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ABSTRACT. In this paper we consider an L? type space of scalar functions
L%/I’ 4(RUIR) which can be, in particular, the usual L? space of scalar func-
tions on R U¢R. We find conditions for density of polynomials in this space
using a connection with the L? space of square-integrable matrix-valued
functions on R with respect to a non-negative Hermitian matrix measure.
The completness of Ly 4(RUR) is also established.

1. Introduction. Let C,, be the algebra of all n x n matrices with

complex elements and C=,,, be the cone of all non-negative Hermitian matrices

from C,,xp, n € N. Denote by B(R) the Borel subsets of R. By a C=Z, -valued

nxn

measure on B(R) we will mean a o-additive function from B(R) into C=,,.
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For each (C,%Xn—valued measure M on B(R) one can define a non-decreasing left-
continuous (in the matrix norm) C, x,-valued function (distribution function),

see [1]:

M([0,z)), >0
(1) M(z) == 0, z=0
M([z,0)), =<0

Conversely, each non-decreasing left-continuous C,, x,-valued function M(zx), x €
R, defines a C=Z,, -valued measure on B(R) [1].

nxn

Let M be a C2

~n-valued measure on B(R) with finite matrix moments

(2) Sy = / a*dM, keZ,.
R

The set of all CZ,, -valued measures on B(R) with moments {5k}, we denote
by V. The problem of the description of V' if one knows moments {Si}32,
is the matrix Hamburger moment problem [14, p. 52]. This problem is called
determinate if V' consists of a unique measure and indeterminate in the opposite
case.

Let L2, = L%,(R) be the space of square-integrable with respect to M
Cpxn-valued functions (see [12]). Denote by P, ., the set of all (n X n) matrices
whose entries are complex polynomials. Elements of Py, we call matrix poly-
nomials. The set of all complex polynomials we denote by P (= Py11). Is the set
Pnxn dense in L2,? The theorem of Riesz states that in the scalar case (n = 1)
polynomials will be dense if and only if M is a N-extremal solution of moment
problem (2) [2, p. 59]. A similar situation is in the case of an arbitrary n. We
suppose that for every P(z) = 2*1,, + Ap_ 12" + Ap_02* 2 4+ + Ay € Prsen,
where A4; € Cpxp, @ = 0,1,....k = 1; k € Zy; I, = (0i5)7 =1, the following
condition holds true:

(3) / P(z)dM P*(x) is an invertible matrix.
R

Applying the process of pseudo-orthogonalization to the sequence I,,, I, ©21,, ...
(see [3, pp. B77-578]) we obtain a sequence of orthonormal matrix polynomials
{Py(x)}32, (where Py(x) has degree n):

(4) | PU@)M Py (@) = Lds, L€ 2
R
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For these polynomials one can construct a generalized Jacobi matrix J which
is a (n x n) block tridiagonal matrix. The corresponding linear operator J in
? = {(z)iez, : 1 € C, Y52 lzk]? < oo} is symmetric. Let (m_,my) be its
deficiency indices. The matrix Hamburger moment problem is called completely
indeterminate if my = m_ = n. In this case P, «, will be dense in L?M iff (see [4,
Theorem 1.1, p. 249]):

o) [
R

= —{C"WI + U] iAW = UIHD* (NI + U] —iB* (NI - U]},
A € C\R,

where U is a constant unitary matrix and A(-), B(-),C(-), D(:) are holomorphic
matrix functions which can be computed explicitly using moments {S;}7° .

Measures which satisfy condition (5) are called N-extremal.

Notice also that in the scalar case (n = 1) Riesz proved that polynomials
are dense in L%, iff the measure (1 + |z|)"2dM (x) is determinate (i.e. defines
a determinate moment problem (2)) [5]. Consequently, several criteria for the
determinacy of a measure can be used to study the question of density of poly-
nomials [6].

