


Serdica Math. J. 35 (2009), 147–168

DENSITY OF POLYNOMIALS IN THE L
2 SPACE ON THE

REAL AND THE IMAGINARY AXES AND IN A SOBOLEV

SPACE

Lutz Klotz, Sergey M. Zagorodnyuk

Communicated by E. Horozov

Abstract. In this paper we consider an L2 type space of scalar functions
L2

M,A(R∪ iR) which can be, in particular, the usual L2 space of scalar func-
tions on R ∪ iR. We find conditions for density of polynomials in this space
using a connection with the L2 space of square-integrable matrix-valued
functions on R with respect to a non-negative Hermitian matrix measure.
The completness of L2

M,A(R ∪ iR) is also established.

1. Introduction. Let Cn×n be the algebra of all n × n matrices with
complex elements and C

≥
n×n be the cone of all non-negative Hermitian matrices

from Cn×n, n ∈ N. Denote by B(R) the Borel subsets of R. By a C
≥
n×n-valued

measure on B(R) we will mean a σ-additive function from B(R) into C
≥
n×n.
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For each C
≥
n×n-valued measure M on B(R) one can define a non-decreasing left-

continuous (in the matrix norm) Cn×n-valued function (distribution function),
see [1]:

(1) M(x) :=






M([0, x)), x > 0

0, x = 0

M([x, 0)), x < 0

.

Conversely, each non-decreasing left-continuous Cn×n-valued function M(x), x ∈
R, defines a C

≥
n×n-valued measure on B(R) [1].

Let M be a C
≥
n×n-valued measure on B(R) with finite matrix moments

(2) Sk =

∫

R

xkdM, k ∈ Z+.

The set of all C
≥
n×n-valued measures on B(R) with moments {Sk}∞k=0 we denote

by V . The problem of the description of V if one knows moments {Sk}∞k=0

is the matrix Hamburger moment problem [14, p. 52]. This problem is called
determinate if V consists of a unique measure and indeterminate in the opposite
case.

Let L2
M = L2

M(R) be the space of square-integrable with respect to M
Cn×n-valued functions (see [12]). Denote by Pn×n the set of all (n × n) matrices
whose entries are complex polynomials. Elements of Pn×n we call matrix poly-
nomials. The set of all complex polynomials we denote by P (= P1×1). Is the set
Pn×n dense in L2

M? The theorem of Riesz states that in the scalar case (n = 1)
polynomials will be dense if and only if M is a N -extremal solution of moment
problem (2) [2, p. 59]. A similar situation is in the case of an arbitrary n. We
suppose that for every P (x) = xkIn + Ak−1x

k−1 + Ak−2x
k−2 + · · · + A0 ∈ Pn×n,

where Ai ∈ Cn×n, i = 0, 1, . . . , k − 1; k ∈ Z+; In = (δi,j)
n
i,j=1, the following

condition holds true:

(3)

∫

R

P (x)dMP ∗(x) is an invertible matrix.

Applying the process of pseudo-orthogonalization to the sequence In, xIn, x2In, . . . ,
(see [3, pp. 577–578]) we obtain a sequence of orthonormal matrix polynomials
{Pk(x)}∞k=0 (where Pk(x) has degree n):

(4)

∫

R

Pk(x)dMP ∗
l (x) = Inδk,l, k, l ∈ Z+.
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For these polynomials one can construct a generalized Jacobi matrix J which
is a (n × n) block tridiagonal matrix. The corresponding linear operator J in
l2 = {(xl)l∈Z+

: xl ∈ C,
∑∞

k=0 |xk|2 < ∞} is symmetric. Let (m−,m+) be its
deficiency indices. The matrix Hamburger moment problem is called completely
indeterminate if m+ = m− = n. In this case Pn×n will be dense in L2

M iff (see [4,
Theorem 1.1, p. 249]):

(5)

∫

R

dM(x)

x − λ
=

= −{C∗(λ)[I + U ] − iA∗(λ)[I − U ]}{D∗(λ)[I + U ] − iB∗(λ)[I − U ]}−1,

λ ∈ C\R,

where U is a constant unitary matrix and A(·), B(·), C(·),D(·) are holomorphic
matrix functions which can be computed explicitly using moments {Sk}∞k=0.

Measures which satisfy condition (5) are called N -extremal.

Notice also that in the scalar case (n = 1) Riesz proved that polynomials
are dense in L2

M iff the measure (1 + |x|)−2dM(x) is determinate (i.e. defines
a determinate moment problem (2)) [5]. Consequently, several criteria for the
determinacy of a measure can be used to study the question of density of poly-
nomials [6].

The main purpose of our present investigation is to study the question of
density of P in a general L2 space which in special cases can be the L2 space on
R∪ iR or a discrete Sobolev type space related to the discrete Sobolev orthogonal
polynomials [7]. These general L2 spaces are related to orthogonal polynomials
on rays [8].

If f = f(λ) is a C-valued function on R ∪ iR, we set

~fs(λ) = (f(λ), f(−λ)), λ ∈ R ∪ iR.

