Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

A NEW HEREDITARILY ℓ^{2} BANACH SPACE

Giorgos Petsoulas
Communicated by S. Argyros

Abstract

We construct a non-reflexive, ℓ^{2} saturated Banach space such that every non-reflexive subspace has non-separable dual.

1. Introduction. The aim of the present paper is to provide a new Banach space denoted by $\mathfrak{X}_{n q r}$ which answers a question posed by H. P. Rosenthal. More precisely H. P. Rosenthal had asked if every non-reflexive Banach space X, which is reflexively saturated must contain a proper quasi-reflexive subspace (i.e. a subspace Y such that $\left.0<\operatorname{dim} Y^{* *} / Y<\infty\right)$. We answer this question in negative. Namely the space $\mathfrak{X}_{n q r}$ is ℓ^{2} saturated and every non-reflexive subspace has non-separable dual.

In the following paragraphs we present a historical overview of Rosenthal's problem and we analyze the main features of the space $\mathfrak{X}_{n q r}$ and its basic properties.

The class of quasi-reflexive Banach spaces is established with the famous James space J constructed in the early 50 's, by R. C. James [11] and is the class of non-reflexive Banach spaces which are nearest to reflexive ones.

As P. Civin and B. Yood [7] have proved every quasi-reflexive Banach space is reflexively saturated, this result has been generalized by W. Johnson and H. P. Rosenthal [13] to the class of separable Banach spaces X with separable second dual $X^{* *}$.

We recall the definition of two well known classes of Banach spaces.
Definition I. A Banach space X has the RNP (Radon-Nikodym property) if every closed and bounded subset of X is dentable. A non empty subset F of X is dentable, if for every $\epsilon>0$ there exists $x_{\epsilon} \in F$, which does not belong to $\overline{\operatorname{conv}}\left(F \backslash S\left(x_{\epsilon}, \epsilon\right)\right)$.

Also
Definition II. A Banach space $(X,\|\cdot\|)$ has the PCP (Point Continuity Property), if for every non-empty and closed subset F of X, the identity operator id $:(F, w) \longrightarrow(F,\|\cdot\|)$ has at least one point of continuity.

It is known that if X is a Banach space with separable X^{*} then X^{*} has the $R N P$ and if X has the $R N P$ then has the $P C P$. It is obvious that if X is a Banach space with separable $X^{* *}$, then X has the $P C P$.
S. F. Bellenot [6] and C. Finet [8] proved independently, in 1987, the following theorem:

Theorem I. If X is a non-reflexive Banach space which has the PCP and X^{*} is separable, then every non-trivial w-cauchy sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ contains a subsequence $\left(x_{k_{n}}\right)_{n \in \mathbb{N}}$ which is boundedly complete and $\operatorname{dim} Y^{* *} / Y=1$, where $Y=\overline{\left\langle x_{k_{n}}, n \in \mathbb{N}\right\rangle}$.

The aforementioned problem posed by Rosenthal is restated as follows.
Problem. Does every non-reflexive and reflexively saturated Banach space X with the PCP, contains a strictly quasi-reflexive subspace?

In the case of a Banach space X which has also separable dual the answer is affirmative according to the theorem of Bellenot and Finet. The main goal of this paper is to give negative answer to the problem of H. P. Rosenthal. This is done with the construction of the space $\mathfrak{X}_{n q r}$ which has the following properties.

Theorem. There exists a separable Banach space $\mathfrak{X}_{n q r}$ with the following properties:
(1) The space has a boundedly complete Schauder basis $\left(e_{n}\right)_{n \in \mathbb{N}}$, hence the space has the $R N P$.
(2) The space is $\ell^{2}(\mathbb{N})$ saturated, namely every closed and infinite dimensional subspace contains an isomorphic copy of $\ell^{2}(\mathbb{N})$.
(3) The space $\mathfrak{X}_{n q r}$ is non-reflexive.
(4) Every closed, infinite dimensional and non-reflexive subspace has non-separable dual.

The norm in $\mathfrak{X}_{n q r}$ is defined to be the completion of a norm on $c_{00}(\mathbb{N})$, which is defined using a norming set G. The norming set G of the space $\mathfrak{X}_{n q r}$ is defined inductively as a subset of $c_{00}(\mathbb{N})$. Its definition is mainly divided in two parts.

In the first part using induction we construct a sequence $\left(T_{r}\right)_{r \in \mathbb{N}}$ of infinitely branching trees of height ω with each branch of T_{r} consisting of a block sequence $\left(\phi_{i}\right)_{i \in N}$ in $c_{00}(\mathbb{N})$. The T_{r} special functionals are of the form

$$
E\left(\frac{1}{2} \sum_{i=1}^{n} \phi_{i}\right)
$$

where $\left(\phi_{1}, \ldots, \phi_{n}\right)$ is initial segment of T_{r} and E is an interval of \mathbb{N}. The nodes ϕ_{i} of the tree T_{r} are built using special segments of the previous trees and are of the form

$$
\frac{1}{m_{j}} \sum_{i=1}^{d} \psi_{i}
$$

where $d \in \mathbb{N}$ with $d \leq n_{j}$ and ψ_{i} successive elements of $c_{00}(\mathbb{N})$. For each ϕ as above we denote by $w(\phi)$ the weight of ϕ which is equal to m_{j}. To each T_{r} special functional x^{*} we associate the ind $\left(x^{*}\right)$ be the set of the weights of ϕ_{i} that involves in the definition of x^{*}.

In the second stage of the definition of the norming set G we define the functionals x^{*}, which are of the form

$$
x^{*}=\sum_{i=1}^{d} \lambda_{i} x_{i}^{*}
$$

where $\sum_{i=1}^{d} \lambda_{i}^{2} \leq 1, x_{i}^{*} T_{r_{i}}$ special functional and the sets $\operatorname{ind}\left(x_{i}^{*}\right)$ pairwise disjoint. The fact that the norming set G consists of ℓ^{2} convex combinations of structures resulting of trees, a property reminding the classical James tree space [10], yields that the space $\mathfrak{X}_{n q r}$ is ℓ^{2} saturated and this is shown in Section 5. In Section 4 we also show that the space $\mathfrak{X}_{n q r}$ has a boundedly complete basis and hence has the RN property. The latter yields that $\mathfrak{X}_{n q r}$ has also the PC property. The
most delicated part of the proof is the main property of the space, namely that every non-reflexive subspace Y of $\mathfrak{X}_{n q r}$ has non-separable dual. To prove this we use the sequence of trees $\left(T_{r}\right)_{r \in \mathbb{N}}$ described above. In particular we use the fact that using only one branch of the tree T_{r} we can produce a dyadic subtree of tree T_{r+1} with each node using exclusively parts of that branch for its definition.

The proof of the property that every closed, non-reflexive subspace of $\mathfrak{X}_{n q r}$ has non-separable dual, uses techniques of the theory of Hereditarily Indecomposable Banach spaces combining with Ramsey type results, which yield the following inequality.

Proposition. Let $j_{0} \in \mathbb{N}$ and $\left(y_{k}\right)_{k \in \mathbb{N}}$ be a block sequence of averages with increasing lengths (as in Remark 7.1).

Then there exists an $L \in[\mathbb{N}]$ such that for every $f \in\left(G \backslash F_{0}\right)$ with $\operatorname{ind}(f) \subset$ $\left\{j_{0}+1, \ldots\right\}$ we have that

$$
\left|\left\{n \in L:\left|f\left(y_{k}\right)\right| \geq \frac{2}{m_{j_{0}}^{2}}\right\}\right| \leq 257 m_{j_{0}}^{4}
$$

Acknowledgements. I would like to thank professor S. A. Argyros for suggesting this problem to me and for his valuable support during the preparation of this work.
2. Preliminaries. We make use of the following standard notation throughout this article.

Notation

i. We denote by $c_{00}(\mathbb{N})$ the set $c_{00}(\mathbb{N})=\{f: \mathbb{N} \rightarrow \mathbb{R}: f(n) \neq 0$ for finitely many $n \in \mathbb{N}\}$. For every $x \in c_{00}(\mathbb{N})$ we denote by $\operatorname{supp} x$ the set $\operatorname{supp} x=$ $\{n \in \mathbb{N}: x(n) \neq 0\}$ and by ran x the minimal interval of \mathbb{N} that contains $\operatorname{supp} x$.
ii. We denote by $\left(e_{n}\right)_{n}$ the standard Hamel basis of $c_{00}(\mathbb{N})$.
iii. Let E_{1}, E_{2} be two nonempty finite subsets of \mathbb{N}. We write $E_{1}<E_{2}$ if $\max E_{1}<\min E_{2}$. If $x_{1}, x_{2} \in c_{00}(\mathbb{N})$ we write $x_{1}<x_{2}$ whenever ran $x_{1}<$ $\operatorname{ran} x_{2}$. In addition for a sequence $f: \mathbb{N} \rightarrow \mathbb{R}$ and E an interval of \mathbb{N} we denote by $E f$ the sequence $f \cdot X_{E}$, where X_{E} is the characteristic function of E.
iv. We fix two sequences of natural numbers $\left(m_{j}\right)_{j}$ and $\left(n_{j}\right)_{j}$ defined recursively as follows. We set $m_{1}=2^{4}$ and $m_{j+1}=m_{j}^{5}$ and $n_{1}=2^{7}$ and $n_{j+1}=$ $\left(2 n_{j}\right)^{s_{j+1}}$ where $s_{j+1}=\log _{2}\left(m_{j+1}^{3}\right), j \geq 1$.
v. For a set A we denote by $|A|$ the cardinality of A and by $[A]$ the set of its infinite subsets.
3. The norming set \boldsymbol{G} of the space $\mathfrak{X}_{\boldsymbol{n q r}}$. In this section we define the norming set of the space $\mathfrak{X}_{n q r}$.

Let $\mathbb{N}=\bigcup_{k \in \mathbb{N}} L_{k}, L_{k} \subset \mathbb{N}, k \in \mathbb{N}, L_{k}$ infinite and pairwise disjoint subsets of $\mathbb{N}, \Omega_{1}, \Omega_{2}$ infinite subsets of \mathbb{N} with $\Omega_{1} \cap \Omega_{2}=\emptyset$ and $\left(m_{j}\right)_{j \in \mathbb{N}},\left(n_{j}\right)_{j \in \mathbb{N}}$ the sequences defined before.

We set

$$
F_{0}=\left\{\left|q_{n}\right| e_{n}^{*}:\left|q_{n}\right|=1, n \in \mathbb{N}\right\} \bigcup\{0\} \text { and }
$$

$$
F_{j}=\left\{\frac{1}{m_{j}} \sum_{i \in F} \epsilon_{i} e_{i}^{*}: F \text { finite with }|F| \leq n_{j},\left|\epsilon_{i}\right|=1, i \in F\right\} \text { where } j \in L_{1}
$$

Let

$$
\begin{gathered}
K_{1}=\left(\bigcup_{j \in L_{1}} F_{j}\right) \bigcup F_{0}, \\
W_{1}=\left\{\left(f_{1}, \ldots, f_{d}\right): d \in \mathbb{N}, f_{1}<\ldots<f_{d}, f_{i} \in\left(K_{1} \backslash F_{0}\right)\right\} \text { and } \\
L_{1}=\left\{l_{n}^{(1)}: n \in \mathbb{N}\right\}
\end{gathered}
$$

We observe that $\|f\|_{\infty}=\frac{1}{m_{j}}, f \in F_{j}, j \in L_{1}$.
Since W_{1} is countable there exists an injective coding map $\sigma_{1}: W_{1} \longrightarrow$ $\left\{l_{n}^{(1)}: n \in \Omega_{2}\right\}$ such that

$$
\sigma_{1}\left(f_{1}, \ldots, f_{d}\right)>\max \left\{k \in L_{1}: \text { exists } i \in\{1, \ldots, d\} \text { with } f_{i} \in F_{k}\right\}
$$

for all $\left(f_{1}, \ldots, f_{d}\right) \in W_{1}$.
A finite or infinite sequence $\left(f_{i}\right)_{i}$ with $f_{i} \in\left(K_{1} \backslash F_{0}\right)$ is said to be σ_{1} special if
(1) $f_{i}<f_{i+1}$ for all i.
(2) $f_{1} \in \bigcup_{n \in \Omega_{1}} F_{l_{n}^{(1)}}$ and $f_{i+1} \in F_{\sigma_{1}\left(f_{1}, \ldots, f_{i}\right)}$ for all i.

If $\left(f_{i}\right)_{i}$ is σ_{1} special sequence, then we define the sequence of indices $\left(\operatorname{ind}\left(f_{i}\right)\right)_{i}$ as follows:
(1) $\operatorname{ind}\left(f_{i}\right) \in L_{1}$ for all i.
(2) $f_{1} \in F_{\text {ind }\left(f_{1}\right)}$ and $\operatorname{ind}\left(f_{1}\right) \in\left\{l_{n}^{1}: n \in \Omega_{1}\right\}$.
(3) $\operatorname{ind}\left(f_{i+1}\right)=\sigma_{1}\left(f_{1}, \ldots, f_{i}\right)$ for all i.