The main purpose of our present investigation is to study the question of
density of P in a general L? space which in special cases can be the L? space on
RUR or a discrete Sobolev type space related to the discrete Sobolev orthogonal
polynomials [7]. These general L? spaces are related to orthogonal polynomials
on rays [8].

If f = f(\)is a C-valued function on R U iR, we set

fsO) = (FON), f(=X), AeRUIR.

If there exist derivatives of f(\) at A = 0 in directions of R, ‘R and they coincide,
we denote by f(0) their common value.

If there exists f/(0), we set fy = (f(0), f'(0)).

Let M and M; be C=,, -valued measures on B(R) and M (z), M;(z) be
their distribution functions, respectively. Denote by B(:R) the set {iA, A €
B(R)}. For aset A € B(iR) we set M;(A) = M;(+A). Then M; will be a
o-additive function from B(iR) into C=,,,. Such functions we call CZ,,-valued
measures on B(iR). The function
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M(0,2)), ~z>0

1

(6) Mi(x) = 0, z=0

M([z,0)), %x <0

will be called a distribution function of Mj.

The Radon-Nikodym derivatives of the measures M, M we will denote
by M’ and M7, respectively [12]. The corresponding trace measures we denote
by Tar and Tay,, respectively. We set M = (M, My). Let A € cz

nxn*

Definition 1.1. Consider a set L%/LA(R UiR) of C-valued functions on
RUIR, f € L3 4(RUIR) <

(1) f is Tar-measurable on R, f is T, -measurable on iR;
(i6) Fu)M'Fr(N) € L, (R), MG F5(N) € LL, (iR);
(13i) if A# 0 then f(0) is finite and there exists f'(0).

Obviously, L3; ,(R UiR) is a linear vector space. We define the inner
product in L%/LA(R UiR) in the following way:

(1) {F,g)omn = / FANM (NG (Ndmar + / FONM NG (Ndrar, +
+ faAds,  f.9€ Ligpa.

For f € L%/I, 4 the norm is defined as

(8) HfH%,M,A - <f7 f>2§M7A'

As usual, we shall consider equivalence classes of such functions with respect to
(-, ->2;M7A. Then L%/I,A becomes a unitary space with inner product (-, -)2;M7A.

To study density of P in L%/L 4 we will construct a non-decreasing Coyo-
valued function M; on R depending on M, A and establish an isometric iso-
morphism U between L3, 4 and the Hilbert space L2(M;) of C%valued functions
square integrable with respect to M, see [12]. Then we use a connection between
L2(My) and L?Ml and apply the mentioned above results about density to L?Ml
As a by-product, we obtain that the space L12v1, 4 is complete.
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Notations. As usual, we denote by R,C,N,Z,Z. the sets of real,
complex, positive integer, integer, non-negative integer numbers, respectively,
and iR stands for the imaginary axis in the complex plane. Besides the definitions
given above we should note the following notations. The set of complex vectors
(c1,¢2), c1,¢2 € C we denote by C2. We identify Cyy; with C and C7,, with
the set of non-negative real numbers. If A € C,,«, then A* stands for its adjoint,
n € N. If A € C,xy, is non-degenerate, A~ means its inverse. The set of all
vectors (pi1,p2) where pi,py € P we denote by P,. These vectors will be called
vector polynomials.

2. Density of polynomials. Let Cy be a subset of L3; 4(R U iR)
which consists of continuous functions which have the first derivative at zero (in
the directions of R, iR and they coincide). For f,g € Cy we can write

(f,9)2m,4 = / J‘T;M/ﬁ”;dTM+/ Fo MG dras, + f4AT; =
R iR

— / FoM' G dray + / oM gtdray, + / oM G dry+
R\(—E1,€2) (iR)\(—i€37i64)

(_81782)

(—ies,ieq)

where g; > 0, i = 1,4.
Define

. (), A<0
() = { (A — A (0), A>0

where A7pr(0) := 7a7(4+0) — 7a7(0) is a jump of 7a7(A) at zero;

T, (), A € (—ioo, 0]

P = { v (A) = Qi (0), A € (0,d00)

where A;7ar, (0) := Tar, (+i0) — a7, (0) = lime—. 0 7as, (€2) — Tar, (0), is a jump of
T, (A) at zero.
Then

/ FuM'gedry = / Fu MG diar = F(0)M'(0) (0)A7ar (0)+
(—e1,e2) (—e1,e2)
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[ Frgdn + 0500
(—e1.e2)

where @ := (1, 1)M’(0) < X ) Ara:(0).