If there exist derivatives of f(λ) at λ = 0 in directions of R, iR and they coincide,
we denote by f ′(0) their common value.

If there exists f ′(0), we set ~fd = (f(0), f ′(0)).

Let M and Mi be C
≥
n×n-valued measures on B(R) and M(x), Mi(x) be

their distribution functions, respectively. Denote by B(iR) the set {iA, A ∈
B(R)}. For a set Â ∈ B(iR) we set MI(Â) = Mi(

1
i
Â). Then MI will be a

σ-additive function from B(iR) into C
≥
n×n. Such functions we call C

≥
n×n-valued

measures on B(iR). The function
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(6) MI(x) :=






M([0, x)),
1

i
x > 0

0, x = 0

M([x, 0)),
1

i
x < 0

will be called a distribution function of MI .

The Radon-Nikodym derivatives of the measures M, MI we will denote
by M ′ and M ′

I , respectively [12]. The corresponding trace measures we denote

by τM and τMI
, respectively. We set M = (M,MI). Let A ∈ C

≥
n×n.

Definition 1.1. Consider a set L2
M,A(R ∪ iR) of C-valued functions on

R ∪ iR, f ∈ L2
M,A(R ∪ iR) ⇔

(i) f is τM -measurable on R, f is τMI
-measurable on iR;

(ii) ~fs(λ)M ′ ~f∗
s (λ) ∈ L1

τM
(R), ~fs(λ)M ′

I(λ)~f∗
s (λ) ∈ L1

τMI

(iR);

(iii) if A 6= 0 then f(0) is finite and there exists f ′(0).

Obviously, L2
M,A(R ∪ iR) is a linear vector space. We define the inner

product in L2
M,A(R ∪ iR) in the following way:

(7) 〈f, g〉2;M,A =

∫

R

~fs(λ)M ′(λ)~g∗s (λ)dτM +

∫

iR

~fs(λ)M ′
I(λ)~g∗s (λ)dτMI

+

+ ~fdA~g∗d , f, g ∈ L2
M,A.

For f ∈ L2
M,A the norm is defined as

(8) ‖f‖2
2;M,A =

√
〈f, f〉2;M,A.

As usual, we shall consider equivalence classes of such functions with respect to
〈·, ·〉2;M,A. Then L2

M,A becomes a unitary space with inner product 〈·, ·〉2;M,A.

To study density of P in L2
M,A we will construct a non-decreasing C2×2-

valued function M1 on R depending on M, A and establish an isometric iso-
morphism U between L2

M,A and the Hilbert space L2
v(M1) of C

2-valued functions
square integrable with respect to M1, see [12]. Then we use a connection between
L2

v(M1) and L2
M1

and apply the mentioned above results about density to L2
M1

.
As a by-product, we obtain that the space L2

M,A is complete.
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Notations. As usual, we denote by R, C, N, Z, Z+ the sets of real,
complex, positive integer, integer, non-negative integer numbers, respectively,
and iR stands for the imaginary axis in the complex plane. Besides the definitions
given above we should note the following notations. The set of complex vectors
(c1, c2), c1, c2 ∈ C we denote by C

2. We identify C1×1 with C and C
≥
1×1 with

the set of non-negative real numbers. If A ∈ Cn×n then A∗ stands for its adjoint,
n ∈ N. If A ∈ Cn×n is non-degenerate, A−1 means its inverse. The set of all
vectors (p1, p2) where p1, p2 ∈ P we denote by Pv. These vectors will be called
vector polynomials.

2. Density of polynomials. Let C0 be a subset of L2
M,A(R ∪ iR)

which consists of continuous functions which have the first derivative at zero (in
the directions of R, iR and they coincide). For f, g ∈ C0 we can write

〈f, g〉2;M,A =

∫

R

~fsM
′~g∗sdτM +

∫

iR

~fsM
′
I~g

∗
sdτMI

+ ~fdA~g∗d =

=

∫

R\(−ε1,ε2)

~fsM
′~g∗sdτM +

∫

(iR)\(−iε3,iε4)

~fsM
′
I~g

∗
sdτMI

+

∫

(−ε1,ε2)

~fsM
′~g∗sdτM+

(9) +

∫

(−iε3,iε4)

~fsM
′
I~g

∗
sdτMI

+ ~fdA~g∗d ,

where εi > 0, i = 1, 4.
Define

τ̂M (λ) =

{
τM(λ), λ ≤ 0

τM(λ) − ∆τM (0), λ > 0
,

where ∆τM(0) := τM (+0) − τM(0) is a jump of τM (λ) at zero;

τ̂MI
(λ) =

{
τMI

(λ), λ ∈ (−i∞, 0]

τMI
(λ) − ∆iτMI

(0), λ ∈ (0, i∞)
,

where ∆iτMI
(0) := τMI

(+i0) − τMI
(0) = limε→+0 τMI

(εi) − τMI
(0), is a jump of

τMI
(λ) at zero.

