the functionals x∗1, x
∗
2 have disjoint indices.

We inductively construct a sequence (x∗n)n∈N of σ special functionals with
disjoint indices and |x∗n(xn1)| ≥ δ, n ∈ N.

Let q ∈ N. The functional

f =

q2
∑

i=1

εi
q
x∗i , |εi| = 1, i = 1, . . . , q2

belongs to G. We have that

f(xn1) =

q2
∑

i=1

εi
q
x∗i (xn1) =

q2
∑

i=1

1

q
|x∗i (xn1)| ≥ qδ.

Therefore

qδ ≤ |f(xn1)| ≤ 1, q ∈ N

a contradiction.

Using again the same techniques as in Lemma B.11 in [1] and the fact
that the operators id : Xnqr −→ Y(

� n
i=1 Ki)

�
(

� n
i=1 Si), n ∈ N are strictly singular

we get a vector y ∈ 〈yn, n ∈ N〉 with ‖y‖G = 1 and |x∗(y)| < ε, x∗ ∈ K.

The following Lemma is similar to a corresponding result in [1, Lemma
B.13].

Lemma 5.3. For every x ∈ c00(N) and every ε > 0 there exists d ∈ N

such that for every g ∈ (G\F0) with ind(g)∩{1, . . . , d} = ∅ we have that |g(x)| < ε.

Combining Lemmas 5.2 and 5.3 we may construct in every block subspace
of Xnqr a block sequence which is equivalent with the usual basis of `2(N). The
proof of Theorem 5.1 follows the lines of Theorem B.14 in [1].

Theorem 5.1. Let Y be a closed, infinite dimensional subspace of Xnqr.
Then for every ε > 0 there exists a subspace of Y , which is 1+ε isomorphic to `2.
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6. The dual space X
∗

nqr
. In this section is studied the structure of

X
∗
nqr. Proposition 6.1 is similar to Proposition B.15 ([1]). The proof of Proposi-

tion 6.1 makes use of the fact that Xnqr does not contain an isomorphic copy of
`1(N).

Proposition 6.1. For the dual space X
∗
nqr we have that

X
∗
nqr = span{e∗n : n ∈ N} ∪ {b∗ : b σ infinite branch}.

Also the basis (en)n∈N of Xnqr is weakly null.

P r o o f. The space Xnqr is `2 saturated, so does not contain an isomorphic
copy of `1. From Haydon’s [9] theorem we get that

(6.1) BX∗
nqr

= convextBX∗
nqr
.

Since G is the norming set of the space Xnqr it follows that

BX∗
nqr

= convG
w∗

.

It is not hard to see that BX∗
nqr

= convG
w∗w∗

, hence extBX∗
nqr

⊂ G
w∗

. Combining
this with (6.1) we get that

X
∗
nqr = 〈G

w∗

〉.

As is shown in Proposition B.15 in [1] the following holds: G
w∗

= F0
⋃

{∞
∑

i=1
αix

∗
i :

∞
∑

i=1
α2

i ≤ 1, αi ∈ Q, x∗i finite or infinite σ special functionals with disjoint indices
}

,

hence the first part of the proposition is proved.
For the second part of Proposition it clearly suffices to show that lim

n
b∗(en)

= 0 for every σ branch b.
If b is finite σ branch then the sequence (b∗(en))n∈N.
Let b = (fn)n∈N an infinite branch. From the fact that lim

n
‖fn‖∞ = 0 it

follows that (b∗(en))n∈N is a null sequence.

7. Rapidly increasing sequences in Xnqr. We begin by the defi-
nition of a Rapidly Increasing Sequence (RIS).

Definition 7.1. Let (xn)n∈N be a block sequence in Xnqr and C, ε positive
numbers. The sequence (xn)n∈N will be called (C, ε) RIS (Rapidly Increasing
Sequence) if the following hold
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(1) ‖xn‖G ≤ C, n ∈ N.

(2) There exists a strictly singular sequence of natural numbers (jn)n∈N such

that
| supp(xn)|

mjn+1

< ε, n ∈ N and if n ∈ N, f ∈ (K\F0) with w(f) = mi,

i < jn then |f(xn)| ≤
C

mi

.