Since functions f, g and entries of M’(\) are Tjs-a.e. bounded functions
in any neighbourhood of 0, we have

/ f;M/g;kdf'MﬁO, as 81,82—>0.
(—e1.e2)

Consequently,

(10) [ iMgan - j0g@a, asenz o
(—e1,62)
In a similar manner we can write

/ FuMigdry, = / FaMi gt ding, + Fa(0)M(0): (0)Asrag, (0) =
(—ies,ieq) (—ie3,icq)

— [ g+ 10)500ar
(—i€37i64)
where a7 := (1, 1)M?(0) < X ) Airar, (0).

Since functions f, g and entries of M}(\) are Tp-a.e. bounded functions
in any neighbourhood of 0, we have

/ f;M}g;*d%MI — 0, aseg,eq— 0.
(—ies,ica)

Thus, we have

(11) [ EMigdn, — f050). asese -0
(—ies,ieq)
1 4 1/1 1
e P ; -1_ =
SetJA.—<1 _%>.NotlcethatJ/\ —2<)\ _/\>.

Then we can write

/ FoM' G dryy = FsZ T AM(J3) L TG drr =
R\(—¢1,e2) R\(—¢1,62)



Density of polynomials in the L? space. . . 153

- / Fo\M(N)J5§:drar —
R\(—¢1,62)

!
(12) —>/ Fo M (N J5Gedray, as 1,69 — 0,
R

- 1 \
where M(3) = J; M) = 4 ( L )M’()\)( X _AX) and the

. . / . . . .
prime in [ means that the integral is understood in the improper sense at zero.
In an analogous manner we write

/ foMigidry, = / FoTn T My (T3) 7 T, =
(iR)\(—ie3,ic4) (iR)\ (—ie3,ic4)

_ /( P\ N (N T3 drag, —

iR)\(—ies,icq)

/
(13) — / ﬁJAM[(A)JKQZdTMI, as £3,&4 — 0,
iR

. 1
where M(\) == J,'Mi(\)(J5)7! = 1 ( i _1/\ )M}(z\)( 1 —)\X ) and the

prime in [ " means that the integral is understood in the improper sense at zero.
Passing to the limit in (9) and using (10), (11), (12), (13) we get

! !
<f,9)2;M,A=/ fsJAMJiﬁdTM+/ fsANMrJXgedrar, +
R iR

(14) +ﬁ<A+<&JBE” 8))5;;

For f € Cy we set

f)+ (=N

) = 5 , A€ RUIR;

JN=FEN

=) = 7\ (R UR)\{0}.
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Functions f*, f~ are continuous. Moreover,

fA) = F(=N)

li - =1 =1
)\li%f () Ali% 2\ ,\lg%) 2\ +
. f=N0=f0)
1 -—_— —
+ lim o5 f(0),

and also limy_;o f~(A) = f/(0). Then we set

f7(0) = £(0),

and get a continuous function f~ on R U ¢R.
We set

FoN) = (FT(N), f~(V), A€ RUIR.
Using these definitions we can rewrite (14) in the following form:
o o
(1) (foghona =4 [ Fotgpdra+4 [ Ftgydr,+
R iR
+ﬁ<A+(“BW
Consider the following integrals:
Il = 4/ﬁMgZdTM7 ILI = 4/ f;M[g;dTMI,
R iR

which exist in view of the definitions of M and M 7.
Let us study the integral I;:

(16) h=4/ ﬁM@mM+4/ foMgsdrar,
R\(—¢1,e2) (—e1,e2)

where €1,e9 > 0.
We can write

4 / Mgy = 4 / NI ding + AF(0) N (0)F(0) Arar 0).
(—e1,e2) (—e1,e2)
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Since functions ft,f~, g%, ¢~ and entries of M are 7y-a.e. bounded in any
neighbourhood of 0, the first addend on the right of the latter equality tends to
Zero as €1,&2 — 0.