Then
∫

(−ε1,ε2)

~fsM
′~g∗sdτM =

∫

(−ε1,ε2)

~fsM
′~g∗sdτ̂M = ~fs(0)M

′(0)~g∗s (0)∆τM (0)+
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=

∫

(−ε1,ε2)

~fsM
′~g∗sdτ̂M + f(0)g(0)ã,

where ã := (1, 1)M ′(0)

(
1
1

)
∆τM(0).

Since functions f, g and entries of M ′(λ) are τM -a.e. bounded functions
in any neighbourhood of 0, we have

∫

(−ε1,ε2)

~fsM
′~g∗sdτ̂M → 0, as ε1, ε2 → 0.

Consequently,

(10)

∫

(−ε1,ε2)

~fsM
′~g∗sdτM → f(0)g(0)ã, as ε1, ε2 → 0.

In a similar manner we can write
∫

(−iε3,iε4)

~fsM
′
I~g

∗
sdτMI

=

∫

(−iε3,iε4)

~fsM
′
I~g

∗
sdτ̂MI

+ ~fs(0)M
′
I(0)~g

∗
s (0)∆iτMI

(0) =

=

∫

(−iε3,iε4)

~fsM
′
I~g

∗
sdτ̂M + f(0)g(0)ãI ,

where ãI := (1, 1)M ′
I (0)

(
1
1

)
∆iτMi

(0).

Since functions f, g and entries of M ′
I(λ) are τM -a.e. bounded functions

in any neighbourhood of 0, we have
∫

(−iε3,iε4)

~fsM
′
I~g

∗
sdτ̂MI

→ 0, as ε3, ε4 → 0.

Thus, we have

(11)

∫

(−iε3,iε4)

~fsM
′
I~g

∗
sdτMI

→ f(0)g(0)ãI , as ε3, ε4 → 0.

Set Jλ :=

(
1 1

λ

1 − 1
λ

)
. Notice that J−1

λ =
1

2

(
1 1
λ −λ

)
.

Then we can write
∫

R\(−ε1,ε2)

~fsM
′~g∗sdτM =

∫

R\(−ε1,ε2)

~fsJλJ−1
λ M ′(J∗

λ)−1J∗
λ~g∗sdτM =



Density of polynomials in the L2 space. . . 153

=

∫

R\(−ε1,ε2)

~fsJλM̃(λ)J∗
λ~g∗sdτM →

(12) →
∫ ′

R

~fsJλM̃(λ)J∗
λ~g∗sdτM , as ε1, ε2 → 0,

where M̃(λ) := J−1
λ M ′(λ)(J∗

λ)−1 =
1

4

(
1 1
λ −λ

)
M ′(λ)

(
1 λ

1 −λ

)
and the

prime in
∫ ′

means that the integral is understood in the improper sense at zero.

In an analogous manner we write

∫

(iR)\(−iε3,iε4)

~fsM
′
I~g

∗
sdτMI

=

∫

(iR)\(−iε3,iε4)

~fsJλJ−1
λ M ′

I(J
∗
λ)−1J∗

λ~g∗sdτMI
=

=

∫

(iR)\(−iε3,iε4)

~fsJλM̃I(λ)J∗
λ~g∗sdτMI

→

(13) →
∫ ′

iR

~fsJλM̃I(λ)J∗
λ~g∗sdτMI

, as ε3, ε4 → 0,

where M̃I(λ) := J−1
λ M ′

I(λ)(J∗
λ)−1 =

1

4

(
1 1
λ −λ

)
M ′

I(λ)

(
1 λ

1 −λ

)
and the

prime in
∫ ′

means that the integral is understood in the improper sense at zero.

Passing to the limit in (9) and using (10), (11), (12), (13) we get

〈f, g〉2;M,A =

∫ ′

R

~fsJλM̃J∗
λ~g∗sdτM +

∫ ′

iR

~fsJλM̃IJ
∗
λ~g∗sdτMI

+

(14) +~fd

(
A +

(
ã + ãI 0

0 0

))
~g∗d.

For f ∈ C0 we set

f+(λ) :=
f(λ) + f(−λ)

2
, λ ∈ R ∪ iR;

f−(λ) :=
f(λ) − f(−λ)

2λ
, λ ∈ (R ∪ iR)\{0}.
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Functions f+, f− are continuous. Moreover,

lim
λ→0

f−(λ) = lim
λ→0

f(λ) − f(−λ)

2λ
= lim

λ→0

f(λ) − f(0)

2λ
+

+ lim
λ→0

f(−λ) − f(0)

−2λ
= f ′(0),

and also limλ→i0 f−(λ) = f ′(0). Then we set

f−(0) := f ′(0),

and get a continuous function f− on R ∪ iR.

We set

~fp(λ) := (f+(λ), f−(λ)), λ ∈ R ∪ iR.

Using these definitions we can rewrite (14) in the following form:

(15) 〈f, g〉2;M,A = 4

∫ ′

R

~fpM̃~g∗pdτM + 4

∫ ′

iR

~fpM̃I~g
∗
pdτMI

+

+ ~fd

(
A +

(
ã + ãI 0

0 0

))
~gd.