We notice that for an f ∈ (K\F0) of the form f =
1

mj

d
∑

i=1
fi, d ≤ nj, fi ∈ (K\F0),

i = 1, . . . , nj we say that f has weight mj and we write w(f) = mj.

Definition 7.2. Let j0 ∈ N and (xn)n∈N be a (C, ε) RIS with 0 < ε <
5

m2
j0

and (jn)n its associated sequence of natural numbers. We will call (xn)n∈N

j0-separated if the following are satisfied:

1. j1 > j0.

2. For every functional f ∈ (K\F0) with w(f) > mj0 we have that
∣

∣

∣

∣

∣

{

n ∈ N : |f(xn)| ≥
5

m2
j0

}∣

∣

∣

∣

∣

≤ 1.

3. For every special functional x∗ with ind(x∗) ⊂ {j0 + 1, . . .}, we have that
∣

∣

∣

∣

∣

{

n ∈ N : |x∗(xn)| ≥
10

m2
j0

}∣

∣

∣

∣

∣

≤ 2.

4. For every f ∈ G with ind(f) ⊂ {j0 + 1, . . .}, we have that
∣

∣

∣

∣

∣

{

n ∈ N : |f(xn)| ≥
2

m2
j0

}∣

∣

∣

∣

∣

≤ 257m4
j0
.

The next step is to prove that for a j0 ∈ N and a bounded block sequence
of averages with increasing lengths in Xnqr, there exists a subsequence which is
j0-separated.

The proof of the following lemma follows the same steps as in [5, Lemma
II.23].

Lemma 7.1. Let x ∈ Xnqr be a (M,k)-average, M > 0, k ∈ N, i.e. an

average of the form x =
1

k
(x1 + · · · + xk), where
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i. x1, . . . , xk ∈ 〈en, n ∈ N〉

ii. x1 < . . . < xk

iii. ‖xi‖G ≤M , i = 1, . . . , k

and f ∈ (K\F0) with w(f) = mi. Then

|f(x)| ≤
M

mi

(

1 +
2ni

k

)

.

Lemma 7.2. Let ε > 0 and (xn)n∈N be a block sequence in Xnqr such that
each xn is a (M, ln) average, where (ln)n∈N is a strictly increasing sequence of

natural numbers. Then there exists a subsequence of (xn)n∈N which is

(

3M

2
, ε

)

RIS.

The proof of Lemma 7.2 follows the lines of Proposition II.25 in [5].

Remark 7.1. Let (zk)k∈N be a normalized block sequence in Xnqr.
We set

yk =
1

nk

∑

i∈Fk

zi, k ∈ N

where |Fk| = nk, Fk < Fk+1, k ∈ N.
Since ‖yk‖G ≤ 1, k ∈ N and Xnqr does not contain an isomorphic copy of

`1 (Theorem 5.1), it follows from Rosenthal’s `1 theorem [15] that there exists a
subsequence of (yk)k∈N which is w-Cauchy.

Without loss of generality we may assume that (yk)k∈N is w-Cauchy.
We set xk = y2k−1 − y2k, k ∈ N. The sequence (xk)k∈N is weakly null and

‖xk‖G ≤ 2, k ∈ N.
If f ∈ (K\F0) with w(f) = mi then Lemma 7.1 yields

|f(xk)| ≤ |f(y2k−1)| + |f(y2k)| ≤
2

mi

(

1 +
2ni

F2k−1

)

, k ∈ N.

Hence if ε > 0, then from Lemma 7.2 it follows that there exists an L ∈ [N] such
that the sequence (xk)k∈L is (3, ε) RIS.

Therefore without loss of generality we can assume that every (xk)k∈N

which is a (3, ε) RIS is weakly null.
For the rest of this paper we will assume that every (3, ε) RIS we consider

is weakly null, unless stated otherwise.
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Lemma 7.3. Let j0 ∈ N and (xk)k∈N be a (3, ε) RIS with 0 < ε <
5

m2
j0

.

Assume that the sequence (jn)n associated to the RIS sequence satisfies j1 > j0.
Then for every f ∈ (K\F0) with w(f) > mj0 we have that

∣

∣

∣

∣

∣

{

k ∈ N : |f(xk)| ≥
5

m2
j0

}∣

∣

∣

∣

∣

≤ 1.

For a proof of Lemma 7.3 we refer Lemma 5.2 in [14].