/
The first addend on the right-hand side of (16) tends to 4 / oM GpdTr,
R

as €1,&9 — 0, by the definition of the improper integral.
Consequently, passing to the limit in (16) we get

I = 4/R/ FoMGidras + 4f,(0)M (0)F5 (0) AT (0).
In a similar way we get that
Ly=4 /R FoM1gsdrar, + 4£,(0)M1(0)35(0)AsTar, (0).
Therefore

/ /
4/ prﬁszM + 4/ prlﬁszMf =1 + ILI_
R iR
—4£,(0)M (0)g5(0) ATar (0) — 4, (0)Mr(0)G5(0)Aimar, (0) =

=hL+1Ii1— 4faM (0)g5 ATar(0) — 4fdMI(0)§b:1AiTM1 (0).

Substituting the last expression in (15) we get

(17) (f,9)2m,4 = 4/R‘f;Mg_ZdTM +4/1.R f;MIg_;dTMI AT
since
(T4 ) 40 0) 4550870 =0
Set
Ty = AR (), AeR

4 [A N (N)drag, (), A€iR
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Since functions f*, f~, g%, g~ are continuous, we can rewrite (17) in the following
form:

(18) (f, 9)aman = /R FodME (N, + /R LA (NG, + FuAT,

where integrals are understood as a sum of integrals of each scalar addend.
Denote the sum of integrals on the right by I5. Then we can write

(19) Izz/ ﬁdﬁ(A)£+/ +~~+/ +'~+/ o
(—00,0] [0,00) (—100,0] [0,i00)

In the first two terms on the right we make the changes of variable: = \2, \ =
—y/Z and x = A2, X\ = \/z, respectively. Here \/z = ]m\

In the last two terms on the right of (19) we make the changes of variable:
r =X, A= —y/xand x = A2, \ = /T, respectively. Here \/z = ’$|%Z Note that
functions f*, f~,¢", g~ are even and do not depend on the choice of a branch of
the square root. Define the following matrix-function:

(20) ]\/4\1(95):{ ]‘//{(_\/5) —AM(\/E), r<0
M(/z)—M(—z)+ A, >0

This function is a non-decreasing Caxo-valued function on R. Then from (18)
and (19) we get

(f.9 2MA—/fp ©)d M (2) 35 (v/7).
We set M (x) := M, (x —0), x € R, to get a left-continuous function and
(21) (fs9)2ma = /fp z)dMi ()G, (V).

The function M;(z) defines a (CQEXQ—VaIued measure M; on B(R). The space of
square-integrable vector functions ¥ = (v1(z),v2(z)) on R with respect to the
measure M; we shall denote L2(M;j). The space of square-integrable matrix-

functions v = ( vi(z) va(x)

v3(z) va()
L%Wl. For the general definition of such spaces we refer to [12]. Notice that in
fact

) on R with respect to the measure M; we denote

(22) L3y, = Ly(My) © Ly(My),
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according to the map

v (]
13, 3 ( Lo ) s (0y02) ® (v, 02) € LE(My) & L2(My).

V3 U4
From this fact it follows a corollary:

, Corollary 2.1. The set P, is dense in L2(My) iff the set Poys is dense

By (-, -)2.0:m, and || - [|2,0;01, We denote the inner product and the norm in
L2(My), respectively. We can define an operator V : Co — L2(M;):

(23) (VF)(2) = f(Vz), z €R, f € C.

From (21) it follows that

(24) (VI Va)ovan = (f,9)2m,4, f,9 € Co.