Consider the following integrals:

I1 := 4

∫

R

~fpM̃~g∗pdτM , I1,I := 4

∫

iR

~fpM̃I~g
∗
pdτMI

,

which exist in view of the definitions of M̃ and M̃I .

Let us study the integral I1:

(16) I1 = 4

∫

R\(−ε1,ε2)

~fpM̃~g∗pdτM + 4

∫

(−ε1,ε2)

~fpM̃~g∗pdτM ,

where ε1, ε2 > 0.

We can write

4

∫

(−ε1,ε2)

~fpM̃~g∗pdτM = 4

∫

(−ε1,ε2)

~fpM̃~g∗pdτ̂M + 4~fp(0)M̃ (0)~g∗p(0)∆τM (0).
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Since functions f+, f−, g+, g− and entries of M̃ are τM -a.e. bounded in any
neighbourhood of 0, the first addend on the right of the latter equality tends to
zero as ε1, ε2 → 0.

The first addend on the right-hand side of (16) tends to 4

∫ ′

R

~fpM̃~g∗pdτM ,

as ε1, ε2 → 0, by the definition of the improper integral.

Consequently, passing to the limit in (16) we get

I1 = 4

∫ ′

R

~fpM̃~g∗pdτM + 4~fp(0)M̃ (0)~g∗p(0)∆τM (0).

In a similar way we get that

I1,I = 4

∫ ′

iR

~fpM̃I~g
∗
pdτMI

+ 4~fp(0)M̃I(0)~g
∗
p(0)∆iτMI

(0).

Therefore

4

∫ ′

R

~fpM̃~g∗pdτM + 4

∫ ′

iR

~fpM̃I~g
∗
pdτMI

= I1 + I1,I−

−4~fp(0)M̃ (0)~g∗p(0)∆τM (0) − 4~fp(0)M̃I(0)~g
∗
p(0)∆iτMI

(0) =

= I1 + I1,I − 4~fdM̃(0)~g∗d∆τM(0) − 4~fdM̃I(0)~g
∗
d∆iτMI

(0).

Substituting the last expression in (15) we get

(17) 〈f, g〉2;M,A = 4

∫

R

~fpM̃~g∗pdτM + 4

∫

iR

~fpM̃I~g
∗
pdτMI

+ ~fdA~g∗d,

since
(

ã + ãI 0
0 0

)
− 4M̃ (0)∆τM (0) − 4M̃I(0)∆iτMI

(0) = 0.

Set

M̂(λ) =





4
∫ λ

0 M̃ (λ)dτM (λ), λ ∈ R

4
∫ λ

0 M̃I(λ)dτMI
(λ), λ ∈ iR

.
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Since functions f+, f−, g+, g− are continuous, we can rewrite (17) in the following
form:

(18) 〈f, g〉2;M,A =

∫

R

~fpdM̂ (λ)~g∗p +

∫

iR

~fpdM̂(λ)~g∗p + ~fdA~g∗d,

where integrals are understood as a sum of integrals of each scalar addend.
Denote the sum of integrals on the right by I2. Then we can write

(19) I2 =

∫

(−∞,0]

~fpdM̂ (λ)~g∗p +

∫

[0,∞)
+ · · · +

∫

(−i∞,0]
+ · · · +

∫

[0,i∞)
+ · · · .

In the first two terms on the right we make the changes of variable: x = λ2, λ =
−√

x and x = λ2, λ =
√

x, respectively. Here
√

x = |x| 12 .
In the last two terms on the right of (19) we make the changes of variable:

x = λ2, λ = −√
x and x = λ2, λ =

√
x, respectively. Here

√
x = |x| 12 i. Note that

functions f+, f−, g+, g− are even and do not depend on the choice of a branch of
the square root. Define the following matrix-function:

(20) M̂1(x) =

{
M̂(−√

x) − M̂ (
√

x), x ≤ 0

M̂(
√

x) − M̂(−√
x) + A, x > 0

.

This function is a non-decreasing C2×2-valued function on R. Then from (18)
and (19) we get

〈f, g〉2;M,A =

∫

R

~fp(
√

x)dM̂1(x)~g∗p(
√

x).

We set M1(x) := M̂1(x − 0), x ∈ R, to get a left-continuous function and

(21) 〈f, g〉2;M,A =

∫

R

~fp(
√

x)dM1(x)~g∗p(
√

x).

The function M1(x) defines a C
≥
2×2-valued measure M1 on B(R). The space of

square-integrable vector functions ~v = (v1(x), v2(x)) on R with respect to the
measure M1 we shall denote L2

v(M1). The space of square-integrable matrix-

functions v =

(
v1(x) v2(x)
v3(x) v4(x)

)
on R with respect to the measure M1 we denote

L2
M1

. For the general definition of such spaces we refer to [12]. Notice that in
fact

(22) L2
M1

= L2
v(M1) ⊕ L2

v(M1),
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according to the map

L2
M1

∋
(

v1 v2

v3 v4

)
→ (v1, v2) ⊕ (v3, v4) ∈ L2

v(M1) ⊕ L2
v(M1).