Hence in every σ_{1} special sequence we correspond the sequence of indices.
The set W_{1} with the relation

$$
\left(f_{1}, \ldots, f_{k}\right) \leq_{1}\left(g_{1}, \ldots, g_{n}\right) \text { if and only if } k \leq n \text { and } f_{i}=g_{i} \text { for all } i=1, \ldots, k
$$

is a tree and the set of all finite σ_{1} special sequences which is denoted with T_{1} is a complete subtree of W_{1}. The infinite σ_{1} branches of the tree T_{1} are identified with the set of all infinite σ_{1} special sequences and the set of finite σ_{1} branches with the set of all finite σ_{1} special sequences. The tree T_{1} is called the tree of finite σ_{1} special sequences.

A σ_{1} special functional is a sequence of the form

$$
x^{*}=\frac{1}{2}\left(E \sum_{i} f_{i}\right)
$$

where $\left(f_{i}\right)_{i}$ is a σ_{1} special sequence, E interval of \mathbb{N} and $\sum_{i} f_{i}$ is a finite or infinite sum.
$E \sum_{i} f_{i}$ denotes the sequence $\left(\sum_{i} f_{i}\right) \chi_{E}$, where χ_{E} is the characteristic function of E.

If E is infinite interval and $\left(f_{i}\right)_{i}$ is infinite sequence then the previous sum is considered in the topology of pointwise convergence.

If E is finite interval then x^{*} is said to be finite σ_{1} special functional and the set of all these functionals is denoted with S_{1}. The set S_{1} is said to be the set of finite σ_{1} special functionals.

The set of indices of x^{*} is defined to be the set:

$$
\operatorname{ind}\left(x^{*}\right)=\left\{\operatorname{ind}\left(f_{i}\right): E \cap \operatorname{supp}\left(f_{i}\right) \neq \emptyset\right\}
$$

Therefore we have define the set $K_{1} \subset c_{00}(\mathbb{N})$, the tree T_{1} of finite σ_{1} special sequences and the set S_{1} of finite σ_{1} special functionals.

We will define inductively
i. A sequence $\left(K_{r}\right)_{r \in \mathbb{N}}$ of subsets of \mathbb{N}.
ii. A sequence $\left(\sigma_{r}\right)_{r \in \mathbb{N}}$ of injective maps which are called coding maps.
iii. A sequence of trees $\left(T_{r}\right)_{r \in \mathbb{N}}$ (each tree T_{r} is called the tree of finite σ_{r} special sequences).
iv. A sequence of sets $\left(S_{r}\right)_{r \in \mathbb{N}}$ (each S_{r} is called the set of finite σ_{r} special functionals)
as follows:
Let $r \in \mathbb{N}$ and we assume that the following have been defined
i. The sets K_{1}, \ldots, K_{r}.
ii. The coding maps $\sigma_{1}, \ldots, \sigma_{r}$.
iii. The trees T_{1}, \ldots, T_{r}.
iv. The sets S_{1}, \ldots, S_{r}.

Then the set K_{r+1} is defined as follows:

$$
K_{r+1}=\left(\bigcup_{j \in L_{r+1}} F_{j}\right) \bigcup F_{0}
$$

where

$$
\begin{aligned}
F_{j}=\left\{\frac{1}{m_{j}} \sum_{i=1}^{d} \phi_{i}: d\right. & \in \mathbb{N}, d \leq n_{j}, \phi_{1}<\cdots<\phi_{d} \\
& \left.\phi_{i} \in\left(\bigcup_{i=1}^{r} K_{i}\right) \bigcup\left(\bigcup_{i=1}^{r} S_{i}\right), i=1, \ldots, d\right\} \text { for } j \in L_{r+1}
\end{aligned}
$$

We observe that $\|f\|_{\infty} \leq \frac{1}{m_{j}}, f \in F_{j}, j \in L_{r+1}$.
Let

$$
\begin{gathered}
L_{r+1}=\left\{l_{n}^{(r+1)}: n \in \mathbb{N}\right\} \text { and } \\
W_{r+1}=\left\{\left(f_{1}, \ldots, f_{d}\right): d \in \mathbb{N}, f_{1}<\cdots<f_{d}, f_{i} \in\left(K_{r+1} \backslash F_{0}\right)\right\}
\end{gathered}
$$

W_{r+1} is countable, so we may choose an injective coding map $\sigma_{r+1}: W_{r+1} \longrightarrow$ $\left\{l_{n}^{(r+1)}: n \in \Omega_{2}\right\}$ such that

$$
\sigma_{r+1}\left(f_{1}, \ldots, f_{d}\right)>\max \left\{k \in L_{r+1}: \text { exists } i \in\{1, \ldots, d\} \text { with } f_{i} \in F_{k}\right\}
$$

for every $\left(f_{1}, \ldots, f_{d}\right) \in W_{r+1}$.
A finite or infinite sequence $\left(f_{i}\right)_{i}$ with $f_{i} \in\left(K_{r+1} \backslash F_{0}\right)$ is called σ_{r+1} special sequence if
(1) $f_{i}<f_{i+1}$ for all i.
(2) $f_{1} \in \bigcup_{n \in \Omega_{1}} F_{l_{n}^{(r+1)}}$ and $f_{i+1} \in F_{\sigma_{r+1}\left(f_{1}, \ldots, f_{d}\right)}$ for all i.

The sequence of indices of a σ_{r+1} special sequence is defined as in the case of σ_{1} special sequences.

The set W_{r+1} endowed with a relation \leq_{r+1} which is analogous of that of W_{1} is a tree and the set of finite σ_{r+1} special sequences, denoted by T_{r+1}, is a complete subtree of W_{r+1}. The set of infinite σ_{r+1} branches of the tree T_{r+1} is identified with the set of infinite σ_{r+1} special sequences and the set of finite σ_{r+1} branches with the set of finite σ_{r+1} special sequences.

The σ_{r+1} special functionals are defined in a similar way as the σ_{1} and the set of finite σ_{r+1} special functionals is denoted with S_{r+1}.

Analogously we define the set of indices of a σ_{r+1} special functional.
We set

$$
K=\left(\bigcup_{r \in \mathbb{N}} K_{r}\right) \bigcup\left(\bigcup_{r \in \mathbb{N}} S_{r}\right)
$$

and

$$
W=\left\{\left(f_{1}, \ldots, f_{d}\right): d \in \mathbb{N}, f_{1}<\cdots,<f_{d}, f_{i} \in\left(K \backslash F_{0}\right)\right\} .
$$

A block finite or infinite sequence $\left(f_{i}\right)_{i}$ with $f_{i} \in\left(K \backslash F_{0}\right)$ is said to be σ special sequence if and only if there exists $r \in \mathbb{N}$ such that $\left(f_{i}\right)_{i}$ is a σ_{r} special sequence.

The set W endowed with the relation

$$
\left(f_{1}, \ldots, f_{k}\right) \leq\left(g_{1}, \ldots, g_{n}\right) \text { if and only if }
$$

$$
\left(f_{1}, \ldots, f_{k}\right),\left(g_{1}, \ldots, g_{n}\right) \text { belong to some } W_{i} \text { and }\left(f_{1}, \ldots, f_{k}\right) \leq_{i}\left(g_{1}, \ldots, g_{n}\right)
$$

is a tree and the set of finite σ special sequences, denoted with T, is a complete subtree of W. The set of infinite σ branches of the tree T is identified with the set of infinite σ special sequences and the set of finite σ branches with the set of finite σ special sequences.

A sequence x^{*} is said to be σ (finite) special functional if and only if there exists $r \in \mathbb{N}$ such that x^{*} is a (finite) σ_{r} special functional.

We denote by S the set $\bigcup_{r \in \mathbb{N}} S_{r}$.

We set

$$
\begin{aligned}
G=\left\{\sum_{i=1}^{d} a_{i} x_{i}^{*}:\right. & d \in \mathbb{N}, a_{i} \in \mathbb{Q}, \\
& \left.\sum_{i=1}^{d} a_{i}^{2} \leq 1, x_{i}^{*} \in\left(K \backslash F_{0}\right), \operatorname{ind}\left(x_{i}^{*}\right) \text { pairwise disjoint }\right\} \bigcup F_{0} .
\end{aligned}
$$

The space $\mathfrak{X}_{n q r}$ is the completion of $\left(c_{00}(\mathbb{N}),\|\cdot\|_{G}\right)$ where $\|x\|_{G}=\sup \{|f(x)|$: $f \in G\}$.

Remarks 3.1.

(1) The sets $F_{j}, j \in \mathbb{N}$ are closed in restrictions to finite intervals of \mathbb{N}.
(2) G is closed in restrictions to finite intervals of \mathbb{N}.
(3) If $f \in G$ then $\|f\|_{\infty} \leq 1$.
(4) The basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ of $\mathfrak{X}_{n q r}$ is bimonotone and $\left\|e_{n}\right\|_{G}=1, n \in \mathbb{N}$.
(5) The sets $F_{j}, j \in L_{1}$ are compact in the topology of pointwise convergence.
4. The basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ of $\mathfrak{X}_{n q r}$ is boundedly complete. In this section we prove that the basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ of $\mathfrak{X}_{n q r}$ is boundedly complete. The proof is based on the definition of $\mathfrak{X}_{n q r}$.

Proposition 4.1. The basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ of $\mathfrak{X}_{n q r}$ is boundedly complete.
Proof. Assume that the conclusion of the proposition fails. Then there exist $M>0, \epsilon_{0}>0,\left(a_{n}\right)_{n \in \mathbb{N}}$ sequence of real numbers, $\left(m_{n}\right)_{n \in \mathbb{N}}$ strictly increasing sequence of natural numbers and $u_{n}=\sum_{i=m_{n}+1}^{m_{n+1}} a_{i} e_{i}, n \in \mathbb{N}$, block of $\left(e_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\begin{equation*}
\left\|\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}\right\|_{G} \leq M, n \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon_{0}<\left\|u_{n}\right\|_{G}, n \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

We distinguish the following cases.

1. Suppose that there exist $\epsilon_{1}>0$ and $L \subset \mathbb{N}$ infinite with $\epsilon_{1} \leq\left\|u_{n}\right\|_{\infty}$, $n \in L$.

We assume without loss of generality that $\epsilon_{1} \leq\left\|u_{n}\right\|_{\infty}, n \in \mathbb{N}$.
For each $n \in \mathbb{N}$ there exists $t_{n} \in \operatorname{supp}\left(u_{n}\right)$ such that

$$
\left|e_{t_{n}}\left(u_{n}\right)\right| \geq \epsilon_{1}
$$

We set

$$
f_{j}=\frac{1}{m_{j}} \sum_{i=1}^{n_{j}} \epsilon_{i} e_{t_{i}}^{*}, \quad\left|\epsilon_{i}\right|=1, i=1, \ldots, n_{j}, \quad v_{j}=\sum_{i=1}^{n_{j}} u_{i}
$$

and

$$
k_{j}=\max \operatorname{supp}\left(u_{n_{j}}\right)
$$

Then $f_{j} \in G, j \in \mathbb{N}$ and

$$
\frac{n_{j}}{m_{j}} \cdot \epsilon_{1} \leq f_{j}\left(v_{j}\right)=f_{j}\left(\sum_{i=1}^{k_{j}} \alpha_{i} e_{i}\right) \leq\left\|\sum_{i=1}^{k_{j}} \alpha_{i} e_{i}\right\|_{G} \leq M, \quad j \in L_{1}
$$

a contradiction, since $\lim _{j} \frac{n_{j}}{m_{j}}=\infty$.
2. Suppose that for every $\epsilon>0$ and every $L \subset \mathbb{N}$ infinite, there exists $n \in L$ with $\left\|u_{n}\right\|_{\infty}<\epsilon$.

