Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

MULTIPLIERS ON A HILBERT SPACE OF FUNCTIONS ON \mathbb{R}

Violeta Petkova
Communicated by S. L. Troyanski

Abstract

For a Hilbert space $H \subset L_{\text {loc }}^{1}(\mathbb{R})$ of functions on \mathbb{R} we obtain a representation theorem for the multipliers M commuting with the shift operator S. This generalizes the classical result for multipliers in $L^{2}(\mathbb{R})$ as well as our previous result for multipliers in weighted space $L_{\omega}^{2}(\mathbb{R})$. Moreover, we obtain a description of the spectrum of S.

1. Introduction. Let $H \subset L_{l o c}^{1}(\mathbb{R})$ be a Hilbert space of functions on \mathbb{R} with values in \mathbb{C}. Denote by $\|\cdot\|$ (resp. $\langle\cdot, \cdot\rangle$) the norm (resp. the scalar product) on H. Let $C_{c}(\mathbb{R})$ be the set of continuous functions on \mathbb{R} with compact support. For a compact K of \mathbb{R} denote by $C_{K}(\mathbb{R})$ the subset of functions of $C_{c}(\mathbb{R})$ with support in K and denote by \hat{f} or by $\mathcal{F}(f)$ the usual Fourier transform of $f \in L^{2}(\mathbb{R})$. Let S_{x} be the operator of translation by x defined on H by

$$
\left(S_{x} f\right)(t)=f(t-x) \text {, a.e. } t \in \mathbb{R} .
$$

[^0]Let S (resp. S^{-1}) be the translation by 1 (resp. -1). Introduce the set

$$
\Omega=\left\{z \in \mathbb{C},-\ln \rho\left(S^{-1}\right) \leq \operatorname{Im} z \leq \ln \rho(S)\right\}
$$

where $\rho(A)$ is the spectral radius of A and let I be the interval $\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$. Assuming the identity map $i: H \longrightarrow L_{l o c}^{1}(\mathbb{R})$ continuous, it follows from the closed graph theorem that if $S_{x}(H) \subset H$, for $x \in \mathbb{R}$, then the operator S_{x} is bounded from H into H. In this paper we suppose that H satisfies the following conditions:
(H1) $C_{c}(\mathbb{R}) \subset H \subset L_{l o c}^{1}(\mathbb{R})$, with continuous inclusions, and $C_{c}(\mathbb{R})$ is dense in H.
(H2) For every $x \in \mathbb{R}, S_{x}(H) \subset H$ and $\sup _{x \in K}\left\|S_{x}\right\|<+\infty$, for every compact set $K \subset \mathbb{R}$.
(H3) For every $\alpha \in \mathbb{R}$ let T_{α} be the operator defined by

$$
T_{\alpha}: H \ni f(x) \longrightarrow f(x) e^{i \alpha x}, x \in \mathbb{R}
$$

We have $T_{\alpha}(H) \subset H$ and, moreover, $\sup _{\alpha \in \mathbb{R}}\left\|T_{\alpha}\right\|<+\infty$.
(H4) There exists $C>0$ and $a \geq 0$ such that $\left\|S_{x}\right\| \leq C e^{a|x|}, \forall x \in \mathbb{R}$.
Set $\|\|f\|\|=\sup _{\alpha \in \mathbb{R}}\left\|T_{\alpha} f\right\|$, for $f \in H$. The norm $\|\|\cdot\|\|$ is equivalent to the norm of H and without loss of generality, we can consider below that T_{α} is an isometry on H for every $\alpha \in \mathbb{R}$. Obviously, the condition (H3) holds for a very large class of Hilbert spaces.