From this fact it follows a corollary:

Corollary 2.1. The set Pv is dense in L2
v(M1) iff the set P2×2 is dense

in L2(M1).

By 〈·, ·〉2,v;M1
and ‖ · ‖2,v;M1

we denote the inner product and the norm in
L2

v(M1), respectively. We can define an operator V : C0 → L2
v(M1):

(23) (Vf)(x) = ~fp(
√

x), x ∈ R, f ∈ C0.

From (21) it follows that

(24) 〈Vf,Vg〉2,v;M1
= 〈f, g〉2;M,A, f, g ∈ C0.

Let R0 be a subset of L2
v(M1) which consists of functions ~v(x) = (v1(x), v2(x)),

such that v1, v2 are continuous and w(λ) := v1(λ
2), λ ∈ R ∪ iR has the first

derivative at zero (in the directions of R and iR and they coincide). We shall
show that VC0 = R0.

Notice that for f ∈ C0 the functions f+(
√

x), f−(
√

x) are continuous

and the function f+(λ) =
1

2
(f(λ) + f(−λ)) has the derivative

d

dλ
f+
∣∣∣
λ=0

(= 0).

Hence, VC0 ⊆ R0. On the other hand, take ~v(x) = (v1(x), v2(x)) ∈ R0 and set
fv(λ) := v1(λ

2) + λv2(λ
2), λ ∈ R ∪ iR. Then f+

v (λ) = v1(λ
2), f−

v (λ) = v2(λ
2)

and

(25) (f+
v (

√
x), f−

v (
√

x)) = (v1(x), v2(x)), x ∈ R.

Moreover,

∃f ′
v(0) = lim

∆λ→0

fv(∆λ) − fv(0)

∆λ
=

= lim
∆λ→0

v1((∆λ)2) + ∆λv2((∆λ)2) − v1(0)

∆λ
= v2(0) + (v1(λ

2))′|λ=0,

(∆λ ∈ R or ∆λ ∈ iR).
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Using (25) we can write

‖~v‖2,v;M1
=

∫

R

~(fv)p(
√

x)dM1(x) ~(fv)
∗

p(
√

x).

Moving backwards from (21) to (9) we obtain

‖~v‖2,v;M1
= ‖fv‖2;M,A < ∞.

Hence, fv ∈ C0. Moreover,

(26) (Vfv)(x) = ~(fv)p(
√

x) = ~v(x).

Consequently, VC0 = R0.
Define an operator G : R0 → C0:

(27) (G~v)(λ) = v1(λ
2) + λv2(λ

2), λ ∈ R ∪ iR, ~v = (v1, v2) ∈ R0.

From (27) it follows that VG~v = ~v, ~v ∈ R0. On the other hand,
GVf = G~fp(

√
x) = f+(λ) + λf−(λ) = f, f ∈ C0. Hence, G = V−1.

Lemma 2.2. The subset C0 is dense in L2
M,A(R ∪ iR).

P r o o f. 1) Case A = 0. Here we shall follow the ideas of Kats in [13].
Take f ∈ L2

M,A. Set

(28) fN (λ) =

{
f(λ), if |f(λ)| < N, |f(−λ)| < N

0, otherwise
, λ ∈ R ∪ iR, N ∈ N.

Let EN := {λ ∈ R∪ iR : fN (λ) 6= f(λ)}. Since f(λ) has almost everywhere with
respect to τM on R and with respect to τMI

on iR finite values, we get that

(29) τM(EN ∩ R) → 0 and τMI
(EN ∩ (iR)) → 0

as N → ∞. We shall denote

Ψ(λ; g) := ~gs(λ)M ′(λ)~g∗s (λ), λ ∈ R,

ΨI(λ; g) := ~gs(λ)M ′
I(λ)~g∗s (λ), λ ∈ iR, g ∈ L2

M,A.

Then

‖fN − f‖2
2;M,A =

∫

EN∩R

Ψ(λ; f)dτM +

∫

EN∩(iR)
ΨI(λ; f)dτMI

→ 0,
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as N → ∞, since f is integrable and (29) holds.
Hence, bounded functions are dense in L2

M,A(R ∪ iR).

Consider a bounded function fb(λ) ∈ L2
M,A: |fb(λ)| ≤ N, N ∈ N. Take

an arbitrary ε : 0 < ε < 1. Choose K > 0 such that τM is continuous at points
−K,K and

∣∣∣∣∣

∫

R\[−K,K]
Ψ(λ; f)dτM

∣∣∣∣∣ < ε.

Let τM (λ), λ ∈ R be the distribution function of the measure τM . Consider the
function

τ̂M (λ) :=

{
τM (λ), λ ≤ 0

τM (λ) + 1, λ > 0
.

The function τ̂M (λ) defines a C
≥-valued measure τ̂M on B(R). It is important

for us that

(30) τ̂M(A) = τM (A), A ∈ B(R) : 0 /∈ A;

(31) τ̂M (A) = τM (A) + 1 ≥ 1, A ∈ B(R) : 0 ∈ A.