It is obvious that $\lim _{n}\left\|u_{n}\right\|_{\infty}=0$. We will prove inductively that

$$
\lim _{n} \sup \left\{\left|\phi\left(u_{n}\right)\right|: \phi \in\left(K_{l} \cup S_{l}\right)\right\}=0, \quad l \in \mathbb{N}
$$

Let $j \in L_{1}$. We will show that

$$
\lim _{n} \sup \left\{\left|f\left(u_{n}\right)\right|: f \in F_{j}\right\}=0
$$

Let $f \in F_{j}$. Then $f=\frac{1}{m_{j}} \sum_{i \in F} \epsilon_{i} e_{i}^{*},\left|\epsilon_{i}\right|=1, i \in F,|F| \leq n_{j}$. Therefore

$$
\left|f\left(u_{n}\right)\right|=\frac{1}{m_{j}}\left|\left(\sum_{i \in G} \epsilon_{i} e_{i}^{*}\right)\left(u_{n}\right)\right| \leq \frac{1}{m_{j}} n_{j}\left\|u_{n}\right\|_{\infty}=\frac{n_{j}}{m_{j}}\left\|u_{n}\right\|_{\infty}
$$

and thus

$$
\lim _{n} \sup \left\{\left|f\left(u_{n}\right)\right|: f \in F_{j}\right\}=0, \quad j \in L_{1}
$$

Let $l \in \mathbb{N}$ and we assume that

$$
\begin{equation*}
\lim _{n} \sup \left\{\left|\phi\left(u_{n}\right)\right|: \phi \in\left(K_{i} \cup S_{i}\right)\right\}=0, \quad i=1, \ldots, l \tag{4.3}
\end{equation*}
$$

We will show that if $j \in L_{l+1}$ then $\lim _{n} \sup \left\{\left|f\left(u_{n}\right)\right|: f \in F_{j}\right\}=0$.
Let $f \in F_{j}$. Then

$$
f=\frac{1}{m_{j}} \sum_{i=1}^{d} \phi_{i}, d \leq n_{j}, \phi_{1}<\cdots<\phi_{d}, \phi_{i} \in\left(\bigcup_{i=1}^{l} K_{i}\right) \bigcup\left(\bigcup_{i=1}^{l} S_{i}\right), \quad i=1, \ldots, d .
$$

We have that

$$
\left|f\left(u_{n}\right)\right|=\left|\left(\frac{1}{m_{j}} \sum_{i=1}^{d} \phi_{i}\right)\left(u_{n}\right)\right| \leq \frac{n_{j}}{m_{j}} \sum_{i=1}^{l} \sup \left\{\left|\phi\left(u_{n}\right)\right|: \phi \in\left(K_{i} \cup S_{i}\right)\right\}
$$

hence

$$
\sup \left\{\left|f\left(u_{n}\right)\right|: f \in F_{j}\right\} \leq \frac{n_{j}}{m_{j}} \sum_{i=1}^{l} \sup \left\{\left|\phi\left(u_{n}\right)\right|: \phi \in\left(K_{i} \cup S_{i}\right)\right\}
$$

Equation (4.3) yields

$$
\begin{equation*}
\lim _{n} \sup \left\{\left|f\left(u_{n}\right)\right|: f \in F_{j}\right\}=0, \quad j \in L_{l+1} \tag{4.4}
\end{equation*}
$$

The next step is to show that

$$
\lim _{n} \sup \left\{\left|\phi\left(u_{n}\right)\right|: \phi \in S_{l+1}\right\}=0
$$

Assume the contrary. Then there exist $\epsilon_{1}>0$ and $M_{1} \subset \mathbb{N}$ infinite such that

$$
\epsilon_{1}<\sup \left\{\left|\phi\left(u_{n}\right)\right|: \phi \in S_{l+1}\right\}, \quad n \in M_{1}
$$

Without loss of generality we may assume that $\epsilon_{1}<\sup \left\{\left|\phi\left(u_{n}\right)\right|: \phi \in S_{l+1}\right\}$, $n \in \mathbb{N}$.

The last inequality yields that for every $n \in \mathbb{N}$ there exists $\phi_{n} \in S_{l+1}$ with $\operatorname{ran}\left(\phi_{n}\right) \subset \operatorname{ran}\left(u_{n}\right)$ and $\epsilon_{1}<\left|\phi_{n}\left(u_{n}\right)\right|$.

We distinguish the following cases.
2A. The set $A=\left\{\operatorname{ind}\left(\phi_{n}\right): n \in \mathbb{N}\right\}$ is finite.
Let $\bigcup_{n \in \mathbb{N}} \operatorname{ind}\left(\phi_{n}\right)=\left\{j_{1}, \ldots, j_{k}\right\} \subset L_{l+1}$. We have that

$$
\left|\phi_{n}\left(u_{n}\right)\right| \leq \sup \left\{\left|f\left(u_{n}\right)\right|: f \in F_{j_{1}}\right\}+\cdots+\sup \left\{\left|f\left(u_{n}\right)\right|: f \in F_{j_{k}}\right\}, n \in \mathbb{N}
$$

From equation (4.4) we get that $\lim _{n}\left|\phi_{n}\left(u_{n}\right)\right|=0$, a contradiction, since $\epsilon_{1}<\left|\phi_{n}\left(u_{n}\right)\right|, n \in \mathbb{N}$.

2B. The set $A=\left\{\operatorname{ind}\left(\phi_{n}\right): n \in \mathbb{N}\right\}$ is infinite.
We may assume without loss of generality that $\operatorname{ind}\left(\phi_{n}\right) \neq \operatorname{ind}\left(\phi_{m}\right)$ for every $n \neq m$. We choose $q \in \mathbb{N}$ such that

$$
\begin{equation*}
q>\frac{2}{\epsilon_{1}} \cdot M \tag{4.5}
\end{equation*}
$$

We have that $\epsilon_{1}<\left|\phi_{1}\left(u_{1}\right)\right|$. Let

$$
\phi_{n}=z_{n}^{2}+\psi_{n}^{2}, n \geq 2
$$

where $\operatorname{ind}\left(z_{n}^{2}\right) \subset \operatorname{ind}\left(\phi_{1}\right), n \geq 2$ and $\min \operatorname{ind}\left(\psi_{n}^{2}\right)>\max \operatorname{ind}\left(\phi_{1}\right), n \geq 2$.
The set A is infinite, so there exist $i_{2} \geq 2$ with $\operatorname{ind}\left(\psi_{n}^{2}\right) \neq \emptyset, n \geq i_{2}$.
Since $\epsilon_{1}<\left|\phi_{n}\left(u_{n}\right)\right|, n \geq i_{2}$ it follows that for every $n \geq i_{2}$ we get

$$
\left|z_{n}^{2}\left(u_{n}\right)\right|>\frac{\epsilon_{1}}{2} \text { or }\left|\psi_{n}^{2}\left(u_{n}\right)\right|>\frac{\epsilon_{1}}{2}
$$

If the set $\left\{n \in \mathbb{N}: n \geq i_{2}\right.$ and $\left.\left|z_{n}^{2}\left(u_{n}\right)\right|>\frac{\epsilon_{1}}{2}\right\}$ is infinite, then following the steps of case (1) we come to a contradiction.

If the set $\left\{n \in \mathbb{N}: n \geq i_{2}\right.$ and $\left.\left|z_{n}^{2}\left(u_{n}\right)\right|>\frac{\epsilon_{1}}{2}\right\}$ is finite then there exist $j_{2}>i_{2}$ such that

$$
\min \operatorname{ind}\left(\psi_{j_{2}}^{2}\right)>\operatorname{maxind}\left(\phi_{1}\right) \text { and }\left|\psi_{j_{2}}^{2}\left(u_{j_{2}}\right)\right|>\frac{\epsilon_{1}}{2}
$$

Let

$$
\phi_{n}=z_{n}^{3}+\psi_{n}^{3}, \quad n \geq j_{2}+1
$$

where $\operatorname{ind}\left(z_{n}^{3}\right) \subset \operatorname{ind}\left(\phi_{1}\right) \cup \operatorname{ind}\left(\psi_{j_{2}}^{2}\right), n \geq j_{2}+1$ and $\operatorname{minind}\left(\psi_{n}^{3}\right)>\max \left(\operatorname{ind}\left(\phi_{1}\right)\right.$ $\left.\cup \operatorname{ind}\left(\psi_{j_{2}}^{2}\right)\right), n \geq j_{2}+1$.

Without loss of generality we assume that $\operatorname{ind}\left(\psi_{n}^{3}\right) \neq \emptyset, n \geq j_{2}+1$.
Since $\epsilon_{1}<\left|\phi_{n}\left(u_{n}\right)\right|, n \geq j_{2}+1$ it follows that for every $n \geq j_{2}+1$ we get that

$$
\left|z_{n}^{3}\left(u_{n}\right)\right|>\frac{\epsilon_{1}}{2} \quad \text { or } \quad\left|\psi_{n}^{3}\left(u_{n}\right)\right|>\frac{\epsilon_{1}}{2}
$$

If the set $\left\{n \in \mathbb{N}: n \geq j_{2}+1\right.$ and $\left.\left|z_{n}^{3}\left(u_{n}\right)\right|>\frac{\epsilon_{1}}{2}\right\}$ is infinite, then following the steps of case (1) we come to a contradiction.

If the set $\left\{n \in \mathbb{N}: n \geq j_{2}+1\right.$ and $\left.\left|z_{n}^{3}\left(u_{n}\right)\right|>\frac{\epsilon_{1}}{2}\right\}$ is finite there exists $j_{3}>j_{2}$ with

$$
\min \operatorname{ind}\left(\psi_{j_{3}}^{3}\right)>\max \left(\operatorname{ind}\left(\phi_{1}\right) \cup \operatorname{ind}\left(\psi_{j_{2}}^{2}\right)\right)
$$

and

$$
\left|\psi_{j_{3}}^{3}\left(u_{j_{3}}\right)\right|>\frac{\epsilon_{1}}{2}
$$

Hence we come to a contradiction or we construct functionals $\psi_{j_{2}}^{2}, \ldots, \psi_{j_{q^{2}}}^{q^{2}}$ with disjoint indices, $\operatorname{ran}\left(\psi_{j_{i}}\right) \subset \operatorname{ran}\left(u_{j_{i}}\right), i=2, \ldots, q^{2}$ and $\left|\psi_{j_{i}}^{i}\left(u_{j_{i}}\right)\right|>\frac{\epsilon_{1}}{2}$, $i=2, \ldots, q^{2}$.

The functional

$$
f=\frac{\epsilon_{1}}{q} \cdot \phi_{1}+\sum_{i=2}^{q^{2}} \frac{\epsilon_{i}}{q} \psi_{j_{i}}, \quad\left|\epsilon_{i}\right|=1, \quad i=1, \ldots, q^{2}
$$

belongs to G. We consider the vector

$$
u=u_{1}+\sum_{i=2}^{q^{2}} u_{j_{i}}
$$

We have that

$$
|f(u)|=\left|\frac{\epsilon_{1}}{q} \phi_{1}\left(u_{1}\right)+\sum_{i=2}^{q^{2}} \frac{\epsilon_{i}}{q} \psi_{j_{i}}\left(u_{j_{i}}\right)\right| \geq \frac{1}{q} q^{2} \frac{\epsilon_{1}}{2}=q \frac{\epsilon_{1}}{2}
$$

and from (4.5) we get that $|f(u)|>M$, a contradiction.
Therefore we have proved that $\lim _{n} \sup \left\{\left|\phi\left(u_{n}\right)\right|: \phi \in S_{l+1}\right\}=0$.
In a similar way we prove that $\lim _{n} \sup \left\{\left|\phi\left(u_{n}\right)\right|: \phi \in S_{1}\right\}=0$.
It is not hard to see that

$$
\limsup _{n}\left\{\left|\phi\left(u_{n}\right)\right|: \phi \in\left(\bigcup_{i=1}^{l} K_{i}\right) \bigcup\left(\bigcup_{i=1}^{l} S_{i}\right)\right\}=0, l \in \mathbb{N}
$$

Hence we may construct a subsequence $\left(u_{n_{l}}\right)_{l \in \mathbb{N}}$ of $\left(u_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\left|f\left(u_{n_{l}}\right)\right|<\frac{\epsilon_{0}}{l 2^{l+1}}, \quad l \in \mathbb{N}, \quad f \in\left(\bigcup_{i=1}^{l} K_{i}\right) \bigcup\left(\bigcup_{i=1}^{l} S_{i}\right)
$$

From (4.2) we get that $\epsilon_{0}<\left\|u_{n_{l}}\right\|_{G}, l \in \mathbb{N}$, so for every $l \in \mathbb{N}$ there exist $f_{l} \in G$ with $\operatorname{ran}\left(f_{l}\right) \subset \operatorname{ran}\left(u_{n_{l}}\right)$ and $\epsilon_{0}<\left|f_{l}\left(u_{n_{l}}\right)\right|$. We choose $q \in \mathbb{N}$ such that

$$
\begin{equation*}
q>\frac{2}{\epsilon_{0}} M \tag{4.6}
\end{equation*}
$$

We have that $\frac{\epsilon_{0}}{2}<\epsilon_{0}<\left|f_{1}\left(u_{n_{1}}\right)\right|$. Let

$$
r_{1}=\max \operatorname{ind}\left(f_{1}\right)
$$

and

$$
f_{l}=z_{l}^{2}+\psi_{l}^{2}, l \geq 2
$$

where $\operatorname{ind}\left(z_{l}^{2}\right) \subset\left\{1, \ldots, r_{1}\right\}, l \geq 2$ and $\operatorname{ind}\left(\psi_{l}^{2}\right) \subset\left\{r_{1}+1, \ldots\right\}, l \geq 2$.
We assume that the special functionals in $z_{l}^{2}, l \geq 2$ belong to $S_{1} \cup \cdots \cup S_{i_{1}}$.
We have that $\epsilon_{0}<\left|f_{l}\left(u_{n_{l}}\right)\right|, l \geq 2$, hence for every $l \geq 2$ it follows that

$$
\frac{\epsilon_{0}}{2}<\left|z_{l}^{2}\left(u_{n_{l}}\right)\right| \text { or } \frac{\epsilon_{0}}{2}<\left|\psi_{l}^{2}\left(u_{n_{l}}\right)\right|
$$

We set

$$
A^{2}=\left\{l \in \mathbb{N}: l \geq 2 \text { and }\left|z_{l}^{2}\left(u_{n_{l}}\right)\right|>\frac{\epsilon_{0}}{2}\right\}
$$

The set A^{2} is finite. Assume the contrary. Then we may choose $l_{1} \in A^{2}$ with $l_{1}>\max \left\{r_{1}, i_{i}\right\}$ and thus $\frac{\epsilon_{0}}{2}<\left|z_{l_{1}}^{2}\left(u_{n_{l_{1}}}\right)\right|<r_{1} \frac{\epsilon_{0}}{l_{1} 2^{l_{1}+1}}<\frac{\epsilon_{0}}{2^{l_{1}+1}}$, a contradiction.