Let Ry be a subset of L2(M;) which consists of functions o(x) = (v1(x),va(x)),
such that v1,ve are continuous and w(A) := v1(A?), A € R U R has the first
derivative at zero (in the directions of R and ‘R and they coincide). We shall
show that VCy = Ry.

Notice that for f € Cp the functions f*( /), f~(y/z) are continuous

and the function fT(\) = %(f(/\) + f(=X)) has the derivative %f*}/\ 0(: 0).

Hence, VCy C Ry. On the other hand, take v(x) = (v1(z),v2(x)) € R():and set
foA) == v1(A2) + Mo (M%), A € RUGR. Then fF(\) = v1(A\?), f, (\) = v2(\?)
and

(25) (fo V), fo (V) = (vi(2),v2(2)), = € R,
Moreover,

fv(A)‘) — fv(o) —

EIf{,(O) - Al/i\rgo AN

i PLAN2) 4 Aes((AN)?) — v1(0)

— 2\\/
AX—0 A\ - U2(0) + (Ul ()\ )) ’/\207

(AX € Ror AX € iR).
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Using (25) we can write

[llsan, = [ (7)) &) )y (V).
Moving backwards from (21) to (9) we obtain
10]|2,0500, = [| foll2am,4 < 00.
Hence, f, € Cy. Moreover,
(26) (V1) (@) = (fo),(VE) = T(x).

Consequently, VCy = Ry.
Define an operator G : Ry — Cjy:

(27) (GP)(A) = v1(A?) + Ava(N?), A€ RUIR, ¥ = (v1,v2) € Ry.

From (27) it follows that VG¥ = ¥, ¥ € Rp. On the other hand,
GVf=Gf,(vVz)=fT(AN)+ A~ (A) =f, f€Cph Hence, G=V~1

Lemma 2.2. The subset Cy is dense in Ly 4 (R UiR).

Proof. 1) Case A= 0. Here we shall follow the ideas of Kats in [13].
Take f € L%/I,A' Set

(28)  fnv(N) = { F), it WA)_‘ <N NI N , AeRUIR, N €N.
0, otherwise

Let En :={XA € RUiR: fn(\) # f(A\)}. Since f(A) has almost everywhere with
respect to 7p7 on R and with respect to 7y, on iR finite values, we get that

(29) TM(ENQR)—»Oand TMI(ENﬂ(iR)) — 0
as N — oo. We shall denote

V(X g) = gs(MM' (NG (\), AR,

V(% 9) = Gs(NM;NGs(N), A€iR, g€ Lyga-

Then

1N = fl3aa = /

ENNR

W, f)dras + / WO\ f)dra, — 0,
ENQ(’L'R)
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as N — oo, since f is integrable and (29) holds.

Hence, bounded functions are dense in L12VI, 4(RU3R).

Consider a bounded function f,(A) € Li; 4: |fs(A\)] < N, N € N. Take
an arbitrary € : 0 < ¢ < 1. Choose K > 0 such that Tpr 18 continuous at points
—K, K and

<e.

/ U(X; f)dr
R\[-K,K]

Let 7a7(A\), A € R be the distribution function of the measure 7p,. Consider the

function
. (N, A<0
() = .
(A +1, A>0

The function 737()\) defines a C=-valued measure 73y on B(R). It is important
for us that

(30) m(A) =71m(A), AeB[R): 0¢ A4

(31) Tm(A)=mm(A)+1>1, AeB(R): 0€ A

Applying Luzin’s theorem (see [9, pp. 227-229]) we can find a continuous function
gn(A) on [—K, K] such that for Qn :={\ € [-K,K]|: gn(A\) # fo(N)} we have
T (QN) < e. Also gy () can be chosen such that [gn(N\)| < N.

From (31) it follows that 0 ¢ @, therefore gn(0) = f5(0). From (31) it
follows also that 73/ (Qn) < e.

There exists 0 > 0 such that 7 ([—K, —K —¢]) < € and 7y ([K, K +9]) <
€, since 7ps is continuous at points — K, K.