We give some examples of Hilbert spaces satisfying our hypothesis.
Example 1. A weight ω on \mathbb{R} is a non negative function on \mathbb{R} such that

$$
\sup _{x \in \mathbb{R}} \frac{\omega(x+y)}{\omega(x)}<+\infty, \forall y \in \mathbb{R} .
$$

Denote by $L_{\omega}^{2}(\mathbb{R})$ the space of measurable functions on \mathbb{R} such that

$$
\int_{\mathbb{R}}|f(x)|^{2} \omega(x)^{2} d x<+\infty
$$

The space $L_{\omega}^{2}(\mathbb{R})$ equipped with the norm

$$
\|f\|=\left(\int_{\mathbb{R}}|f(x)|^{2} \omega(x)^{2} d x\right)^{\frac{1}{2}}
$$

is a Hilbert space satisfying our conditions (H1)-(H3). Moreover, we have the estimate

$$
\begin{equation*}
\left\|S_{t}\right\| \leq C e^{m|t|}, \forall t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $C>0$ and $m \geq 0$ are constants. This follows from the fact that ω is equivalent to the special weight ω_{0} constructed in [1]. The details of the construction of ω_{0} are given in [6], [1]. Below after Theorem 2 we give some examples of weights.

Definition 1. A bounded operator M on H is called a multiplier if

$$
M S_{x}=S_{x} M, \forall x \in \mathbb{R}
$$

Denote by \mathcal{M} the algebra of the multipliers. Our aim is to obtain a representation theorem for multipliers on H and to characterize the spectrum of S. These two problems are closely related. In [6] we have obtained a representation theorem for multipliers on $L_{\omega}^{2}(\mathbb{R})$. Here we generalize our result for multipliers on a Hilbert space and shift operators satisfying the conditions (H1)-(H4). Our proof is shorter than that in [6]. The main improvement is based on an application of the link between the spectrum $\sigma\left(S_{t}\right)$ of a element of the group $\left(S_{t}\right)_{t \in \mathbb{R}}$ and the spectrum $\sigma(A)$ of the generator A of this group. In general, in the setup we deal with the spectral mapping theorem

$$
\sigma\left(S_{t}\right) \backslash\{0\}=e^{\sigma(t A)}
$$

is not true. To establish the crucial estimate in Theorem 4 we use the general results (see [3] and [5]) for the characterization of the spectrum of S_{t} by the behavior of the resolvent of A. This idea has been used in $[8]$ for $L_{\omega}^{2}(\mathbb{R})$ but one point in our argument needs a more precise proof and in this paper we do this in the general case.

Denote by $(f)_{a}$ the function

$$
\mathbb{R} \ni x \longrightarrow f(x) e^{a x}
$$

We prove the following
Theorem 1. For every $M \in \mathcal{M}$, and for every

$$
a \in I=\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]
$$

we have

1) $(M f)_{a} \in L^{2}(\mathbb{R}), \forall f \in C_{c}(\mathbb{R})$.
2) There exists $\mu_{(a)} \in L^{\infty}(\mathbb{R})$ such that

$$
\int_{\mathbb{R}}(M f)(x) e^{a x} e^{-i t x} d x=\mu_{(a)}(t) \int_{\mathbb{R}} f(x) e^{a x} e^{-i t x} d x, \text { a.e. }
$$

i.e.

$$
\widehat{(M f)_{a}}=\mu_{(a)} \widehat{(f)_{a}} .
$$

3) If $\stackrel{\circ}{I} \neq \emptyset$ then the function $\mu(z)=\mu_{(\operatorname{Im} z)}(\operatorname{Re} z)$ is holomorphic on $\stackrel{\circ}{\Omega}$.

Definition 2. Given $M \in \mathcal{M}$, if $\AA \neq \emptyset$, we call symbol of M the function μ defined by

$$
\mu(z)=\mu_{(\operatorname{Im} z)}(\operatorname{Re} z), \forall z \in \stackrel{\circ}{\Omega} .
$$

Moreover, if $a=-\ln \rho\left(S^{-1}\right)$ or $a=\ln \rho(S)$, the symbol μ is defined for $z=x+i a$ by the same formula for almost all $x \in \mathbb{R}$.