Therefore there exist $j_{2} \geq 2$ such that

$$
\left|\psi_{j_{2}}^{2}\left(u_{n_{j_{2}}}\right)\right|>\frac{\epsilon_{0}}{2} \text { and } \inf \left(\psi_{j_{2}}^{2}\right) \subset\left\{r_{1}+1, \ldots\right\}
$$

Let

$$
r_{2}=\max \operatorname{ind}\left(\psi_{j_{2}}^{2}\right) \text { and } f_{l}=z_{l}^{3}+\psi_{l}^{3}, l \geq j_{2}+1
$$

where $\operatorname{ind}\left(z_{l}^{3}\right) \subset\left\{1, \ldots, r_{2}\right\}, l \geq j_{2}+1$ and $\operatorname{ind}\left(\psi_{l}^{3}\right) \subset\left\{r_{2}+1, \ldots\right\}, l \geq j_{2}+1$. It is obvious that $r_{2}>r_{1}$.

We assume that the special functionals in $z_{l}^{3}, l \geq j_{2}+1$ belong to $S_{1} \cup$ $\cdots \cup S_{i_{2}}$. We have that

$$
\left|f_{l}\left(u_{n_{l}}\right)\right|>\epsilon_{0}, \quad l \geq j_{2}+1
$$

so for every $l \geq j_{2}+1$ it follows that

$$
\left|z_{l}^{3}\left(u_{n_{l}}\right)\right|>\frac{\epsilon_{0}}{2} \quad \text { or } \quad\left|\psi_{l}^{3}\left(u_{n_{l}}\right)\right|>\frac{\epsilon_{0}}{2}
$$

We set

$$
A^{3}=\left\{l \in \mathbb{N}: l \geq j_{2}+1 \text { and }\left|z_{l}^{3}\left(u_{n_{l}}\right)\right|>\frac{\epsilon_{0}}{2}\right\}
$$

The set A^{3} is finite. If is infinite then we may choose $l_{2}>\max \left\{r_{2}, i_{2}\right\}$, so

$$
\frac{\epsilon_{0}}{2}<\left|z_{l_{2}}^{3}\left(u_{n_{l_{2}}}\right)\right|<r_{2} \frac{\epsilon_{0}}{l_{2} 2^{l_{2}+1}}<\frac{\epsilon_{0}}{2^{l_{2}+1}}
$$

a contradiction.
Hence there exist $j_{3}>j_{2}$ such that $\left|\psi_{j_{3}}^{3}\left(u_{n_{j}}\right)\right|>\frac{\epsilon_{0}}{2}$.
We may construct functionals $\psi_{j_{2}}^{2}, \ldots, \psi_{j_{q^{2}}}^{q^{2}}$ with disjoint indices and

$$
\left|\psi_{j_{i}}^{i}\left(u_{n_{j_{i}}}\right)\right|>\frac{\epsilon_{0}}{2}, \quad i=1, \ldots, q^{2}
$$

We consider the functional

$$
f=\frac{\epsilon_{1}}{q} f_{1}+\sum_{i=2}^{q^{2}} \frac{\epsilon_{i}}{q} \psi_{j_{i}}^{i}, \quad\left|\epsilon_{i}\right|=1, \quad i=1, \ldots, q^{2}
$$

which belongs to G and the vector

$$
u=u_{1}+\sum_{i=2}^{q^{2}} u_{n_{j_{i}}}
$$

We have that

$$
|f(u)| \geq \frac{\epsilon_{0}}{2} \frac{1}{q} q^{2}=q \frac{\epsilon_{0}}{2}
$$

and from (4.6) it follows that $|f(u)|>M$, a contradiction. Therefore $\left(e_{n}\right)_{n \in \mathbb{N}}$ is boundedly complete.
5. The space $\mathfrak{X}_{n q \boldsymbol{r}}$ is ℓ^{2} saturated. In this section we prove that the sequence $\left(F_{j}\right)_{j \in L_{1}}$ is JTG (Definition 5.1) and $\mathfrak{X}_{n q r}$ is ℓ^{2} saturated.

Definition 5.1. A sequence $\left(F_{j}\right)_{j \in \mathbb{N} \cup\{0\}}$ of subsets of $c_{00}(\mathbb{N})$ is said to be James tree generating (JTG) provided that satisfies the following conditions:
(1) $F_{0}=\left\{\left|q_{n}\right| e_{n}^{*}:\left|q_{n}\right|=1, n \in \mathbb{N}\right\} \bigcup\{0\}$ and each F_{j} is nonempty, countable, symmetric, closed in restrictions to intervals of \mathbb{N} and compact in the topology of pointwise convergence.
(2) Setting $\tau_{j}=\sup \left\{\|f\|_{\infty}: f \in F_{j}\right\}, j \in \mathbb{N}$, the sequence $\left(\tau_{j}\right)_{j \in \mathbb{N}}$ is strictly decreasing and $\sum_{j=1}^{\infty} \tau_{j}^{2} \leq 1$.
(3) For every block sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ of $c_{00}(\mathbb{N})$, every $j \in \mathbb{N} \bigcup\{0\}$ and every $\delta>0$ there exists a vector $x \in<x_{k}: k \in \mathbb{N}>$ such that

$$
\delta \sup \left\{f(x): f \in \bigcup_{i=0}^{\infty} F_{i}\right\}>\sup \left\{f(x): f \in F_{j}\right\}
$$

Lemma 5.1. The sequence $\left(F_{j}\right)_{j \in L_{1} \cup\{0\}}$ is JTG.
Proof. 1. Each $F_{j}, j \in L_{1}$ is countable, closed in restrictions to intervals of \mathbb{N} and compact in the topology of pointwise convergence.
2. Setting $\tau_{j}=\sup \left\{\|f\|_{\infty}: f \in F_{j}\right\}, j \in L_{1}$ then $\sum_{j \in L_{1}} \tau_{j}^{2} \leq 1$.
3. For every block sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ of $c_{00}(\mathbb{N})$, every $j \in L_{1} \bigcup\{0\}$ and every $\delta>0$ there exists a vector $x \in\left\langle x_{k}: k \in \mathbb{N}\right\rangle$ such that

$$
\delta \cdot \sup \left\{|f(x)|: f \in\left(\bigcup_{j \in L_{1}} F_{j}\right) \bigcup F_{0}\right\}>\sup \left\{|f(x)|: f \in F_{j}\right\}
$$

We shall prove the last property. Assume the contrary. Then there exists a block sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ of $c_{00}(\mathbb{N})$ with $\left\|x_{k}\right\|_{K_{1}}=1, k \in \mathbb{N}, j \in L_{1} \cup\{0\}$ and there exists $\delta>0$ such that for every vector $x \in\left\langle x_{k}: k \in \mathbb{N}\right\rangle$ with $x \neq 0$ it follows that

$$
\delta \cdot\|x\|_{K_{1}} \leq \sup \left\{|f(x)|: f \in F_{j}\right\}
$$

Therefore
$\delta \cdot\left\|\sum_{k=1}^{n} \alpha_{k} x_{k}\right\|_{K_{1}} \leq\left\|\sum_{k=1}^{n} \alpha_{k} x_{k}\right\|_{F_{j}}$ for every $n \geq 1$ and $\alpha_{1}, \ldots, \alpha_{n}$ real numbers.
It is obvious that $\frac{\delta}{2}<\left\|x_{k}\right\|_{F_{j}}, k \in \mathbb{N}$.
Let $j \in L_{1}$. We observe that

$$
\left\|x_{k}\right\|_{\infty} \geq \frac{\delta m_{j}}{2 n_{j}}, \quad k \in \mathbb{N}
$$

Assume that there exists $k \in \mathbb{N}$ with

$$
\left\|x_{k}\right\|_{\infty}<\frac{\delta m_{j}}{2 n_{j}}
$$

Let $f \in F_{j}$. Then $f=\frac{1}{m_{j}} \sum_{i \in F} \epsilon_{i} e_{i}^{*},|F| \leq n_{j},\left|\epsilon_{i}\right|=1, i \in F$. We have that

$$
\left|f\left(x_{k}\right)\right| \leq \frac{1}{m_{j}} \sum_{i \in F}\left\|x_{k}\right\|_{\infty}<\frac{1}{m_{j}} \cdot \frac{\delta m_{j}}{2 n_{j}} \cdot|F| \leq \frac{1}{m_{j}} \cdot \frac{\delta m_{j}}{2 n_{j}} \cdot n_{j}=\frac{\delta}{2}
$$

a contradiction.
Since $\frac{\delta m_{j}}{2 n_{j}} \leq\left\|x_{k}\right\|_{\infty}, k \in \mathbb{N}$ it follows that for every $k \in \mathbb{N}$ there exists $t_{k} \in \operatorname{supp}\left(x_{k}\right)$ such that

$$
\left|e_{t_{k}}^{*}\left(x_{k}\right)\right| \geq \frac{\delta m_{j}}{2 n_{j}}
$$

From the fact that $\lim _{j} \frac{n_{j}}{m_{j}}=\infty$ it follows that there exists $j_{1}>j$ with $\frac{n_{j_{1}}}{m_{j_{1}}}>$ $\frac{2 n_{j}^{2}}{\delta^{2} m_{j}^{2}}$.

We consider the functional $f=\frac{1}{m_{j_{1}}} \sum_{k=1}^{n_{j_{1}}} e_{t_{k}}^{*} \in F_{j_{1}}$ and the vector $x=\sum_{k=1}^{n_{j_{1}}} \varepsilon x_{k}$ where $\left|\varepsilon_{k}\right|=1, k$.

We have that

$$
\delta \cdot\|x\|_{K_{1}} \leq\|x\|_{F_{j}} \leq \frac{n_{j}}{m_{j}}
$$

On the other hand

$$
\delta\|x\|_{K_{1}} \geq \delta \cdot f(x) \geq \delta \cdot \frac{n_{j_{1}}}{m_{j_{1}}} \cdot \frac{\delta m_{j}}{2 n_{j}}>\delta \frac{2 n_{j}^{2}}{\delta^{2} m_{j}^{2}} \cdot \frac{\delta^{2} m_{j}}{2 n_{j}}=\frac{n_{j}}{m_{j}}
$$

a contradiction. Also if $j=0$ we come to a contradiction.
Lemma 5.2. Let $Y=\left\langle y_{n}: n \in \mathbb{N}\right\rangle$ be a block subspace in $\mathfrak{X}_{n q r}$ and let $\epsilon>0$. Then there exists a vector $y \in Y$ such that $\|y\|_{G}=1$ and $\left|x^{*}(y)\right|<\epsilon$ for every $x^{*} \in K$.

Proof. Since the sequence $\left(F_{j}\right)_{j \in L_{1} \bigcup\{0\}}$ is JTG, it follows that the identity operator id : $\mathfrak{X}_{G_{1}} \longrightarrow Y_{K_{1} \cup S_{1}}$ is strictly singular. For a proof we refer Lemma B. 11 in [1].

The set $G_{1}=\left\{\sum_{k=1}^{d} \alpha_{k} x_{k}^{*}: d \in \mathbb{N}, \alpha_{k} \in \mathbb{Q}, \sum_{k=1}^{d} \alpha_{k}^{2} \leq 1, x_{k}^{*} \in S_{1} \bigcup\left(K_{1} \backslash F_{0}\right)\right.$ and $\operatorname{ind}\left(x_{k}^{*}\right)$ pairwise disjoint $\} \bigcup F_{0}$ defines a norm $\|\cdot\|_{G_{1}}$ on $c_{00}(\mathbb{N})$ by the rule

$$
\|x\|_{G_{1}}=\sup \left\{f(x): f \in G_{1}\right\}
$$

The space $\mathfrak{X}_{G_{1}}$ is the completion of $\left(c_{00}(\mathbb{N}),\|\cdot\|_{G_{1}}\right)$.
Similarly the space $Y_{K_{1} \cup S_{1}}$ is the completion of $\left(c_{00}(\mathbb{N}),\|\cdot\|_{K_{1} \cup S_{1}}\right)$, where $S_{1} \cup K_{1}$ is the norming set of this space.

Hence the identity operator id : $\mathfrak{X}_{n q r} \longrightarrow Y_{K_{1} \cup S_{1}}$ is strictly singular.
We will prove the lemma by induction.
Let $r \in \mathbb{N}, r>1$ and we assume that the identity operators id : $\mathfrak{X}_{n q r} \longrightarrow$ $Y_{K_{i} \cup S_{i}}, i \leq r$ are strictly singular. The space $Y_{K_{i} \cup S_{i}}$ is the completion of the space $\left(c_{00}(\mathbb{N}),\|\cdot\|_{K_{i} \cup S_{i}}\right)$. The norming set for this norm is the set $K_{i} \bigcup S_{i}$.

We will prove that the identity operator $i d: \mathfrak{X}_{n q r} \longrightarrow Y_{K_{r+1}}$ is strictly singular.

Assume the contrary. Then there exists $\epsilon_{0}>0$ and $\left\langle w_{n}: n \in \mathbb{N}\right\rangle$ block subspace of $\mathfrak{X}_{n q r}$ such that for every $w \in\left\langle w_{n}: n \in \mathbb{N}\right\rangle$ with $\|w\|_{G}=1$ there exists $f \in K_{r+1}$ with $\epsilon_{0} \leq|f(w)|$.