We continue the function gy () on intervals [- K, —K — §] and [K, K + ¢]
by intervals of a straight line a\ + b connecting the known value of gy (\) with
0. Namely,

INEE) LK 18), Ae|—K,—K — 4

gn (K)
1)

A=K —9), Ne[K,K+ /]
Thus, we have

lgn W] < lgn(=K)[ < N, A e [-K,—K -],
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lgn M| < lgn(K)[ < N, A€ [K, K —4].
On the rest of R we set gn(A) = 0.

Consequently,

<e+ V(N f —gn)drar| +

/ YO f - gy)drar
R

/[—K—(S,—K]U[K,K—HS]

+ < e+ 16N?* ([~ K — 6, —K))+

/ TN f — gn)dras
[_K7K]

+16N271r (K, K + 0]) + 16N 13 (Qn) < (48N? + 1)e.

In a similar way we can construct a continuous function gy r(A) on iR
such that gn 1(0) = f3(0) and

< (48N? + 1)e.

/ Ur(As f — gn1)drar,
iR

We set

e ::{ gv(A), XeR

gN’[()\), A €iR ’

It is not hard to see that dy(\) will approximate f(\). Consequently, continuous
functions are dense in L12VI, 4(RUIR).
Take a continuous function f. € L%/I,A' For a = —1;1;—14;1i set

(32) fA) = A =a)g(N) + fela),

o) = 20 = £0) 4 A (5 (el = £0) = £) e o

and d is an arbitrary complex number. It is not hard to see that f (A) is a
continuos function on [—1, 1] U[—4,4] such that

(33) f(_l) = fc(_l)a f(l) = fc(1)7 fA(_Z) - fc(_i)v f(Z) = fc(i);
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(34) (0) = £e(0), 3f(0) =d.
Since f.(\) — f.(0) and f(A) — f.(0) as A — 0, we get that

Ve>036 >0 (01 <1): Ae[-1,1]U[—4,i], [N\ <d=

fO) = feV)] <e.
Set
f()‘)v ’)" < 61

(35 AN = fc()\)+’(§;’:;

fC(A)7 ’)\’ > 1

Then fi(\) is a continuous function on R U iR which has the first derivative at
zero and such that:

(F61) = £.(81), 61 <|A[<1 » A€ RUIR.

(36) |f1()‘)_fc()‘)| <g, A€ [_171]U[_i7i]'

Then

15— b= [ WOs = fdr [ WiOu i S, <

[-1,1] [—4,i]

(37) < 4e? ([ 1,1]) + 421, ([, 1))

Consequently, Cy is dense in L%/I, 4 in this case.

2) Case A # 0. Take a function f € L%/I,A' Consider the space L12v1,0-
Evidently, f € L%/I,O as well. Let us apply constructions from the previous case.
Since f(0) is finite, we can for an arbitrary € > 0 construct a bounded function
SN(A) (N > [f(0)]) such that fy(0) = f(0) and [[f — fnllaame < & Then
we construct a continuous function f.(A) such that f.(0) = fn(0) = f(0) and
If5 — fell2am0 < &. For the continuous function f. we construct a function f(\)
as in (32) with d = f/(0). Then we repeat considerations after (32). Define a
function fi(A) as in (35). The function f; will posess property (36) and (37)
holds with A = 0. Notice that f; € L3; , by the definition of L3, ,. Moreover,
f1 € Cy. Consequently, 7 7

If = fillzva = 1f = fillzmo < If — fnllzovo + Ifn — fellomo+
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Hfe = fillavo < 26 + dePmar([=1,1]) + de®mar, ([=4,1]).

Hence, Cj is dense in L12v1 4 in this case as well. O

Lemma 2.2. The subset R is dense in L2(My).

Proof. Since continuous matrix-functions are dense in L?(M;) (see [13]),
continuous vector functions are dense in L2(M;) as follows from (22). Let f =
(f1, f2) € L2(M7) be continuous.