Denote by $\sigma(A)$ the spectrum of the operator A. From Theorem 1 we deduce the following interesting spectral result.

Theorem 2. We have

$$
\sigma(S)=\left\{z \in \mathbb{C}: \frac{1}{\rho\left(S^{-1}\right)} \leq|z| \leq \rho(S)\right\} .
$$

To prove this characterization of the spectrum of S we exploit the existence of a symbol for every multiplier. Notice that in general S is not a normal operator and there are no spectral calculus which could characterize the spectrum of S. On the other hand, Theorem 2 has been used in [9] to obtain spectral mapping theorems for a class of multipliers. Now we give some examples of weights.

Example 2. The function $\omega(x)=e^{x}$ is a weight. For the associated weighted space $L_{\omega}^{2}(\mathbb{R})$ we obtain $\sigma(S)=\{z \in \mathbb{C},|z|=e\}$.

Example 3. The functions of the form $\omega(x)=1+|x|^{\alpha}$, for $\alpha \in \mathbb{R}$ are weights and we get $\sigma(S)=\{z \in \mathbb{C},|z|=1\}$.

Example 4. Let $\omega(x)=e^{a|x|^{b}}$ with $a>0$ and $0<b<1$. Then in $L_{\omega}^{2}(\mathbb{R})$ we have

$$
\sigma(S)=\left\{z \in \mathbb{C}, e^{-a} \leq|z| \leq e^{a}\right\}
$$

Example 5. Functions like

$$
e^{\frac{|x|}{\ln (2+|x|}}, e^{|x|}\left(1+|x|^{2}\right)^{n}, \text { for } n>0
$$

also are weights.

The weights in the Examples 4 and 5 are used to illustrate Beurling algebra theory (cf. [10]).
2. Proof of Theorem 1. For $\phi \in C_{c}(\mathbb{R})$ denote by M_{ϕ} the operator of convolution by ϕ on H. We have

$$
\left(M_{\phi} f\right)(x)=\int_{\mathbb{R}} f(x-y) \phi(y) d y, \forall f \in H
$$

It is clear that M_{ϕ} is a multiplier on H for every $\phi \in C_{c}(\mathbb{R})$.
In [7] we proved the following
Theorem 3. For every $M \in \mathcal{M}$, there exists a sequence $\left(\phi_{n}\right)_{n \in \mathbb{N}} \subset C_{c}(\mathbb{R})$ such that:
i) $M=\lim _{n \rightarrow \infty} M_{\phi_{n}}$ with respect to the strong operator topology.
ii) We have $\left\|M_{\phi_{n}}\right\| \leq C\|M\|$, where C is a constant independent of M and n.

The main difficulty to establish Theorem 1 is the proof of an estimate for $\widehat{\phi_{n}}(z)$ for $z \in \Omega$ by the norm of $M_{\phi_{n}}$.

Theorem 4. For every $\phi \in C_{c}(\mathbb{R})$ and every $\alpha \in \Omega$ we have

$$
\left|\int_{\mathbb{R}} \phi(x) e^{-i \alpha x} d x\right| \leq\left\|M_{\phi}\right\| .
$$

Theorem 1 is deduced from Theorem 3 and Theorem 4 following exactly the same arguments as in Section 3 of [6] and Section 3 of [7]. The function $\mu_{(a)}$ introduced in Theorem 1 is obtained as the limit of $\widehat{\left.\left(\phi_{n}\right)_{a}\right)_{n \in \mathbb{N}}}$ with respect to the weak topology of $L^{2}(\mathbb{R})$. The reader could consult [6] and [7] for more details. Here we give a proof of Theorem 4 by using the link between the spectrum of S and the spectrum of the generator A of the group $\left(S_{t}\right)_{t \in \mathbb{R}}$.