Therefore for every $w \in\left\langle w_{n}: n \in \mathbb{N}\right\rangle$ with $\|w\|_{G}=1$ there exists $f \in K_{r+1}$ with

$$
\begin{equation*}
\epsilon_{0} \leq|f(w)| \leq\|w\|_{K_{r+1}} \tag{5.1}
\end{equation*}
$$

It is not hard to see that the identity operator

$$
\begin{equation*}
\text { id }: \mathfrak{X}_{n q r} \longrightarrow Y\left(\bigcup_{i=1}^{r} K_{i}\right) \cup\left(\bigcup_{i=1}^{r} S_{i}\right) \text { is strictly singular. } \tag{5.2}
\end{equation*}
$$

From (5.2) we may choose $z_{1} \in\left\langle w_{n}: n \in \mathbb{N}\right\rangle$ with $\left\|z_{1}\right\|_{G}=1$ such that $\left\|z_{1}\right\|_{K_{i} \cup S_{i}}<\frac{\epsilon_{0}}{2}, i=1, \ldots, r$ and from (5.1) we get that

$$
\left\|z_{1}\right\|_{K_{i} \cup S_{i}}<\frac{\epsilon_{0}}{2}<\left\|z_{1}\right\|_{K_{\lambda+1}}, \quad i=1, \ldots, r
$$

There exists I_{1} finite subset of L_{r+1} such that

$$
\frac{1}{m_{j}}<\frac{\epsilon_{0}}{2} \cdot \frac{1}{\left\|z_{1}\right\|_{1}} \quad \text { for every } \quad j \in\left(L_{r+1} \backslash I_{1}\right)
$$

where $\|\cdot\|_{1}$ is the l_{1} norm.
Consequently

$$
\left|f\left(z_{1}\right)\right|<\frac{\epsilon_{0}}{2} \text { for every } f \in\left[K_{r+1} \backslash\left(\left(\bigcup_{j \in I_{1}} F_{j}\right) \bigcup F_{0}\right)\right]
$$

From (5.1) and (5.2) we may choose a vector $z_{2} \in\left\langle w_{n}: n \in \mathbb{N}\right\rangle$ with $z_{2}>z_{1}$, $\left\|z_{2}\right\|_{G}=1$ such that

$$
\begin{equation*}
\left\|z_{2}\right\|_{K_{i} \cup S_{i}}<\frac{\epsilon_{0}}{2^{2}} \cdot \frac{m_{\min I_{1}}}{n_{\max I_{1}}} \leq \frac{\epsilon_{0}}{2}<\left\|z_{2}\right\|_{K_{r+1}}, \quad i=1, \ldots, r \tag{5.3}
\end{equation*}
$$

Let $f \in \bigcup_{j \in I_{1}} F_{j}$. Then $f=\frac{1}{m_{j}} \cdot \sum_{i=1}^{d} \phi_{i}, \phi_{1}<\cdots<\phi_{d}, d \leq n_{j}, \phi_{1}, \ldots, \phi_{d}$ belong to $\left(\bigcup_{i=1}^{r} K_{i}\right) \bigcup\left(\bigcup_{i=1}^{r} S_{i}\right)$.

Using (5.3) we have that

$$
\left|f\left(z_{2}\right)\right|=\frac{1}{m_{j}} \cdot\left|\sum_{i=1}^{d} \phi_{i}\left(z_{2}\right)\right| \leq \frac{n_{j}}{m_{j}} \cdot \frac{\epsilon_{0}}{2^{2}} \cdot \frac{m_{\min I_{1}}}{n_{\max I_{1}}} \leq \frac{\epsilon_{0}}{2^{2}}
$$

Hence

$$
\left|f\left(z_{2}\right)\right|<\frac{\epsilon_{0}}{2^{2}} \quad \text { for every } \quad f \in \bigcup_{j \in I_{1}} F_{j}
$$

There exists I_{2} finite subset of L_{r+1}, such that

$$
\frac{1}{m_{j}}<\frac{\epsilon_{0}}{2^{2}} \cdot \frac{1}{\left\|z_{2}\right\|_{1}} \text { for every } j \in\left(L_{r+1} \backslash I_{2}\right)
$$

Hence

$$
\left|f\left(z_{2}\right)\right|<\frac{\epsilon_{0}}{2^{2}} \quad \text { for every } \quad f \in\left[K_{r+1} \backslash\left(\left(\bigcup_{j \in I_{2}} F_{j}\right) \bigcup F_{0}\right)\right]
$$

From (5.1) and (5.2) we may choose a vector $z_{3} \in\left\langle w_{n}: n \in \mathbb{N}\right\rangle$ with $z_{3}>z_{2}$, $\left\|z_{3}\right\|_{G}=1$ and

$$
\begin{equation*}
\left\|z_{3}\right\|_{S_{i}}<\frac{\epsilon_{0}}{2^{3}} \cdot \frac{m_{\min \left(I_{1} \cup I_{2}\right)}}{n_{\max \left(I_{1} \cup I_{2}\right)}} \leq \frac{\epsilon_{0}}{2}<\left\|z_{3}\right\|_{K_{r+1}}, \quad i=1, \ldots, r \tag{5.4}
\end{equation*}
$$

Using (5.4) we observe that

$$
\left|f\left(z_{3}\right)\right| \leq \frac{\epsilon_{0}}{2^{3}} \text { for every } f \in \bigcup_{j \in\left(I_{1} \cup I_{2}\right)} F_{j}
$$

There exists I_{3} finite subset of L_{r+1} such that

$$
\frac{1}{m_{j}}<\frac{\epsilon_{0}}{2^{3}} \cdot \frac{1}{\left\|z_{3}\right\|_{1}} \text { for every } j \in\left(L_{r+1} \backslash I_{3}\right)
$$

Hence

$$
\left|f\left(z_{3}\right)\right| \leq \frac{\epsilon_{0}}{2^{3}} \quad \text { for every } \quad f \in\left[K_{r+1} \backslash\left(\left(\bigcup_{j \in I_{3}} F_{j}\right) \bigcup F_{0}\right)\right]
$$

Therefore we inductively construct a sequence $\left(z_{k}\right)_{k \in \mathbb{N}}$ such that $z_{k} \in\left\langle w_{n}: n \in\right.$ $\mathbb{N}\rangle, k \in \mathbb{N}, z_{k}<z_{k+1}, k \in \mathbb{N},\left\|z_{k}\right\|_{G}=1$, and a sequence $\left(I_{k}\right)_{k \in \mathbb{N}}$ of finite subsets of L_{r+1} such that
(1) $\left\|z_{k}\right\|_{K_{i} \cup S_{i}}<\frac{\epsilon_{0}}{2}<\left\|z_{k}\right\|_{K_{r+1}} k \in \mathbb{N}, i=1, \ldots, r$.
(2) $\left|f\left(z_{k}\right)\right|<\frac{\epsilon_{0}}{2^{k}}, f \in\left[K_{r+1} \backslash\left(\left(\bigcup_{j \in I_{k}} F_{j}\right) \bigcup F_{0}\right)\right], k \in \mathbb{N}$.
(3) $\left|f\left(z_{k}\right)\right|<\frac{\epsilon_{0}}{2^{k}}, f \in \bigcup_{j \in I_{1} \bigcup \cdots \cup I_{k-1}} F_{j}, k \in \mathbb{N}$.

We will prove that

$$
\left\|z_{1}+\cdots+z_{k}\right\|_{K_{r+1}} \leq 1+\epsilon_{0} \text { for each } k \in \mathbb{N}
$$

Let $k \in \mathbb{N}$ and $\phi \in K_{r+1}$.
We distinguish the following cases.
(1) Let $\left.\phi \in\left(K_{r+1}\right\rangle_{j \in I_{1} \cup \ldots \cup I_{k}}^{\bigcup} F_{j}\right)$. Then

$$
\left|\phi\left(z_{1}+\ldots+z_{k}\right)\right| \leq\left|\phi\left(z_{1}\right)\right|+\ldots+\left|\phi\left(z_{k}\right)\right| \leq \sum_{j=1}^{k} \frac{\epsilon_{0}}{2^{j}} \leq 1+\epsilon_{0}
$$

(2) Let $\phi \in \bigcup_{j \in I_{1}} F_{j}$ or $\phi \in \underset{j \in I_{k} \backslash\left(I_{1} \bigcup \ldots \bigcup I_{k-1}\right)}{\bigcup} F_{j}$. Then

$$
\left|\phi\left(z_{1}+\ldots+z_{k}\right)\right| \leq\left|\phi\left(z_{1}\right)\right|+\left(\left|\phi\left(z_{2}\right)\right|+\ldots\left|\phi\left(z_{k}\right)\right|\right) \leq 1+\epsilon_{0}
$$

(3) Let $\phi \in \underset{j \in I_{i+1} \backslash\left(I_{1} \cup \ldots \cup I_{i}\right)}{\bigcup} F_{j}, 1<i<k-1$. Then

$$
\begin{aligned}
\left|\phi\left(z_{1}+\cdots+z_{k}\right)\right| & \leq\left|\phi\left(z_{1}\right)\right|+\cdots+\left|\phi\left(z_{i}\right)\right|+\left(\left|\phi\left(z_{i+1}\right)\right|+\left|\phi\left(z_{i+2}+\cdots+z_{k}\right)\right|\right) \\
& \leq \sum_{j=1}^{i} \frac{\epsilon_{0}}{2^{j}}+1+\sum_{j=i+2}^{k} \frac{\epsilon_{0}}{2^{j}} \leq 1+\epsilon_{0}
\end{aligned}
$$

We have that $z_{1}+\cdots+z_{k} \in\left\langle w_{n}: n \in \mathbb{N}\right\rangle, k \in \mathbb{N}$.
For the vector $v_{k}=\frac{z_{1}+\cdots+z_{k}}{\left\|z_{1}+\cdots+z_{k}\right\|_{G}}, k \in \mathbb{N}$ we have that
$\frac{\epsilon_{0}}{2}<\left\|v_{k}\right\|_{K_{r+1}}$, hence $\frac{\epsilon_{0}}{2}\left\|z_{1}+\cdots+z_{k}\right\|_{G}<\left\|z_{1}+\cdots+z_{k}\right\|_{K_{r+1}}$ for every $k \in \mathbb{N}$.
For the vector z_{1} we have

$$
\frac{\epsilon_{0}}{2}<\left|f_{1}\left(z_{1}\right)\right| \leq\left\|z_{1}\right\|_{K_{r+1}} \text { for some } f_{1} \in K_{r+1}
$$

The functional f_{1} belongs to $\bigcup_{j \in I_{1}} F_{j}$.
For the vector z_{2} we have that

$$
\frac{\epsilon_{0}}{2}<\left|f_{2}\left(z_{2}\right)\right| \text { for some } f_{2} \in K_{r+1}
$$

We observe that $f_{2} \in\left(\bigcup_{j \in I_{2}} F_{j}-\bigcup_{j \in I_{1}} F_{j}\right)$.
For each $k \in \mathbb{N}$ we choose $f_{k} \in\left(\bigcup_{j \in I_{k}} F_{j} \backslash \bigcup_{j \in I_{1} \bigcup \ldots I_{k-1}}^{\bigcup} F_{j}\right)$ with ran $f_{k} \subset$ $\operatorname{ran} z_{k}$ and $\frac{\epsilon_{0}}{2}<\left|f_{k}\left(z_{k}\right)\right|$.

Let $q \in \mathbb{N}$. The functional

$$
f=\sum_{i=1}^{q^{2}} \frac{\epsilon_{i}}{q} \cdot f_{i} \text { where }\left|\epsilon_{i}\right|=1
$$

belongs to G. Hence

$$
\left\|z_{1}+\ldots+z_{q^{2}}\right\|_{G} \geq f\left(z_{1}+\ldots+z_{q^{2}}\right) \geq \frac{\epsilon_{0}}{2} \frac{1}{q} \cdot q^{2}=\frac{\epsilon_{0}}{2} q
$$

We have that

$$
\frac{\epsilon_{0}^{2}}{4} q \leq \frac{\epsilon_{0}}{2}\left\|z_{1}+\ldots+z_{q^{2}}\right\|_{G}<\left\|z_{1}+\ldots+z_{q^{2}}\right\|_{K_{r+1}} \leq 1+\epsilon_{0}, \quad q \in \mathbb{N}
$$

a contradiction.
We have proved that the operator id : $\mathfrak{X}_{n q r} \longrightarrow Y_{K_{r+1}}$ is strictly singular. Following the same steps as in Lemma B. 11 in [1] we get that if Z be a block subspace of $\mathfrak{X}_{n q r}$ then there exists $z \in Z$ with $\|z\|_{G}=1$ such that $\left|x^{*}(z)\right|<\epsilon$ for every $x^{*} \in S_{r+1}$. Hence the identity operator id : $\mathfrak{X}_{n q r} \longrightarrow Y_{K_{r+1}} \cup S_{r+1}$ is strictly singular. We have proved that the operators id : $\mathfrak{X}_{n q r} \longrightarrow Y_{K_{n}} \cup S_{n}, n \in \mathbb{N}$ are strictly singular.

We shall show that the identity operator id : $\mathfrak{X}_{n q r} \longrightarrow Y_{K}$ is strictly singular.