Lemma 7.4. Let j0 ∈ N and (xk)k∈N be a (3, ε) RIS with 0 < ε <
5

m2
j0

. Assume that the sequence (jn)n associated to the RIS sequence satisfies

j1 > j0. Then there exists a L ∈ [N] such that for every special functional x∗,

with ind(x∗) ⊂ {j0 + 1, . . .}, we have that

∣

∣

∣

∣

∣

{

k ∈ L : |x∗(xk)| ≥
10

m2
j0

}∣

∣

∣

∣

∣

≤ 2.

The proof of Lemma 7.4 follows the lines of Lemma 5.3 in [14].

Proposition 7.1. Let j0 ∈ N and (yk)k∈N be a block sequence of averages
with increasing lengths (as in Remark 7.1).

Then there exists an L ∈ [N] such that for every f ∈ (G\F0) with ind(f) ⊂

{j0 + 1, . . .} we have that

∣

∣

∣

∣

∣

{

k ∈ L : |f(yk)| ≥
2

m2
j0

}∣

∣

∣

∣

∣

≤ 257m4
j0

.

The proof of the above Proposition is identical of Proposition 5.1 in [14].
All the above yield the following

Proposition 7.2. Let j0 ∈ N, 0 < ε <
5

m2
j0

and (yk)k∈N be a block

sequence of averages with increasing lengths. (as in Remark 7.1). We set xk =
y2k−1 − y2k, k ∈ N. Then there exists an L ∈ [N] such that (xk)k∈L is (3, ε) RIS
and j0-separated.

Analogous Proposition can be found in [14]. (Proposition 5.2)

Remark 7.2. Let j0 ∈ N, 0 < ε <
5

m2
j0

and (yk)k∈N be a block sequence

of averages with increasing lengths. (as in Remark 7.1).
In the sequel we will assume without loss of generality that there exists

an L ∈ [N] such that (yk)k∈L is (3, ε) RIS and j0-separated.

8. The basic inequality. The purpose of this section is to prove Basic
Inequality, which will be used in the next chapter. Similar results exist in the
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papers [3], [2], [14]. The Basic Inequality is a method, which has been developed
and attributes estimates of sums of block sequences with certain properties to
estimates of sums of the basis of a mixed type Tsirelson space.

Specificly if (xk)k∈N is a (C, ε) R. I. S.

(

0 < ε <
5

mj0

)

sequence in

Xnqr, which is j0 separated, then calculations of the form f

(

∑

k

λkxk

)

, f ∈

(
⋃

n∈N
Kn

)

\F0 are transformed into calculations of the form g1

(

∑

k

|λk|ek

)

and

g2

(

∑

k

|λk|ek

)

where g1 ∈W , g2 ∈ c00(N) with ‖g2‖∞ ≤ ε.

The set W is the norming set of the space T , which is called the auxiliary

space. In this space we estimate sums of the form
ek1 + · · · + eknj

nj
where j ∈ N

and k1 < . . . < knj
are natural numbers.

Definition 8.1. We denote by W the minimal subset of c00(N) such that:

(1) {εne
∗
n, n ∈ N, |εn| = 1} ⊂W .

(2) W is closed under the operations

(

A2nj
,

1

mj

)

j∈N

, i. e for every j ∈ N, d ≤

2nj and for every f1 < · · · < fd in W it follows that
1

mj
(f1 + · · · + fd) ∈

W .

(3) W is closed under the operation

(

A4,
1

2

)

, i.e. for every d ∈ N with d ≤ 4

and for every f1 < · · · < fd in W it follows that
1

2
(f1 + · · · + fd) ∈W .

The set W defines a norm on c00(N) by the rule ‖x‖W = sup{|f(x)| : f ∈ W},
x ∈ c00(N). The completion of (c00(N), ‖ · ‖W ) is denoted by T .

Lemma 8.1. Let f ∈ W , j ∈ N and k1 < . . . < knj
natural numbers.

Then
∣

∣

∣

∣

∣

f

(

1

nj

nj
∑

r=1

ekr

)∣

∣

∣

∣

∣

≤















2

mimj

if w(f) = mi, i < j

1

mi
if w(f) = mi, i ≥ j

.