Proof of Theorem 4. Let $\lambda \in \mathbb{C}$ be such that $e^{\lambda} \in \sigma(S)$. First we show that there exists a sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ of integers and a sequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ of functions of H such that

$$
\begin{equation*}
\left\|\left(e^{t A}-e^{\left(\lambda+2 \pi i n_{k}\right) t}\right) f_{n_{k}}\right\| \longrightarrow 0, n_{k} \rightarrow \infty,\left\|f_{n_{k}}\right\|=1, \forall k \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

Let A be the generator of the group $\left(S_{t}\right)_{t \in \mathbb{R}}$. We have to deal with two cases: (i) $\lambda \in \sigma(A)$,
(ii) $\lambda \notin \sigma(A)$.

In the case (i) we have $\lambda \in \sigma_{p}(A) \cup \sigma_{c}(A) \cup \sigma_{r}(A)$, where $\sigma_{p}(A)$ is the point spectrum, $\sigma_{c}(A)$ is the continuous spectrum and $\sigma_{r}(A)$ is the residual spectrum of A. If we have

$$
\lambda \in \sigma_{p}(A) \cup \sigma_{c}(A)
$$

it is easy to see that there exists a sequence $\left(f_{m}\right)_{m \in \mathbb{N}} \subset H$ such that

$$
\left\|(A-\lambda) f_{m}\right\| \underset{m \rightarrow+\infty}{\longrightarrow} 0,\left\|f_{m}\right\|=1, \forall m \in \mathbb{N}
$$

Then the equality

$$
\left(e^{A t}-e^{\lambda t}\right) f_{m}=\left(\int_{0}^{t} e^{\lambda(t-s)} e^{A s} d s\right)(A-\lambda) f_{m}
$$

yields

$$
\left\|\left(e^{A t}-e^{\lambda t}\right) f_{m}\right\| \underset{m \rightarrow+\infty}{\longrightarrow} 0, \forall t \in \mathbb{R}
$$

and we obtain (2.1). If $\lambda \notin \sigma_{p}(A) \cup \sigma_{c}(A)$, we have $\lambda \in \sigma_{r}(A)$ and

$$
\overline{\operatorname{Ran}(A-\lambda I)} \neq H
$$

where $\operatorname{Ran}(A-\lambda I)$ denotes the range of the operator $A-\lambda I$. Therefore there exists $h \in D\left(A^{*}\right),\|h\|=1$, such that

$$
\left\langle f,\left(A^{*}-\bar{\lambda}\right) h\right\rangle=0, \forall f \in D(A)
$$

This implies $\left(A^{*}-\bar{\lambda}\right) h=0$ and we take $f=h$. Then

$$
\left\langle\left(e^{A t}-e^{\lambda t}\right) f, f\right\rangle=\left\langle f,\left(e^{A^{*} t}-e^{\bar{\lambda} t}\right) f\right\rangle=\left\langle f,\left(\int_{0}^{t} e^{\bar{\lambda}(t-s)} e^{A^{*} s} d s\right)\left(A^{*}-\bar{\lambda}\right) f\right\rangle=0
$$

In this case we set $n_{k}=k$ and

$$
f_{k}=f, \forall k \in \mathbb{N}
$$

and we get again (2.1).
The case (ii) is more difficult since if $\lambda \notin \sigma(A)$, we have $e^{\lambda} \in \sigma\left(e^{A}\right) \backslash e^{\sigma(A)}$. Taking into account the results about the spectrum of a semi-group in Hilbert space [5] satisfying the condition (H4) (see also [3] for the contraction semi-groups), we deduce that there exists a sequence of integers n_{k}, such that $\left|n_{k}\right| \rightarrow \infty$ and

$$
\left\|\left(A-\left(\lambda+2 \pi i n_{k}\right) I\right)^{-1}\right\| \geq k, \forall k \in \mathbb{N}
$$

Let $\left(g_{n_{k}}\right)_{k \in \mathbb{N}}$ be a sequence such that

$$
\left\|g_{n_{k}}\right\|=1,\left\|\left(\left(A-\left(\lambda+2 \pi i n_{k}\right) I\right)^{-1}\right) g_{n_{k}}\right\| \geq k / 2, \forall k \in \mathbb{N}
$$