Applying Luzin’s theorem (see [9, pp. 227–229]) we can find a continuous function
gN (λ) on [−K,K] such that for QN := {λ ∈ [−K,K] : gN (λ) 6= fb(λ)} we have
τ̂M (QN ) < ε. Also gN (λ) can be chosen such that |gN (λ)| < N .

From (31) it follows that 0 /∈ QN , therefore gN (0) = fb(0). From (31) it
follows also that τM (QN ) < ε.

There exists δ > 0 such that τM ([−K,−K−δ]) < ε and τM ([K,K +δ]) <
ε, since τM is continuous at points −K,K.

We continue the function gN (λ) on intervals [−K,−K − δ] and [K,K + δ]
by intervals of a straight line aλ + b connecting the known value of gN (λ) with
0. Namely,

gN (λ) :=






gN (−K)

δ
(λ + K + δ), λ ∈ [−K,−K − δ]

−gN (K)

δ
(λ − K − δ), λ ∈ [K,K + δ]

.

Thus, we have

|gN (λ)| ≤ |gN (−K)| < N, λ ∈ [−K,−K − δ],
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|gN (λ)| ≤ |gN (K)| < N, λ ∈ [K,K − δ].

On the rest of R we set gN (λ) = 0.
Consequently,

∣∣∣∣
∫

R

Ψ(λ; f − gN )dτM

∣∣∣∣ < ε +

∣∣∣∣∣

∫

[−K−δ,−K]∪[K,K+δ]
Ψ(λ; f − gN )dτM

∣∣∣∣∣+

+

∣∣∣∣∣

∫

[−K,K]
Ψ(λ; f − gN )dτM

∣∣∣∣∣ < ε + 16N2τM ([−K − δ,−K])+

+16N2τM ([K,K + δ]) + 16N2τM(QN ) < (48N2 + 1)ε.

In a similar way we can construct a continuous function gN,I(λ) on iR
such that gN,I(0) = fb(0) and

∣∣∣∣
∫

iR

ΨI(λ; f − gN,I)dτMI

∣∣∣∣ < (48N2 + 1)ε.

We set

dN (λ) :=

{
gN (λ), λ ∈ R

gN,I(λ), λ ∈ iR
.

It is not hard to see that dN (λ) will approximate fb(λ). Consequently, continuous
functions are dense in L2

M,A(R ∪ iR).

Take a continuous function fc ∈ L2
M,A. For a = −1; 1;−i; i set

(32) f̂(λ) = (λ − a)g(λ) + fc(a),

where

g(λ) =
1

a
(fc(a) − fc(0)) + λ

(
1

a2
(fc(a) − fc(0)) −

d

a

)
, λ ∈ [0, a]

and d is an arbitrary complex number. It is not hard to see that f̂(λ) is a
continuos function on [−1, 1] ∪ [−i, i] such that

(33) f̂(−1) = fc(−1), f̂(1) = fc(1), f̂(−i) = fc(−i), f̂(i) = fc(i);
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(34) f̂(0) = fc(0), ∃f̂ ′(0) = d.

Since fc(λ) → fc(0) and f̂(λ) → fc(0) as λ → 0, we get that

∀ε > 0 ∃δ1 > 0 (δ1 < 1) : λ ∈ [−1, 1] ∪ [−i, i], |λ| ≤ δ ⇒

|f̂(λ) − fc(λ)| < ε.

Set

(35) f1(λ) =






f̂(λ), |λ| < δ1

fc(λ) +
|λ| − 1

δ1 − 1
(f̂(δ1) − fc(δ1)), δ1 ≤ |λ| ≤ 1

fc(λ), |λ| > 1

, λ ∈ R ∪ iR.

Then f1(λ) is a continuous function on R ∪ iR which has the first derivative at
zero and such that:

(36) |f1(λ) − fc(λ)| < ε, λ ∈ [−1, 1] ∪ [−i, i].

Then

‖f1 − fc‖2
2;M,A =

∫

[−1,1]
Ψ(λ; f1 − fc)dτM +

∫

[−i,i]
ΨI(λ; f1 − fc)dτMI

≤

(37) ≤ 4ε2τM ([−1, 1]) + 4ε2τMI
([−i, i]).

Consequently, C0 is dense in L2
M,A in this case.

2) Case A 6= 0. Take a function f ∈ L2
M,A. Consider the space L2

M,0.

Evidently, f ∈ L2
M,0 as well. Let us apply constructions from the previous case.

Since f(0) is finite, we can for an arbitrary ε > 0 construct a bounded function
fN (λ) (N > |f(0)|) such that fN (0) = f(0) and ‖f − fN‖2;M,0 < ε. Then
we construct a continuous function fc(λ) such that fc(0) = fN (0) = f(0) and
‖fN − fc‖2;M,0 < ε. For the continuous function fc we construct a function f̂(λ)
as in (32) with d = f ′(0). Then we repeat considerations after (32). Define a
function f1(λ) as in (35). The function f1 will posess property (36) and (37)
holds with A = 0. Notice that f1 ∈ L2

M,A by the definition of L2
M,A. Moreover,

f1 ∈ C0. Consequently,

‖f − f1‖2;M,A = ‖f − f1‖2;M,0 ≤ ‖f − fN‖2;M,0 + ‖fN − fc‖2;M,0+
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+‖fc − f1‖2;M,0 ≤ 2ε + 4ε2τM ([−1, 1]) + 4ε2τMI
([−i, i]).