Let $\epsilon>0$ and let a sequence $\left(\epsilon_{n}\right)_{n \in \mathbb{N}}$ of positive numbers with $\lim _{n} \epsilon_{n}=0$.
It is not hard to see that for every $n \in \mathbb{N}$ the operator id : ${\underset{\mathfrak{X}}{n q r}} \longrightarrow$ $Y_{\left(\bigcup_{i=1}^{n} K_{i}\right) \cup\left(\bigcup_{i=1}^{n} S_{i}\right)}$ is strictly singular. Therefore there exists a block sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of $\left(y_{n}\right)_{n \in \mathbb{N}}$ with $\left\|x_{n}\right\|_{G}=1, n \in \mathbb{N}$ and $\left|x^{*}\left(x_{n}\right)\right|<\epsilon_{n}$,

$$
x^{*} \in\left[\left(K_{1} \bigcup S_{1}\right) \bigcup \cdots \bigcup\left(K_{n} \bigcup S_{n}\right)\right], \quad n \in \mathbb{N} .
$$

We claim that:
If $\delta>0$, then there exists an infinite subset M of \mathbb{N} such that for every σ branch b, it follows that the set $\left\{n \in M:\left|b^{*}\left(x_{n}\right)\right| \geq \delta\right\}$ contains at most 1 element.

Assume the contrary. Then there exists $\delta>0$ such that for every infinite subset M of \mathbb{N} there exist σ branch b such that the set $\left\{n \in M:\left|b^{*}\left(x_{n}\right)\right| \geq \delta\right\}$ contains at least 2 elements.

Applying Ramsey theorem for doubletons we may find an $L \subset \mathbb{N}$ infinite, such that for every pair $n<m \in L$ there exist σ branch $b_{n, m}$ with $\left|b_{n, m}^{*}\left(x_{n}\right)\right| \geq \delta$ and $\left|b_{n, m}^{*}\left(x_{m}\right)\right| \geq \delta$.

Since $\lim _{n} \epsilon_{n}=0$ there exist $n_{0} \in \mathbb{N}$ with $\epsilon_{n}<\delta, n \geq n_{0}$.
We set $L_{1}=L \bigcap\left[n_{0}, \infty\right)$ and let $n_{1}=\min L_{1}$.
It is obvious that $\epsilon_{n}<\delta, n \geq n_{1}$ and for each $n<m \in L_{1}$ there exist σ branch $b_{n, m}$ with $\left|b_{n, m}^{*}\left(x_{n}\right)\right| \geq \delta$ and $\left|b_{n, m}^{*}\left(x_{m}\right)\right| \geq \delta$.

Let $m_{1} \in L_{1}$ with $m_{1}>n_{1}$.
There exist a σ branch $b_{n_{1}, m_{1}}=b_{1}$ with $\left|b_{1}^{*}\left(x_{n_{1}}\right)\right| \geq \delta$ and $\left|b_{1}^{*}\left(x_{m_{1}}\right)\right| \geq \delta$.
Let $x_{1}^{*}=E_{1} b_{1}^{*}$ where $E_{1}=\left[\min \operatorname{supp}\left(x_{n_{1}}\right), \max \operatorname{supp}\left(x_{m_{1}}\right)\right]$.
Then $\left|x_{1}^{*}\left(x_{n_{1}}\right)\right| \geq \delta$ and $\left|x_{1}^{*}\left(x_{m_{1}}\right)\right| \geq \delta$.

Since the functional x_{1}^{*} does not belong to $\left(K_{1} \bigcup S_{1}\right) \bigcup \cdots \bigcup\left(K_{m_{1}} \bigcup S_{m_{1}}\right)$ there exists $d_{2}>m_{1}$ with $x_{1}^{*} \in\left(K_{d_{2}} \cup S_{d_{2}}\right) \backslash F_{0}$.

Let $m_{2} \in L_{1}$ with $m_{2}>d_{2}$.
There exists a σ branch $b_{n_{1}, m_{2}}=b_{2}$ with $\left|b_{2}^{*}\left(x_{n_{1}}\right)\right| \geq \delta$ and $\left|b_{2}^{*}\left(x_{m_{2}}\right)\right| \geq \delta$.
Let $x_{2}^{*}=E_{2} b_{2}^{*}$ where $E_{2}=\left[\min \operatorname{supp}\left(x_{n_{1}}\right), \max \operatorname{supp}\left(x_{m_{2}}\right)\right]$.
Then $\left|x_{2}^{*}\left(x_{n_{1}}\right)\right| \geq \delta$ and $\left|x_{2}^{*}\left(x_{m_{2}}\right)\right| \geq \delta$. The functional x_{2}^{*} does not belong to $\left(K_{1} \bigcup S_{1}\right) \bigcup \cdots \bigcup\left(K_{m_{2}} \bigcup S_{m_{2}}\right)$, so the functionals x_{1}^{*}, x_{2}^{*} have disjoint indices.

We inductively construct a sequence $\left(x_{n}^{*}\right)_{n \in \mathbb{N}}$ of σ special functionals with disjoint indices and $\left|x_{n}^{*}\left(x_{n_{1}}\right)\right| \geq \delta, n \in \mathbb{N}$.

Let $q \in \mathbb{N}$. The functional

$$
f=\sum_{i=1}^{q^{2}} \frac{\epsilon_{i}}{q} x_{i}^{*}, \quad\left|\epsilon_{i}\right|=1, \quad i=1, \ldots, q^{2}
$$

belongs to G. We have that

$$
f\left(x_{n_{1}}\right)=\sum_{i=1}^{q^{2}} \frac{\epsilon_{i}}{q} x_{i}^{*}\left(x_{n_{1}}\right)=\sum_{i=1}^{q^{2}} \frac{1}{q}\left|x_{i}^{*}\left(x_{n_{1}}\right)\right| \geq q \delta
$$

Therefore

$$
q \delta \leq\left|f\left(x_{n_{1}}\right)\right| \leq 1, \quad q \in \mathbb{N}
$$

a contradiction.
Using again the same techniques as in Lemma B. 11 in [1] and the fact that the operators id : $\mathfrak{X}_{n q r} \longrightarrow Y_{\left(\cup_{i=1}^{n} K_{i}\right) \cup\left(\bigcup_{i=1}^{n} S_{i}\right)}, n \in \mathbb{N}$ are strictly singular we get a vector $y \in\left\langle y_{n}, n \in \mathbb{N}\right\rangle$ with $\|y\|_{G}=1$ and $\left|x^{*}(y)\right|<\epsilon, x^{*} \in K$.

The following Lemma is similar to a corresponding result in [1, Lemma B.13].

Lemma 5.3. For every $x \in c_{00}(\mathbb{N})$ and every $\epsilon>0$ there exists $d \in \mathbb{N}$ such that for every $g \in\left(G \backslash F_{0}\right)$ with $\operatorname{ind}(g) \cap\{1, \ldots, d\}=\emptyset$ we have that $|g(x)|<\epsilon$.

Combining Lemmas 5.2 and 5.3 we may construct in every block subspace of $\mathfrak{X}_{n q r}$ a block sequence which is equivalent with the usual basis of $\ell^{2}(\mathbb{N})$. The proof of Theorem 5.1 follows the lines of Theorem B. 14 in [1].

Theorem 5.1. Let Y be a closed, infinite dimensional subspace of $\mathfrak{X}_{n q r}$. Then for every $\epsilon>0$ there exists a subspace of Y, which is $1+\epsilon$ isomorphic to ℓ^{2}.
6. The dual space $\mathfrak{X}_{n q r}^{*}$. In this section is studied the structure of $\mathfrak{X}_{n q r}^{*}$. Proposition 6.1 is similar to Proposition B. 15 ([1]). The proof of Proposition 6.1 makes use of the fact that $\mathfrak{X}_{n q r}$ does not contain an isomorphic copy of $\ell^{1}(\mathbb{N})$.

Proposition 6.1. For the dual space $\mathfrak{X}_{n q r}^{*}$ we have that

$$
\mathfrak{X}_{n q r}^{*}=\overline{\operatorname{span}}\left\{e_{n}^{*}: n \in \mathbb{N}\right\} \cup\left\{b^{*}: b \sigma \text { infinite branch }\right\} .
$$

Also the basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ of $\mathfrak{X}_{n q r}$ is weakly null.
Proof. The space $\mathfrak{X}_{n q r}$ is ℓ^{2} saturated, so does not contain an isomorphic copy of ℓ^{1}. From Haydon's [9] theorem we get that

$$
\begin{equation*}
B_{\mathfrak{X}_{n q r}^{*}}=\overline{\operatorname{conv}} \operatorname{ext} B_{\mathfrak{X}_{n q r}^{*}} . \tag{6.1}
\end{equation*}
$$

Since G is the norming set of the space $\mathfrak{X}_{n q r}$ it follows that

$$
B_{X_{n q r}^{*}}=\overline{\operatorname{conv} G}^{w^{*}} .
$$

It is not hard to see that $B_{\mathfrak{X}_{n q r}^{*}}=\overline{\operatorname{conv} \bar{G}^{w^{*}} w^{*}}$, hence $\operatorname{ext} B_{\mathfrak{X}_{n q r}^{*}} \subset \bar{G}^{w^{*}}$. Combining this with (6.1) we get that

$$
\mathfrak{X}_{n q r}^{*}=\overline{\left\langle\bar{G}^{w^{*}}\right\rangle}
$$

As is shown in Proposition B. 15 in [1] the following holds: $\bar{G}^{w^{*}}=F_{0} \bigcup\left\{\sum_{i=1}^{\infty} \alpha_{i} x_{i}^{*}\right.$: $\sum_{i=1}^{\infty} \alpha_{i}^{2} \leq 1, \alpha_{i} \in \mathbb{Q}, x_{i}^{*}$ finite or infinite σ special functionals with disjoint indices $\}$, hence the first part of the proposition is proved.

For the second part of Proposition it clearly suffices to show that $\lim _{n} b^{*}\left(e_{n}\right)$ $=0$ for every σ branch b.

If b is finite σ branch then the sequence $\left(b^{*}\left(e_{n}\right)\right)_{n \in \mathbb{N}}$.
Let $b=\left(f_{n}\right)_{n \in \mathbb{N}}$ an infinite branch. From the fact that $\lim _{n}\left\|f_{n}\right\|_{\infty}=0$ it follows that $\left(b^{*}\left(e_{n}\right)\right)_{n \in \mathbb{N}}$ is a null sequence.
7. Rapidly increasing sequences in $\mathfrak{X}_{\boldsymbol{n q r}}$. We begin by the definition of a Rapidly Increasing Sequence (RIS).

Definition 7.1. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a block sequence in $\mathfrak{X}_{\text {nqr }}$ and C, ϵ positive numbers. The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ will be called (C, ϵ) RIS (Rapidly Increasing Sequence) if the following hold
(1) $\left\|x_{n}\right\|_{G} \leq C, n \in \mathbb{N}$.
(2) There exists a strictly singular sequence of natural numbers $\left(j_{n}\right)_{n \in \mathbb{N}}$ such that $\frac{\left|\operatorname{supp}\left(x_{n}\right)\right|}{m_{j_{n+1}}}<\epsilon, n \in \mathbb{N}$ and if $n \in \mathbb{N}, f \in\left(K \backslash F_{0}\right)$ with $w(f)=m_{i}$, $i<j_{n}$ then $\left|f\left(x_{n}\right)\right| \leq \frac{C}{m_{i}}$.
We notice that for an $f \in\left(K \backslash F_{0}\right)$ of the form $f=\frac{1}{m_{j}} \sum_{i=1}^{d} f_{i}, d \leq n_{j}, f_{i} \in\left(K \backslash F_{0}\right)$, $i=1, \ldots, n_{j}$ we say that f has weight m_{j} and we write $w(f)=m_{j}$.

Definition 7.2. Let $j_{0} \in \mathbb{N}$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a (C, ϵ) RIS with $0<\epsilon<$ $\frac{5}{m_{j_{0}}^{2}}$ and $\left(j_{n}\right)_{n}$ its associated sequence of natural numbers. We will call $\left(x_{n}\right)_{n \in \mathbb{N}}$ j_{0}-separated if the following are satisfied:

1. $j_{1}>j_{0}$.
2. For every functional $f \in\left(K \backslash F_{0}\right)$ with $w(f)>m_{j_{0}}$ we have that

$$
\left|\left\{n \in \mathbb{N}:\left|f\left(x_{n}\right)\right| \geq \frac{5}{m_{j_{0}}^{2}}\right\}\right| \leq 1
$$

3. For every special functional x^{*} with $\operatorname{ind}\left(x^{*}\right) \subset\left\{j_{0}+1, \ldots\right\}$, we have that

$$
\left|\left\{n \in \mathbb{N}:\left|x^{*}\left(x_{n}\right)\right| \geq \frac{10}{m_{j_{0}}^{2}}\right\}\right| \leq 2
$$

4. For every $f \in G$ with $\operatorname{ind}(f) \subset\left\{j_{0}+1, \ldots\right\}$, we have that

$$
\left|\left\{n \in \mathbb{N}:\left|f\left(x_{n}\right)\right| \geq \frac{2}{m_{j_{0}}^{2}}\right\}\right| \leq 257 m_{j_{0}}^{4}
$$

The next step is to prove that for a $j_{0} \in \mathbb{N}$ and a bounded block sequence of averages with increasing lengths in $\mathfrak{X}_{n q r}$, there exists a subsequence which is j_{0}-separated.