We define

$$
f_{n_{k}}=\frac{\left(\left(A-\left(\lambda+2 \pi i n_{k}\right) I\right)^{-1}\right) g_{n_{k}}}{\left\|\left(\left(A-\left(\lambda+2 \pi i n_{k}\right) I\right)^{-1}\right) g_{n_{k}}\right\|}
$$

Then we obtain

$$
\left(e^{t A}-e^{\left(\lambda+2 \pi i n_{k}\right) t}\right) f_{n_{k}}=\int_{0}^{t} e^{\left(\lambda+2 \pi i n_{k}\right)(t-s)} e^{s A} d s\left(A-\left(\lambda+2 \pi i n_{k}\right)\right) f_{n_{k}}
$$

and for every t we deduce

$$
\lim _{k \rightarrow+\infty}\left\|\left(e^{t A}-e^{\left(\lambda+2 \pi i n_{k}\right) t}\right) f_{n_{k}}\right\|=0
$$

Thus is established (2.1) for every λ such that $e^{\lambda} \in \sigma(S)$.
Now consider

$$
\begin{aligned}
\hat{\phi}(-i \lambda)= & \int_{\mathbb{R}}\left\langle\phi(t)\left(e^{\left(\lambda+2 \pi i n_{k}\right) t}-e^{t A}\right) f_{n_{k}}, e^{2 \pi i n_{k} t} f_{n_{k}}\right\rangle d t \\
& +\int_{\mathbb{R}}\left\langle\phi(t) e^{t A} f_{n_{k}}, e^{2 \pi i n_{k} t} f_{n_{k}}\right\rangle d t \\
= & J_{n_{k}}+\int_{\mathbb{R}}\left\langle\phi(t) e^{t A} f_{n_{k}}, e^{2 \pi i n_{k} t} f_{n_{k}}\right\rangle d t
\end{aligned}
$$

where $J_{n_{k}} \rightarrow 0$ as $n_{k} \rightarrow \infty$. On the other hand, we have

$$
\begin{aligned}
I_{n_{k}} & =\int_{\mathbb{R}}\left\langle\phi(t) e^{t A} f_{n_{k}}, e^{2 \pi i n_{k} t} f_{n_{k}}\right\rangle d t=\left\langle\left[\int_{\mathbb{R}} \phi(t) e^{-2 \pi i n_{k} t} f_{n_{k}}(.-t) d t\right], f_{n_{k}}\right\rangle \\
& =\left\langle\int_{\mathbb{R}} \phi(.-y) e^{-2 \pi i n_{k}(.-y)} f_{n_{k}}(y) d y, f_{n_{k}}\right\rangle=\left\langle\left(M_{\phi}\left(f_{n_{k}} e^{2 \pi i n_{k} \cdot}\right)\right), e^{2 \pi i n_{k} \cdot} \cdot f_{n_{k}}\right\rangle
\end{aligned}
$$

and $\left|I_{n_{k}}\right| \leq\left\|M_{\phi}\right\|$. Consequently, we deduce that

$$
|\hat{\phi}(-i \lambda)| \leq\left\|M_{\phi}\right\| .
$$

Next a similar argument yields

$$
\begin{equation*}
|\hat{\phi}(-i \lambda-a)| \leq\left\|M_{\phi}\right\|, \forall a \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

In fact, if for $t \in \mathbb{R}$ there exists a sequence $\left(h_{n}\right)_{n \in \mathbb{N}} \subset H$ such that $\left(e^{t A}-e^{\lambda t}\right) h_{n} \rightarrow 0$ as $n \rightarrow \infty$ with $\left\|h_{n}\right\|=1$, we consider

$$
\int_{\mathbb{R}}\left\langle\left(\phi(t)\left(e^{\lambda t}-e^{A t}\right)\right) h_{n}, e^{-i a t} h_{n}\right\rangle d t=\hat{\phi}(-i \lambda-a)-\left\langle\int_{\mathbb{R}} \phi(t) e^{i a t} e^{t A} h_{n} d t, h_{n}\right\rangle .
$$