Also

∥

∥

∥

∥

1

nj

nj
∑

r=1
ekr

∥

∥

∥

∥

W

=
1

mj

.
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For a proof of the above Lemma we refer to Lemma 3.16 and Proposition
3.19 in [4].

Proposition 8.1 (basic inequality). Let j0 ∈ N, j0 ≥ 3 and (xk)k∈N a

(C, ε) RIS sequence on Xnqr, 0 < ε <
5

m2
j0

, C ≥ 1 which is j0-separated with

min supp(x1) > mj0.
Let also (λn)n∈N is a sequence of real numbers.
Then for every f ∈

(
⋃

n∈N
Kn

)

\F0 there exist g1, g2 on c00(N) with non-
negative coordinates where

(1) g1 ∈W with w(g1) = w(f)

(2) ‖g2‖∞ ≤
5

m2
j0

such that for every n ∈ N we have that
∣

∣

∣

∣

∣

f

(

n
∑

k=1

λkxk

)∣

∣

∣

∣

∣

≤ 2C(g1 + g2)

(

n
∑

k=1

|λk|ek

)

.

The proof of the above Basic Inequality follows the arguments of Ba-
sic inequality(Proposition 6.1) in [14]. The only difference is that in the set
(
⋃

n∈N
Kn

)

\F0 do not appear `2 convex combinations as in the case of Basic
Inequality in [14]. Consequently the proof of Basic Inequality in this paper is
simpler than the corresponding one. Also the norming set W of the auxiliary
space T is more simple. Finally we notice that the Condition 4 of Definition
7.2 is unnecessary in the proof of Basic Inequality in this paper. However this
condition is necessary in the following lemma.

Lemma 8.2. Let j0 ∈ N with j0 > 1 and (xk)k∈N a (C, ε) R.I.S sequence

on Xnqr, 0 < ε <
5

m2
j0

, C ≥ 1 which is j0-separated.

Let also k1 < · · · < knj0
natural numbers.

Then there exists M > 0 which depends only on C > 0 such that
∥

∥

∥

∥

xk1 + · · · + xknj0

nj0

∥

∥

∥

∥

G

≤
M

mj0

.

P r o o f. Let f ∈ (G\F0). Then f =
d
∑

i=1
αix

∗
i where αi ∈ Q,

d
∑

i=1
α2

i ≤ 1

and x∗i ∈ S, i = 1, . . . , d have pairwise disjoint indices.
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Let f = f0+g+h where w(f0) = mj0 , g =
d
∑

i=1
αix

∗
i,<j0

and h =
d
∑

i=1
αix

∗
i,>j0

.

We set x =
xk1 + · · · + xknj0

nj0

.

From Lemma 7.1 we get that

|f0(x)| ≤
C

mj0

(

1 +
2nj0

nj0

)

=
3C

mj0

.

Since (xk)k∈N is j0-separated we have that

|h(x)| ≤
C · 257m4

j0
+ 2

m2
j0

(nj0 − 257m4
j0

)

nj0

≤
C

mj0

+
2

mj0

=
C + 2

mj0

.

Also

|g(x)| ≤
d
∑

i=1

|x∗i,<j0
(x)| ≤

∑

i∈A

|fi(x)|

where fi ∈
(
⋃

n∈N
Kn

)

\F0 with w(fi) = mi and |A| ≤ j0.
Let i ∈ A. Using basic inequality we get that

|fi(x)| ≤ 2C(gi
1 + gi

2)

(ek1 + · · · + eknj0

nj0

)

where, gi
1 ∈W,w(gi

1) = w(fi) and ‖gi
2‖∞ ≤

5

m2
j0

. Hence

|fi(x)| ≤ 2C(
2

mimj0

+
5

m2
j0

) and thus

|g(x)| ≤ 2C

[

∑

i∈A

(

2

mimj0

+
5

m2
j0

)]

≤ 2C

(

2

mj0

+ j0
5

m2
j0

)

≤ 2C

(

2

mj0

+
5

mj0

)

=
14C

mj0

Finally |f(x)| ≤
18C + 2

mj0

, so letting M = 18C + 2 we get that ‖x‖G ≤
M

mj0

.

9. Every non-reflexive subspace of Xnqr has non separable
dual. We pass to the final section where we prove the next Theorem.
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Theorem 9.1. Let Y a closed, infinite and non-reflexive subspace of
Xnqr. Then Y ∗ is non-separable.