Hence, C0 is dense in L2
M,A in this case as well. 2

Lemma 2.2. The subset R0 is dense in L2
v(M1).

P r o o f. Since continuous matrix-functions are dense in L2(M1) (see [13]),
continuous vector functions are dense in L2

v(M1) as follows from (22). Let ~f =
(f1, f2) ∈ L2

v(M1) be continuous.
For a = −1, 1 we set

f̂k(x) = (x − a)gk(x) + fk(a),

where

gk(x) =
1

a
(fk(a) − fk(0)) + x

(
1

a2
(fk(a) − fk(0)) −

1

a

)
, x ∈ [0, a],

k = 1, 2.

It is not hard to see that f̂1(x) and f̂2(x) are continuous functions on [−1, 1] such
that

(38) f̂1(−1) = f1(−1), f̂1(1) = f1(1), f̂2(−1) = f2(−1), f̂2(1) = f2(1);

(39) f̂1(0) = f1(0), f̂2(0) = f2(0), ∃f̂ ′
1(0) = 1.

Since fk(x) → fk(0) and f̂k(x) → fk(0) as x → 0, we obtain that

∀ε > 0 ∃δ1 > 0 (δ1 < 1) : x ∈ [−1, 1], |x| ≤ δ1 ⇒

|f̂k(x) − fk(x)| < ε, k = 1, 2.

Set

f̃k(x) =






f̂k(x), |x| < δ1

fk(x) +
|x| − 1

δ1 − 1
(f̂k(δ1) − fk(δ1)), δ1 ≤ |x| ≤ 1

fk(x), |x| > 1

, x ∈ R; k = 1, 2.
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Then ~̃f(x) := (f̃1(x), f̃2(x)) is a continuous function on R such that f̃1(λ
2), λ ∈

R ∪ iR has the first derivative at zero and

(40) |f̃k(x) − fk(x)| < ε, x ∈ [−1, 1], k = 1, 2.

Let M ′
1(x) be the matrix of the Radon-Nikodym derivatives of the measure M1

with respect to the trace measure τM1
. Then

‖~f − ~̃
f‖2

2,v;M1
=

∫

[−1,1]
(f1(x) − f̃1(x), f2(x) − f̃2(x))M ′

1(x)∗

∗(f1(x) − f̃1(x), f2(x) − f̃2(x))∗dτM1
≤ 4ε2τM1

([−1, 1]).

Consequently, R0 is dense in L2
v(M1). 2

We can extend the operator V by continuity to an isometric isomorphism
U between L2

M,A(R ∪ iR) and L2
v(M1). Hence, we have obtained the following

result:

Lemma 2.3. There exists an isometric isomorphism U between

L2
M,A(R ∪ iR) and L2

v(M1).

Since L2
v(M1) is a complete space (see [12, Theorem, p. 295]), from

Lemma 2.3 we get the following theorem.

Theorem 2.1. L2
M,A(R∪ iR) is a complete Hilbert space under the inner

product 〈·, ·〉2;M,A.

Special choices of M and A in the definition of L2
M,A lead to the following

important L2 spaces:

(a) M =

(
m 0
0 0

)
, MI = 0, A = 0. This leads to the usual L2

m(R).

(b) M =

(
m 0
0 0

)
, MI = 0, A 6= 0. That leads to a discrete Sobolev space

related to the discrete Sobolev orthogonal polynomials [7].

(c) M =

(
m 0
0 0

)
, MI =

(
mI 0
0 0

)
: mI({0}) = 0, A = 0. Define a measure

m on sets [a, b] ∪ [ic, id], a, b, c, d > 0:

m([a, b] ∪ [ic, id]) := m([a, b]) + mI([ci, di]),
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and in a similar manner for sets with (a, b], [a, b), (a, b), (ci, di], [ci, di), (ci, di).
Then we define a measure µ on rectangles in C (with sides parallel to the axes):

µ(R) = m((R ∪ iR) ∩ R), where R is a rectangle.

Finaly, we apply Lebesque’s extention to µ to obtain a positive measure µ̃ defined
on the Borel subsets B(C) in the complex plane. It is not hard to see that
L2;M,A = L2

µ̃ in this case. The measure µ̃ has support on R ∪ iR.

Conversely, each positive measure µ̃ on B(C) with support on R ∪ iR
defines measures M̃ and M̃I on intervals:

(41) M̃ ([a, b]) := lim
ε→+0

R(a − εi, a + εi, b − εi, b + εi),

(42) M̃I([ci, di]) := lim
ε→+0

R(ci − ε, ci + ε, di − ε, di + ε),

where R(z1, z2, z3, z4) is a closed rectangle with vertices at points zi, i = 1, 2, 3, 4;
a, b, c, d > 0.