The term on the left goes to 0 as $n \rightarrow \infty$, so it is sufficient to show that the second term on the right is bounded by $\left\|M_{\phi}\right\|$. We have

$$
\begin{aligned}
& \left(\int_{\mathbb{R}} \phi(t) e^{i a t} e^{t A} h_{n} d t\right)(x)=\int_{\mathbb{R}} \phi(t) e^{i a t} h_{n}(x-t) d t \\
= & \int_{\mathbb{R}} \phi(x-y) e^{i a(x-y)} h_{n}(y) d y=e^{i a x}\left[M_{\phi}\left(e^{-a i .} h_{n}\right)\right](x), \text { a.e. }
\end{aligned}
$$

and we obtain

$$
|\hat{\phi}(-i \lambda-a)| \leq\left\|M_{\phi}\right\|
$$

Next consider the second case when we have a sequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ with the properties above. Multiplying by $e^{i\left(2 \pi n_{k}-a\right) t} f_{n_{k}}$, we obtain

$$
\hat{\phi}(-i \lambda-a)=\int_{\mathbb{R}}\left\langle\phi(t) e^{t A} f_{n_{k}}, e^{i\left(2 \pi n_{k}-a\right) t} f_{n_{k}}\right\rangle d t+I_{n_{k}}
$$

where $I_{n_{k}} \rightarrow 0$ as $n_{k} \rightarrow \infty$. To examine the integral on the right, we apply the same argument as above, using the fact that $\left(2 \pi n_{k}-a\right) \in \mathbb{R}$. This completes the proof of (2.2). The property (2.2) implies that if for some $\lambda_{0} \in \mathbb{C}$ we have

$$
\left|\hat{\phi}\left(\lambda_{0}\right)\right| \leq\left\|M_{\phi}\right\|
$$

then

$$
|\hat{\phi}(\lambda)| \leq\left\|M_{\phi}\right\|, \forall \lambda \in \mathbb{C}, \text { s.t. } \operatorname{Im} \lambda=\operatorname{Im} \lambda_{0} .
$$

There exists $\alpha_{0} \in \sigma(S)$ such that $\left|\alpha_{0}\right|=\rho(S)$. Then we obtain that

$$
|\widehat{\phi}(z)| \leq\left\|M_{\phi}\right\|
$$

for every z such that $\operatorname{Im} z=\ln \rho(S)$. In the same way there exists $\eta \in \sigma\left(S^{-1}\right)$ such that $|\eta|=\rho\left(S^{-1}\right)$ and $\alpha_{1}=\frac{1}{\eta} \in \sigma(S)$. Then applying the above argument to α_{1}, we get

$$
|\widehat{\phi}(z)| \leq\left\|M_{\phi}\right\|
$$

for every z such that $\operatorname{Im} z=-\ln \rho\left(S^{-1}\right)$. Since $\phi \in C_{c}(\mathbb{R})$ we have

$$
|\hat{\phi}(z)| \leq C\|\phi\|_{\infty} e^{k|\operatorname{Im} z|} \leq K\|\phi\|_{\infty}, \quad \forall z \in \Omega
$$

where $C>0, k>0$ and $K>0$ are constants. An application of the PhragmenLindelöff theorem for the holomorphic function $\widehat{\phi}(z)$ yields

$$
|\widehat{\phi}(\alpha)| \leq\left\|M_{\phi}\right\|
$$

for all $\alpha \in \Omega$.
Now we pass to the proof of Theorem 2. It is based on Theorem 1 combined with the arguments in [9] to cover our more general case. For the convenience of the reader we give the details.