For a = —1,1 we set

fe(z) = (z — a)gr(z) + fr(a),
where

() = L@ = 1:0) + o (@)~ e0) = 1) . 2 € vl

a

k=1,2.

It is not hard to see that fi(z) and fy(x) are continuous functions on [—1, 1] such
that

(38) fi(=1) = fi(=1), fi(1) = f1(1), fo(=1) = fo(=1), f2(1) = fa(1);

(39) £1(0) = £1(0), f2(0) = f2(0), 3f{(0) =1.

Since fi(z) — fx(0) and fi(x) — f1(0) as 2 — 0, we obtain that

Ve>030; >0 (01 <1): ze[-1,1], |z| <01 =

fe(@) = ful@) <e, k=1,2.
Set
Jul@), o] < 6y
fr@) =3 fu(@) + ?1’7__11(&(51) ), <]z <1 s TER k=12
Ju(@), lz| > 1



Density of polynomials in the L? space. . . 163

—

Then f(x) := (fi(z), fo(z)) is a continuous function on R such that f;(\?), A €
R U 4R has the first derivative at zero and
(40) [i(@) = (@) <& we[=11], k=1,2

Let Mj{(z) be the matrix of the Radon-Nikodym derivatives of the measure M
with respect to the trace measure 7y7,. Then

1F = s = [ (7@) = Fi@). fo(o) = Fal@) M (2

[_171]

«(f1(2) = fi(2), fa(@) = fal@)) drar, < 4e®mar, ([-1,1)).
Consequently, Rg is dense in L2(M;). O

We can extend the operator V by continuity to an isometric isomorphism
U between L3; ,(R UiR) and L2(M;). Hence, we have obtained the following
result:

Lemma 2.3. There exists an isometric isomorphism U between
L3 A(RUIR) and Ly(M).

Since L2(M;j) is a complete space (see [12, Theorem, p. 295]), from
Lemma 2.3 we get the following theorem.

Theorem 2.1. L3, ,(RUR) is a complete Hilbert space under the inner
product (-, -)2.M,A-
Special choices of M and A in the definition of L%/I, 4 lead to the following

important L? spaces:

m 0

(a) M = ( 0 0 ) , M; =0, A=0. This leads to the usual L2 (R).

m 0
0 0
related to the discrete Sobolev orthogonal polynomials [7].

(b) M = , My =0, A# 0. That leads to a discrete Sobolev space

(c) M = (rg 8),M1: ( WSI 8) my({0}) =0, A =0. Define a measure

m on sets [a,b] U [ic,id], a,b,c,d > 0:

m([a, b] U [ic,id]) := m([a,b]) + my([ci, di]),
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and in a similar manner for sets with (a,bl, [a,b), (a,b), (ci,di], [ci, di), (ci,di).
Then we define a measure p on rectangles in C (with sides parallel to the axes):

w(R) =m((RUR)NR), where R is a rectangle.

Finaly, we apply Lebesque’s extention to p to obtain a positive measure fi defined
on the Borel subsets B(C) in the complex plane. It is not hard to see that
Lowvi,a = L;% in this case. The measure i has support on R U iR.

Conversely, each positive measure i on B(C) with support on R U iR
defines measures M and M 7 on intervals:

(41) M(([a,b]) := lim / R(a — &i,a +ei,b—ei, b+ i),
E—
(42) Mi([ci, di]) := lim R(ci—e,ci+e,di—e,di+e),
E—

where R(z1, 29, 23, 24) is a closed rectangle with vertices at points z;, i = 1,2, 3, 4;
a,b,c,d > 0.

For intervals [a,b), (a,b], (a,b), [ci, di), (ci,di], (ci,di) we use the obvious
modifications of definitions (41),(42). Applying Lebesgue’s extension we obtain
C2-valued measures M and M; on B(R) and B(iR), respectively. Finally, we
set M := M and for A € B(iR)

M;(A), if0¢ A

Mi(4) = { NIy (A) — NI({0}), f0cA

It is not hard to see that L% = Lo, A.
Let us now turn to the question of density of polynomials in L3; ,(RUIR).