For intervals [a, b), (a, b], (a, b), [ci, di), (ci, di], (ci, di) we use the obvious
modifications of definitions (41),(42). Applying Lebesgue’s extension we obtain
C
≥-valued measures M̂ and M̂I on B(R) and B(iR), respectively. Finally, we

set M := M̂ and for A ∈ B(iR)

MI(A) :=

{
M̂I(A), if 0 /∈ A

M̂I(A) − M̂({0}), if 0 ∈ A
.

It is not hard to see that L2
µ̃ = L2;M,A.

Let us now turn to the question of density of polynomials in L2
M,A(R∪iR).

It is natural to assume that complex polynomials belong to L2
M,A(R ∪ iR). This

condition is equivalent to existance of the following integrals:

(43)

∫

R

~(λn)sM
′(λ) ~(λn)

∗

sdτM +

∫

iR

~(λn)sM
′
I(λ) ~(λn)

∗

sdτMI
< ∞, n ∈ Z+.

It is not hard to see that VP = Pv. Let polynomials be dense in L2
M,A(R ∪ iR).

Therefore they are dense in C0. Thus, ∀~v = (v1, v2) ∈ R0 we can find a polynomial
p(λ) such that

ε > ‖V−1v − p‖2;M,A = ‖v − Vp‖2,v;M1
.
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Hence, vector polynomials are dense in R0 and from Lemma 2.2 it follows that
they are dense in L2

v(M1).

Let vector polynomials be dense in L2
v(M1). Therefore they are dense

in R0. Thus, ∀f(λ) ∈ C0 we can find a vector ~p = (p1, p2), where p1, p2 are
polynomials such that

ε > ‖Vf − ~p‖2,v;M1
= ‖f − V−1~p‖2;M,A.

Hence, polynomials are dense in C0 and from Lemma 2.2 it follows that they are
dense in L2

M,A(R ∪ iR).

We get that polynomials are dense in L2
M,A iff vector polynomials are

dense in L2
v(M1).

Taking into account Corollary 2.1 we obtain the following theorem:

Theorem 2.2. Consider an L2
M,A space such that for the measure M

condition (43) is satisfied. Then polynomials are dense in L2
M,A iff matrix poly-

nomials are dense in L2
M1

where M1 is constructed as above.

We shall suppose that the measure M is not degenerate in the following
sense:

(44) 〈p, p〉2;M,A > 0,

for any complex polynomial p(λ) 6= 0.

Applying the Gramm-Schmidt orthogonalization method to the sequence
1, λ, λ2, . . . , with respect to 〈·, ·〉2;M,A we get a system of orthonormal polyno-
mials {pn}∞n=0. They satisfy the orthonormality property

∫

R

~(pn)s(λ)M ′(λ) ~(pm)
∗

s(λ)dτM +

∫

iR

~(pn)s(λ)M ′
I(λ) ~(pm)

∗

s(λ)dτMI
+

(45) + ~(pn)dA
~(pm)

∗

d = δn,m, n,m ∈ Z+.

Special choices of M and A in the definition of L2
M,A, see cases (a),(b),(c) after

Theorem 2.1, lead to the following important systems of orthogonal polynomials:

(a): Orthogonal polynomials on the real line, see [10];

(b): Discrete Sobolev orthogonal polynomials, see [7];

(c): Orthogonal polynomials on radial rays in the complex plane, see [11].
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For orthonormal polynomials from (45) we define

~pn(x) := (Vpn)(x) = (p+
n (

√
x), p−n (

√
x)), x ∈ R, n ∈ Z+.

Then {~pn(x)}n∈Z+
will be an orthonormal system in L2

v(M1). Define matrix
polynomials

(46) Pk(x) :=

(
p+
2k(

√
x) p−2k(

√
x)

p+
2k+1(

√
x) p−2k+1(

√
x)

)
=

(
~p2k(x)

~p2k+1(x)

)
, k ∈ Z+.

Notice that Pk(x) has degree exactly k. Moreover, we have

(47)

∫

R

Pk(x)dM1(x)P ∗
l (x) = Iδk,l, k, l ∈ Z+,

where I = (δi,j)
2
i,j=1.

Hence, {Pk(x)}∞k=0 are matrix orthonormal polynomials. Denote by J the
corresponding Jacobi matrix and let J be the corresponding symmetric operator
in l2. Suppose that J has indices of deficiency (2, 2). In other words that means
that the matrix Hamburger moment problem corresponding to M1 is completely
indeterminate.

In this case we get the following theorem:

Theorem 2.3. Consider an L2
M,A space such that for the measure M

conditions (43), (44) are satisfied. Construct the measure M1 as above. Suppose

that the corresponding symmetric operator J has indices of deficiency (2, 2). Then

polynomials are dense in L2
M,A iff condition (5) holds true for M = M1 with a

constant unitary matrix U .

Note that there are several criteria for the completely indeterminate case
of the matrix moment problem. For example, one can use a generalization of
Hamburger’s criterion [14, p. 56], see also [15]–[17] and references therein.
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