The proof of the following lemma follows the same steps as in [5, Lemma II.23].

Lemma 7.1. Let $x \in \mathfrak{X}_{n q r}$ be a (M, k)-average, $M>0, k \in \mathbb{N}$, i.e. an average of the form $x=\frac{1}{k}\left(x_{1}+\cdots+x_{k}\right)$, where
i. $\quad x_{1}, \ldots, x_{k} \in\left\langle e_{n}, n \in \mathbb{N}\right\rangle$
ii. $x_{1}<\ldots<x_{k}$
iii. $\left\|x_{i}\right\|_{G} \leq M, i=1, \ldots, k$
and $f \in\left(K \backslash F_{0}\right)$ with $w(f)=m_{i}$. Then

$$
|f(x)| \leq \frac{M}{m_{i}}\left(1+\frac{2 n_{i}}{k}\right)
$$

Lemma 7.2. Let $\epsilon>0$ and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a block sequence in $\mathfrak{X}_{n q r}$ such that each x_{n} is a $\left(M, l_{n}\right)$ average, where $\left(l_{n}\right)_{n \in \mathbb{N}}$ is a strictly increasing sequence of natural numbers. Then there exists a subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ which is $\left(\frac{3 M}{2}, \epsilon\right)$ RIS.

The proof of Lemma 7.2 follows the lines of Proposition II. 25 in [5].
Remark 7.1. Let $\left(z_{k}\right)_{k \in \mathbb{N}}$ be a normalized block sequence in $\mathfrak{X}_{n q r}$.
We set

$$
y_{k}=\frac{1}{n_{k}} \sum_{i \in F_{k}} z_{i}, \quad k \in \mathbb{N}
$$

where $\left|F_{k}\right|=n_{k}, F_{k}<F_{k+1}, k \in \mathbb{N}$.
Since $\left\|y_{k}\right\|_{G} \leq 1, k \in \mathbb{N}$ and $\mathfrak{X}_{n q r}$ does not contain an isomorphic copy of ℓ^{1} (Theorem 5.1), it follows from Rosenthal's ℓ^{1} theorem [15] that there exists a subsequence of $\left(y_{k}\right)_{k \in \mathbb{N}}$ which is w-Cauchy.

Without loss of generality we may assume that $\left(y_{k}\right)_{k \in \mathbb{N}}$ is w-Cauchy.
We set $x_{k}=y_{2 k-1}-y_{2 k}, k \in \mathbb{N}$. The sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ is weakly null and $\left\|x_{k}\right\|_{G} \leq 2, k \in \mathbb{N}$.

If $f \in\left(K \backslash F_{0}\right)$ with $w(f)=m_{i}$ then Lemma 7.1 yields

$$
\left|f\left(x_{k}\right)\right| \leq\left|f\left(y_{2 k-1}\right)\right|+\left|f\left(y_{2 k}\right)\right| \leq \frac{2}{m_{i}}\left(1+\frac{2 n_{i}}{F_{2 k-1}}\right), \quad k \in \mathbb{N}
$$

Hence if $\epsilon>0$, then from Lemma 7.2 it follows that there exists an $L \in[\mathbb{N}]$ such that the sequence $\left(x_{k}\right)_{k \in L}$ is $(3, \epsilon)$ RIS.

Therefore without loss of generality we can assume that every $\left(x_{k}\right)_{k \in \mathbb{N}}$ which is a $(3, \epsilon)$ RIS is weakly null.

For the rest of this paper we will assume that every $(3, \epsilon)$ RIS we consider is weakly null, unless stated otherwise.

Lemma 7.3. Let $j_{0} \in \mathbb{N}$ and $\left(x_{k}\right)_{k \in \mathbb{N}}$ be a $(3, \epsilon)$ RIS with $0<\epsilon<\frac{5}{m_{j_{0}}^{2}}$. Assume that the sequence $\left(j_{n}\right)_{n}$ associated to the RIS sequence satisfies $j_{1}>j_{0}$. Then for every $f \in\left(K \backslash F_{0}\right)$ with $w(f)>m_{j_{0}}$ we have that

$$
\left|\left\{k \in \mathbb{N}:\left|f\left(x_{k}\right)\right| \geq \frac{5}{m_{j_{0}}^{2}}\right\}\right| \leq 1
$$

For a proof of Lemma 7.3 we refer Lemma 5.2 in [14].
Lemma 7.4. Let $j_{0} \in \mathbb{N}$ and $\left(x_{k}\right)_{k \in \mathbb{N}}$ be a $(3, \epsilon)$ RIS with $0<\epsilon<$ $\frac{5}{m_{j_{0}}^{2}}$. Assume that the sequence $\left(j_{n}\right)_{n}$ associated to the RIS sequence satisfies $j_{1}>j_{0}$. Then there exists a $L \in[\mathbb{N}]$ such that for every special functional x^{*}, with $\operatorname{ind}(x *) \subset\left\{j_{0}+1, \ldots\right\}$, we have that $\left|\left\{k \in L:\left|x^{*}\left(x_{k}\right)\right| \geq \frac{10}{m_{j_{0}}^{2}}\right\}\right| \leq 2$.

The proof of Lemma 7.4 follows the lines of Lemma 5.3 in [14].
Proposition 7.1. Let $j_{0} \in \mathbb{N}$ and $\left(y_{k}\right)_{k \in \mathbb{N}}$ be a block sequence of averages with increasing lengths (as in Remark 7.1).

Then there exists an $L \in[\mathbb{N}]$ such that for every $f \in\left(G \backslash F_{0}\right)$ with $\operatorname{ind}(f) \subset$ $\left\{j_{0}+1, \ldots\right\}$ we have that $\left|\left\{k \in L:\left|f\left(y_{k}\right)\right| \geq \frac{2}{m_{j_{0}}^{2}}\right\}\right| \leq 257 m_{j_{0}}^{4}$.

The proof of the above Proposition is identical of Proposition 5.1 in [14].
All the above yield the following
Proposition 7.2. Let $j_{0} \in \mathbb{N}, 0<\epsilon<\frac{5}{m_{j_{0}}^{2}}$ and $\left(y_{k}\right)_{k \in \mathbb{N}}$ be a block sequence of averages with increasing lengths. (as in Remark 7.1). We set $x_{k}=$ $y_{2 k-1}-y_{2 k}, k \in \mathbb{N}$. Then there exists an $L \in[\mathbb{N}]$ such that $\left(x_{k}\right)_{k \in L}$ is $(3, \epsilon)$ RIS and j_{0}-separated.

Analogous Proposition can be found in [14]. (Proposition 5.2)
Remark 7.2. Let $j_{0} \in \mathbb{N}, 0<\epsilon<\frac{5}{m_{j_{0}}^{2}}$ and $\left(y_{k}\right)_{k \in \mathbb{N}}$ be a block sequence of averages with increasing lengths. (as in Remark 7.1).

In the sequel we will assume without loss of generality that there exists an $L \in[\mathbb{N}]$ such that $\left(y_{k}\right)_{k \in L}$ is $(3, \epsilon)$ RIS and j_{0}-separated.
8. The basic inequality. The purpose of this section is to prove Basic Inequality, which will be used in the next chapter. Similar results exist in the
papers [3], [2], [14]. The Basic Inequality is a method, which has been developed and attributes estimates of sums of block sequences with certain properties to estimates of sums of the basis of a mixed type Tsirelson space.

Specificly if $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a (C, ϵ) R. I. S. $\left(0<\epsilon<\frac{5}{m_{j_{0}}}\right)$ sequence in $\mathfrak{X}_{n q r}$, which is j_{0} separated, then calculations of the form $f\left(\sum_{k} \lambda_{k} x_{k}\right), f \in$ $\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \backslash F_{0}$ are transformed into calculations of the form $g_{1}\left(\sum_{k}\left|\lambda_{k}\right| e_{k}\right)$ and $g_{2}\left(\sum_{k}\left|\lambda_{k}\right| e_{k}\right)$ where $g_{1} \in W, g_{2} \in c_{00}(\mathbb{N})$ with $\left\|g_{2}\right\|_{\infty} \leq \epsilon$.

The set W is the norming set of the space T, which is called the auxiliary space. In this space we estimate sums of the form $\frac{e_{k_{1}}+\cdots+e_{k_{n_{j}}}}{n_{j}}$ where $j \in \mathbb{N}$ and $k_{1}<\ldots<k_{n_{j}}$ are natural numbers.

Definition 8.1. We denote by W the minimal subset of $c_{00}(\mathbb{N})$ such that:
(1) $\left\{\epsilon_{n} e_{n}^{*}, n \in \mathbb{N},\left|\epsilon_{n}\right|=1\right\} \subset W$.
(2) W is closed under the operations $\left(\mathcal{A}_{2 n_{j}}, \frac{1}{m_{j}}\right)_{j \in \mathbb{N}}$, i. e for every $j \in \mathbb{N}, d \leq$ $2 n_{j}$ and for every $f_{1}<\cdots<f_{d}$ in W it follows that $\frac{1}{m_{j}}\left(f_{1}+\cdots+f_{d}\right) \in$ W.
(3) W is closed under the operation $\left(\mathcal{A}_{4}, \frac{1}{2}\right)$, i.e. for every $d \in \mathbb{N}$ with $d \leq 4$ and for every $f_{1}<\cdots<f_{d}$ in W it follows that $\frac{1}{2}\left(f_{1}+\cdots+f_{d}\right) \in W$.
The set W defines a norm on $c_{00}(\mathbb{N})$ by the rule $\|x\|_{W}=\sup \{|f(x)|: f \in W\}$, $x \in c_{00}(\mathbb{N})$. The completion of $\left(c_{00}(\mathbb{N}),\|\cdot\|_{W}\right)$ is denoted by T.

Lemma 8.1. Let $f \in W, j \in \mathbb{N}$ and $k_{1}<\ldots<k_{n_{j}}$ natural numbers. Then

$$
\left|f\left(\frac{1}{n_{j}} \sum_{r=1}^{n_{j}} e_{k_{r}}\right)\right| \leq\left\{\begin{array}{cl}
\frac{2}{m_{i} m_{j}} & \text { if } w(f)=m_{i}, i<j \\
\frac{1}{m_{i}} & \text { if } w(f)=m_{i}, i \geq j
\end{array}\right.
$$

Also $\left\|\frac{1}{n_{j}} \sum_{r=1}^{n_{j}} e_{k_{r}}\right\|_{W}=\frac{1}{m_{j}}$.

For a proof of the above Lemma we refer to Lemma 3.16 and Proposition 3.19 in [4].

Proposition 8.1 (basic inequality). Let $j_{0} \in \mathbb{N}, j_{0} \geq 3$ and $\left(x_{k}\right)_{k \in \mathbb{N}} a$ (C, ϵ) RIS sequence on $\mathfrak{X}_{n q r}, 0<\epsilon<\frac{5}{m_{j_{0}}^{2}}, C \geq 1$ which is j_{0}-separated with $\min \operatorname{supp}\left(x_{1}\right)>m_{j_{0}}$.

Let also $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ is a sequence of real numbers.
Then for every $f \in\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \backslash F_{0}$ there exist g_{1}, g_{2} on $c_{00}(\mathbb{N})$ with nonnegative coordinates where
(1) $g_{1} \in W$ with $w\left(g_{1}\right)=w(f)$
(2) $\left\|g_{2}\right\|_{\infty} \leq \frac{5}{m_{j_{0}}^{2}}$
such that for every $n \in \mathbb{N}$ we have that

$$
\left|f\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right)\right| \leq 2 C\left(g_{1}+g_{2}\right)\left(\sum_{k=1}^{n}\left|\lambda_{k}\right| e_{k}\right) .
$$

The proof of the above Basic Inequality follows the arguments of Ba sic inequality(Proposition 6.1) in [14]. The only difference is that in the set $\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \backslash F_{0}$ do not appear ℓ^{2} convex combinations as in the case of Basic Inequality in [14]. Consequently the proof of Basic Inequality in this paper is simpler than the corresponding one. Also the norming set W of the auxiliary space T is more simple. Finally we notice that the Condition 4 of Definition 7.2 is unnecessary in the proof of Basic Inequality in this paper. However this condition is necessary in the following lemma.

Lemma 8.2. Let $j_{0} \in \mathbb{N}$ with $j_{0}>1$ and $\left(x_{k}\right)_{k \in \mathbb{N}} a(C, \epsilon)$ R.I.S sequence on $\mathfrak{X}_{n q r}, 0<\epsilon<\frac{5}{m_{j_{0}}^{2}}, C \geq 1$ which is j_{0}-separated.

Let also $k_{1}<\cdots<k_{n_{j_{0}}}$ natural numbers.
Then there exists $M>0$ which depends only on $C>0$ such that

$$
\left\|\frac{x_{k_{1}}+\cdots+x_{k_{n_{j_{0}}}}}{n_{j_{0}}}\right\|_{G} \leq \frac{M}{m_{j_{0}}}
$$

Proof. Let $f \in\left(G \backslash F_{0}\right)$. Then $f=\sum_{i=1}^{d} \alpha_{i} x_{i}^{*}$ where $\alpha_{i} \in \mathbb{Q}, \sum_{i=1}^{d} \alpha_{i}^{2} \leq 1$ and $x_{i}^{*} \in S, i=1, \ldots, d$ have pairwise disjoint indices.