It is natural to assume that complex polynomials belong to L%/I, 4(RUIR). This
condition is equivalent to existance of the following integrals:

(43) /R (A7), M (N) (A - drys + /R (Am), My(A)(N?) odry, < 00, m € Zy.

It is not hard to see that VIP = IP,,. Let polynomials be dense in L12VI, 4(RUIR).
Therefore they are dense in Cy. Thus, V¥ = (v1,v2) € Ry we can find a polynomial
p(A) such that

e> [V = pllana = [lv = Vplla,uar, -
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Hence, vector polynomials are dense in Ry and from Lemma 2.2 it follows that
they are dense in L2(My).

Let vector polynomials be dense in L2(M;). Therefore they are dense
in Rg. Thus, Vf(A) € Cyp we can find a vector p' = (p1,p2), where py,py are
polynomials such that

e> IVf = plowan = If = V7 5ll2a
Hence, polynomials are dense in Cy and from Lemma 2.2 it follows that they are
dense in L%,LA(R UiR).
We get that polynomials are dense in L12v1, 4 iff vector polynomials are
dense in L2(M;).
Taking into account Corollary 2.1 we obtain the following theorem:

Theorem 2.2. Consider an L12VI,A space such that for the measure M
condition (43) is satisfied. Then polynomials are dense in L%/IA iff matriz poly-
nomials are dense in L?Ml where My is constructed as above.

We shall suppose that the measure M is not degenerate in the following
sense:

(44) <p7p>2;M,A > 07

for any complex polynomial p(\) # 0.

Applying the Gramm-Schmidt orthogonalization method to the sequence
1, A, A2, ..., with respect to (-,-)o.m 4 We get a system of orthonormal polyno-
mials {p,}5°. They satisfy the orthonormality property

Auﬁgquum%iuwm«+/<@gumaum%iumm@+

iR

*

(45) +(pn) g ADm) g = Onm, nym E Ly

Special choices of M and A in the definition of L3y 4, see cases (a),(b),(c) after
Theorem 2.1, lead to the following important systems of orthogonal polynomials:

(a): Orthogonal polynomials on the real line, see [10];
(b): Discrete Sobolev orthogonal polynomials, see [7];

(c): Orthogonal polynomials on radial rays in the complex plane, see [11].
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For orthonormal polynomials from (45) we define

Pa(@) = (Vpa)(2) = (pf (V2),p, (VT)), T €ER, n € Zy.

Then {p,(z)}nez, will be an orthonormal system in L?(M;). Define matrix
polynomials

5 (VT o (VT Pk (T
46 Pu)— ( p3(VT)  py(VE) ) _ ( Po( >) > kez..

p;_k+1(\/§) p2_k+1(\/5) Pokt1(x

Notice that Py(x) has degree exactly k. Moreover, we have

(47) / Pi(@)dMy (2) P (z) = 16y, k.l € Z.,
R

where I = (5i,j)z2,j:1‘

Hence, { Py ()}, are matrix orthonormal polynomials. Denote by J the
corresponding Jacobi matrix and let J be the corresponding symmetric operator
in I2. Suppose that J has indices of deficiency (2,2). In other words that means
that the matrix Hamburger moment problem corresponding to M; is completely
indeterminate.

In this case we get the following theorem:

Theorem 2.3. Consider an L12\/[A space such that for the measure M
conditions (43), (44) are satisfied. Construct the measure My as above. Suppose
that the corresponding symmetric operator J has indices of deficiency (2,2). Then
polynomials are dense in L12\/[A iff condition (5) holds true for M = Mj with a
constant unitary matriz U. 7

Note that there are several criteria for the completely indeterminate case
of the matrix moment problem. For example, one can use a generalization of
Hamburger’s criterion [14, p. 56], see also [15]-[17] and references therein.
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