P r o o f. It is enough to prove the conclusion for the block subspaces of
Xnqr.

Let Y = 〈yn, n ∈ N〉 a non-reflexive block subspace of Xnqr. Since the
subspace Y is non-reflexive, James classical theorem [12] yields that the se-
quence (yn)n∈N is not shrinking. Therefore there exist (zn)n∈N a block sequence
of (yn)n∈N, ε0 > 0 and x∗ ∈ X

∗
nqr such that:

i. ‖zn‖G = 1, n ∈ N

ii. ε0 < |x∗(zn)|, n ∈ N

Using Proposition 6.1 it is not hard to prove that there exist ε1 > 0 and an
infinite σ branch b such that for the functional b∗ holds

ε1 < b∗(zn), n ∈ N.

Let b be a σr branch, where r ∈ N.

We will prove that Y ∗ is non-separable. It is enough to show that if
Z = 〈zn, n ∈ N〉 then Z∗ is non-separable.

We consider the sequence vk =
1

nk

∑

i∈Fk

zi, k ∈ N where Fk ⊂ N, |Fk| = nk,

Fk < Fk+1, k ∈ N.

We observe that

(1) ‖vk‖G ≤ 1, k ∈ N.

(2) b∗(vk) = b∗

(

1

nk

∑

i∈Fk

zi

)

> ε1, k ∈ N.

Since b∗(vk) ≥ ε1, k ∈ N it follows that for every k ∈ N there exists

x∗k ∈ Sr with ran(x∗k) ⊂ ran(vk) such that ε1 < x∗k(vk).

We notice that x∗k is the restriction of b∗ on the interval ran(vk) = [min supp(vk),
max supp(vk)].

Using the dyadic tree we construct along of his branches uncountable
σr+1 special sequences such that considering these as functionals on Z, any two
of them have big distance.
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We notice that for a j ∈ N, 0 < ε <
5

m2
j

there exists an L ∈ [N] such that

(vk)k∈L is (3, ε) RIS and j-separated (Remark 7.2).

Let D the dyadic tree. Inductively we construct (xα, fα, jα)α∈D (the
induction is in the lexicographic order of D) such that

(1) For every α ∈ D we have that xα =
1

njα

∑

i∈Λα

vi and fα =
1

mjα

∑

i∈Λα

x∗i where

Λα ⊂ N, |Λα| = njα.

(2) j∅ ∈ Ω1, j∅ > 1, mj∅ > 257 and for every α ∈ D with α 6= ∅ it follows that
jα = σr+1((fβ)β<α).

(3) if α <lex β then Λα < Λβ.

(4) if a ∈ D and Sa = {b, c} are the immediate successors of a then Λa < Λb,
Λa < Λc and Λb,Λc are successive.

(5) if a ∈ D then (vi)i∈Λa is (3, ε) RIS

(

0 < ε <
5

m2
ja

)

and ja separated.

We observe that fα(xα) ≥
ε1
mjα

for every α ∈ D and also from Lemma 8.2 we

have that ‖xa‖G ≤M for all α ∈ D.

Let (fα)α∈b1 , (fα)α∈b2 2 σr+1 special sequences and b1, b2 different bran-
ches of the dyadic tree.

We consider the functionals gb1 =
∑

α∈b1

fα and gb2 =
∑

α∈b2

fα.

Since b1 6= b2 we may assume that there exists α ∈ (b1\b2). We have that

‖gb1 |Z − gb2 |Z‖ ≥
(gb1 − gb2)(xα)

‖xα‖G
=
gb1(xα)

‖xα‖G
=
fα(xα)

‖xα‖G
≥

ε0
mjα

mjα

M
=
ε0
M
.

Corollary 9.1. The space Xnqr does not contain any quasi-reflexive and
non-reflexive subspace.

P r o o f. Assume the contrary. Then there exists a quasi-reflexive and
non-reflexive subspace Y of Xnqr, i. e. 0 < dimY ∗∗/Y < ∞. From this it
follows that Y ∗∗/Y is separable and since Y is also separable we get that Y ∗∗ is
separable. Therefore Y ∗ is separable which contradicts to Theorem 9.1.
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