Proof of Theorem 2. Let $\alpha \in \mathbb{C}$ be such that $e^{\alpha} \notin \sigma(S)$. Then it is clear that $T=\left(S-e^{\alpha} I\right)^{-1}$ is a multiplier. Let $a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$. Then there exists $\nu_{(a)} \in L^{\infty}(\mathbb{R})$ such that

$$
\widehat{(T f)_{a}}=\nu_{(a)} \widehat{(f)_{a}}, \forall f \in C_{c}(\mathbb{R}) \text {, a.e. }
$$

For $g \in C_{c}(\mathbb{R})$, the function $\left(S-e^{\alpha} I\right) g$ is also in $C_{c}(\mathbb{R})$. Replacing f by $\left(S-e^{\alpha} I\right) g$, for $g \in C_{c}(\mathbb{R})$ we get

$$
\widehat{(g)_{a}}(x)=\nu_{(a)}(x) \mathcal{F}\left(\left[\left(S-e^{\alpha} I\right) g\right]_{a}\right)(x), \forall g \in C_{c}(\mathbb{R}), \text { a.e. }
$$

and

$$
\widehat{(g)_{a}}(x)=\nu_{(a)}(x) \widehat{g_{(a)}}(x)\left[e^{a-i x}-e^{\alpha}\right], \forall g \in C_{c}(\mathbb{R}), \text { a.e. }
$$

Choosing a suitable $g \in C_{c}(\mathbb{R})$, we have

$$
\nu_{(a)}(x)\left(e^{a-i x}-e^{\alpha}\right)=1, \text { a.e. }
$$

On the other hand, $\nu_{(a)} \in L^{\infty}(\mathbb{R})$. Thus we obtain that $\operatorname{Re} \alpha \neq a$ and we conclude that

$$
e^{a+i b} \in \sigma(S), \forall b \in \mathbb{R}
$$

Since S is invertible, it is obvious that

$$
\sigma(S) \subset\left\{z \in \mathbb{C}, \frac{1}{\rho\left(S^{-1}\right)} \leq|z| \leq \rho(S)\right\}
$$

Consequently, we obtain

$$
\sigma(S)=\left\{z \in \mathbb{C}, \frac{1}{\rho\left(S^{-1}\right)} \leq|z| \leq \rho(S)\right\}
$$

and this completes the proof.

REFERENCES

[1] A. Beurling, P. Malliavin. On Fourier transforms of measures with compact support. Acta. Math. 107 (1962), 201-309.
[2] I. M. Bund. Birnbaum-Orlicz spaces of functions on groups. Pacific J. Math. 58 (1975), 351-359.
[3] L. Gearhart. Spectral theory for contraction semigroups on Hilbert space. Trans. Amer. Math. Soc. 236 (1978), 385-394.
[4] I. Herbst. The spectrum of Hilbert space semigroups. J. Operator Theory 10 (1983), 87-94.
[5] J. Howland. On a theorem of Gearhart. Integral Equations and operator Theory 7 (1984), 138-142.
[6] V. Petkova. Symbole d'un multiplicateur sur $L_{\omega}^{2}(\mathbb{R})$. Bull. Sci. Math. 128 (2004), 391-415.
[7] V. Petkova. Multipliers on Banach spaces of functions on a locally compact abelian group. J. London Math. Soc. 75 (2007), 369-390.
[8] V. Petkova. Joint spectrum of translations on $L_{w}^{2}\left(\mathbb{R}^{2}\right)$. Far East Journal of Mathematical Sciences (FJMS) 28 (2008), 1-15.
[9] V. Petkova. Spectral theorem for multipliers in $L_{\omega}^{2}(\mathbb{R})$, submitted.
[10] Ph. Tchamitchian. Généralisation des algèbres de Beurling, Ann. Inst. Fourier, Grenoble 34 (1984), 151-168.

LMAM

Université de Metz UMR 7122
Ile du Saulcy
57045 Metz Cedex 1 France
e-mail: petkova@univ-metz.fr

[^0]: 2000 Mathematics Subject Classification: 42A45.
 Key words: Multipliers, spectrum.