Let $f=f_{0}+g+h$ where $w\left(f_{0}\right)=m_{j_{0}}, g=\sum_{i=1}^{d} \alpha_{i} x_{i,<j_{0}}^{*}$ and $h=\sum_{i=1}^{d} \alpha_{i} x_{i,>j_{0}}^{*}$.
We set $x=\frac{x_{k_{1}}+\cdots+x_{k_{n_{j_{0}}}}}{n_{j_{0}}}$.
From Lemma 7.1 we get that

$$
\left|f_{0}(x)\right| \leq \frac{C}{m_{j_{0}}}\left(1+\frac{2 n_{j_{0}}}{n_{j_{0}}}\right)=\frac{3 C}{m_{j_{0}}}
$$

Since $\left(x_{k}\right)_{k \in \mathbb{N}}$ is j_{0}-separated we have that

$$
|h(x)| \leq \frac{C \cdot 257 m_{j_{0}}^{4}+\frac{2}{m_{j_{0}}^{2}}\left(n_{j_{0}}-257 m_{j_{0}}^{4}\right)}{n_{j_{0}}} \leq \frac{C}{m_{j_{0}}}+\frac{2}{m_{j_{0}}}=\frac{C+2}{m_{j_{0}}}
$$

Also

$$
|g(x)| \leq \sum_{i=1}^{d}\left|x_{i,<j_{0}}^{*}(x)\right| \leq \sum_{i \in A}\left|f_{i}(x)\right|
$$

where $f_{i} \in\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \backslash F_{0}$ with $w\left(f_{i}\right)=m_{i}$ and $|A| \leq j_{0}$.
Let $i \in A$. Using basic inequality we get that

$$
\left|f_{i}(x)\right| \leq 2 C\left(g_{1}^{i}+g_{2}^{i}\right)\left(\frac{e_{k_{1}}+\cdots+e_{k_{n_{j_{0}}}}}{n_{j_{0}}}\right)
$$

where, $g_{1}^{i} \in W, w\left(g_{1}^{i}\right)=w\left(f_{i}\right)$ and $\left\|g_{2}^{i}\right\|_{\infty} \leq \frac{5}{m_{j_{0}}^{2}}$. Hence

$$
\begin{gathered}
\left|f_{i}(x)\right| \leq 2 C\left(\frac{2}{m_{i} m_{j_{0}}}+\frac{5}{m_{j_{0}}^{2}}\right) \text { and thus } \\
|g(x)| \leq 2 C\left[\sum_{i \in A}\left(\frac{2}{m_{i} m_{j_{0}}}+\frac{5}{m_{j_{0}}^{2}}\right)\right] \leq 2 C\left(\frac{2}{m_{j_{0}}}+j_{0} \frac{5}{m_{j_{0}}^{2}}\right) \\
\leq 2 C\left(\frac{2}{m_{j_{0}}}+\frac{5}{m_{j_{0}}}\right)=\frac{14 C}{m_{j_{0}}}
\end{gathered}
$$

Finally $|f(x)| \leq \frac{18 C+2}{m_{j_{0}}}$, so letting $M=18 C+2$ we get that $\|x\|_{G} \leq \frac{M}{m_{j_{0}}}$.

9. Every non-reflexive subspace of $\mathfrak{X}_{n q r}$ has non separable

dual. We pass to the final section where we prove the next Theorem.

Theorem 9.1. Let Y a closed, infinite and non-reflexive subspace of $\mathfrak{X}_{n q r}$. Then Y^{*} is non-separable.

Proof. It is enough to prove the conclusion for the block subspaces of $\mathfrak{X}_{n q r}$.

Let $Y=\overline{\left\langle y_{n}, n \in \mathbb{N}\right\rangle}$ a non-reflexive block subspace of $\mathfrak{X}_{n q r}$. Since the subspace Y is non-reflexive, James classical theorem [12] yields that the sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ is not shrinking. Therefore there exist $\left(z_{n}\right)_{n \in \mathbb{N}}$ a block sequence of $\left(y_{n}\right)_{n \in \mathbb{N}}, \epsilon_{0}>0$ and $x^{*} \in \mathfrak{X}_{n q r}^{*}$ such that:
i. $\left\|z_{n}\right\|_{G}=1, n \in \mathbb{N}$
ii. $\quad \epsilon_{0}<\left|x^{*}\left(z_{n}\right)\right|, n \in \mathbb{N}$

Using Proposition 6.1 it is not hard to prove that there exist $\epsilon_{1}>0$ and an infinite σ branch b such that for the functional b^{*} holds

$$
\epsilon_{1}<b^{*}\left(z_{n}\right), \quad n \in \mathbb{N}
$$

Let b be a σ_{r} branch, where $r \in \mathbb{N}$.
We will prove that Y^{*} is non-separable. It is enough to show that if $Z=\overline{\left\langle z_{n}, n \in \mathbb{N}\right\rangle}$ then Z^{*} is non-separable.

We consider the sequence $v_{k}=\frac{1}{n_{k}} \sum_{i \in F_{k}} z_{i}, k \in \mathbb{N}$ where $F_{k} \subset \mathbb{N},\left|F_{k}\right|=n_{k}$, $F_{k}<F_{k+1}, k \in \mathbb{N}$.

We observe that
(1) $\left\|v_{k}\right\|_{G} \leq 1, k \in \mathbb{N}$.
(2) $b^{*}\left(v_{k}\right)=b^{*}\left(\frac{1}{n_{k}} \sum_{i \in F_{k}} z_{i}\right)>\epsilon_{1}, k \in \mathbb{N}$.

Since $b^{*}\left(v_{k}\right) \geq \epsilon_{1}, k \in \mathbb{N}$ it follows that for every $k \in \mathbb{N}$ there exists

$$
x_{k}^{*} \in S_{r} \text { with } \operatorname{ran}\left(x_{k}^{*}\right) \subset \operatorname{ran}\left(v_{k}\right) \text { such that } \epsilon_{1}<x_{k}^{*}\left(v_{k}\right) .
$$

We notice that x_{k}^{*} is the restriction of b^{*} on the interval $\operatorname{ran}\left(v_{k}\right)=\left[\min \operatorname{supp}\left(v_{k}\right)\right.$, $\left.\max \operatorname{supp}\left(v_{k}\right)\right]$.

Using the dyadic tree we construct along of his branches uncountable σ_{r+1} special sequences such that considering these as functionals on Z, any two of them have big distance.

We notice that for a $j \in \mathbb{N}, 0<\epsilon<\frac{5}{m_{j}^{2}}$ there exists an $L \in[\mathbb{N}]$ such that $\left(v_{k}\right)_{k \in L}$ is $(3, \epsilon)$ RIS and j-separated (Remark 7.2).

Let D the dyadic tree. Inductively we construct $\left(x_{\alpha}, f_{\alpha}, j_{\alpha}\right)_{\alpha \in D}$ (the induction is in the lexicographic order of D) such that
(1) For every $\alpha \in D$ we have that $x_{\alpha}=\frac{1}{n_{j_{\alpha}}} \sum_{i \in \Lambda_{\alpha}} v_{i}$ and $f_{\alpha}=\frac{1}{m_{j_{\alpha}}} \sum_{i \in \Lambda_{\alpha}} x_{i}^{*}$ where $\Lambda_{\alpha} \subset \mathbb{N},\left|\Lambda_{\alpha}\right|=n_{j_{\alpha}}$.
(2) $j_{\emptyset} \in \Omega_{1}, j_{\emptyset}>1, m_{j_{\emptyset}}>257$ and for every $\alpha \in D$ with $\alpha \neq \emptyset$ it follows that $j_{\alpha}=\sigma_{r+1}\left(\left(f_{\beta}\right)_{\beta<\alpha}\right)$.
(3) if $\alpha<_{\text {lex }} \beta$ then $\Lambda_{\alpha}<\Lambda_{\beta}$.
(4) if $a \in D$ and $S_{a}=\{b, c\}$ are the immediate successors of a then $\Lambda_{a}<\Lambda_{b}$, $\Lambda_{a}<\Lambda_{c}$ and Λ_{b}, Λ_{c} are successive.
(5) if $a \in D$ then $\left(v_{i}\right)_{i \in \Lambda_{a}}$ is $(3, \epsilon)$ RIS $\left(0<\epsilon<\frac{5}{m_{j_{a}}^{2}}\right)$ and j_{a} separated.

We observe that $f_{\alpha}\left(x_{\alpha}\right) \geq \frac{\epsilon_{1}}{m_{j_{\alpha}}}$ for every $\alpha \in D$ and also from Lemma 8.2 we have that $\left\|x_{a}\right\|_{G} \leq M$ for all $\alpha \in D$.

Let $\left(f_{\alpha}\right)_{\alpha \in b_{1}},\left(f_{\alpha}\right)_{\alpha \in b_{2}} 2 \sigma_{r+1}$ special sequences and b_{1}, b_{2} different branches of the dyadic tree.

We consider the functionals $g_{b_{1}}=\sum_{\alpha \in b_{1}} f_{\alpha}$ and $g_{b_{2}}=\sum_{\alpha \in b_{2}} f_{\alpha}$.
Since $b_{1} \neq b_{2}$ we may assume that there exists $\alpha \in\left(b_{1} \backslash b_{2}\right)$. We have that

$$
\left\|\left.g_{b_{1}}\right|_{Z}-\left.g_{b_{2}}\right|_{Z}\right\| \geq \frac{\left(g_{b_{1}}-g_{b_{2}}\right)\left(x_{\alpha}\right)}{\left\|x_{\alpha}\right\|_{G}}=\frac{g_{b_{1}}\left(x_{\alpha}\right)}{\left\|x_{\alpha}\right\|_{G}}=\frac{f_{\alpha}\left(x_{\alpha}\right)}{\left\|x_{\alpha}\right\|_{G}} \geq \frac{\epsilon_{0}}{m_{j_{\alpha}}} \frac{m_{j_{\alpha}}}{M}=\frac{\epsilon_{0}}{M} .
$$

Corollary 9.1. The space $\mathfrak{X}_{n q r}$ does not contain any quasi-reflexive and non-reflexive subspace.

Proof. Assume the contrary. Then there exists a quasi-reflexive and non-reflexive subspace Y of $\mathfrak{X}_{n q r}$, i. e. $0<\operatorname{dim} Y^{* *} / Y<\infty$. From this it follows that $Y^{* *} / Y$ is separable and since Y is also separable we get that $Y^{* *}$ is separable. Therefore Y^{*} is separable which contradicts to Theorem 9.1.

REFERENCES

[1] S. A. Argyros, A. D. Arvanitakis, A. G. Tolias. Saturated exensions, the attractors method and hereditarily James tree spaces. In: Methods in Banach spaces (Eds J. M. Castillo, et al.), Proceedings of the V conference on Banach spaces, Cáceres, Spain, September 13-18, 2004. Cambridge, Cambridge University Press, London Mathematical Society Lecture Note Series, vol. 337 (2006), 1-90.
[2] S. A. Argyros, J. Lopez-Abad, S. Todorcevic. A class of Banach spaces with few non-strictly singular operators., J. Funct. Anal. 222, 2 (2005), 306-384.
[3] S. A. Argyros, A. Manoussakis. An indecomposable and unconditionally saturated Banach space. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. Studia Math. 159, 1 (2003), 1-32.
[4] S. A. Argyros, A. G. Tolias. Methods in the theory of hereditarily indecomposable Banach spaces. Mem. Amer. Math. Soc. 170, 806, (2004), $\mathrm{vi}+114 \mathrm{pp}$.
[5] S. A. Argyros, S. Todorcevic. Ramsey methods in analysis. Birkhauser, CRM, Barcelona, 2004.
[6] Steven F. Bellenot. More quasi-reflexive subspaces. Proc. Amer. Math. Soc. 101 (1987), 693-696.
[7] P. Civin, B. Yood. Quasi reflexive spaces. Proc. Amer. Math. Soc. 8 (1957), 906-911.
[8] C. Finet. Subspaces of Asplund Banach spaces with the point of continuity property. Israel J. Math. 60 (1987), 191-198.
[9] R. G. Haydon. Some more characterizations of Banach spaces not containing l^{1}. Math. Proc. Cambridge Phil. Soc. 80 (1976), 269-276.
[10] R. C. James. A separable somewhat reflexive Banach space with non separable dual. Bull. Amer. Math. Soc. 80 (1974), 738-743.
[11] R. C. James. A non reflexive Banach space isometric with its second conjugate. Proc. Natl. Acad. Sci. USA 37 (1951), 174-177.
[12] R. C. James. Bases and reflexivity of Banach spaces. Ann. of Math. 52 (1950), 518-527.
[13] W. B. Johnson, H. P. Rosenthal. On w^{*} basic sequences and their applications to the study of Banach spaces. Studia. Math. 43 (1972), 77-92.
[14] G. Petsoulas, T. Raikoftsalis. A Gowers tree like space and the space of its bounded linear operators. Studia Math. (to appear).
[15] H. P. Rosenthal. A characterization of Banach spaces containing ℓ^{1}. Proc. Natl. Acad. Sci. USA 71 (1974), 2411-2413.

National Technical University of Athens
Faculty of Applied Sciences
Department of Mathematics
Zografou Campus, 157 80, Athens, Greece
Received October 12, 2008
e-mail: gpetsoulas@yahoo.gr

