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Abstract. For a Hilbert space H ⊂ L1

loc
(R) of functions on R we obtain

a representation theorem for the multipliers M commuting with the shift
operator S. This generalizes the classical result for multipliers in L2(R) as
well as our previous result for multipliers in weighted space L2

ω(R). Moreover,
we obtain a description of the spectrum of S.

1. Introduction. Let H ⊂ L1
loc(R) be a Hilbert space of functions on

R with values in C. Denote by ‖ · ‖ (resp. 〈·, ·〉) the norm (resp. the scalar
product) on H. Let Cc(R) be the set of continuous functions on R with compact
support. For a compact K of R denote by CK(R) the subset of functions of Cc(R)
with support in K and denote by f̂ or by F(f) the usual Fourier transform of
f ∈ L2(R). Let Sx be the operator of translation by x defined on H by

(Sxf)(t) = f(t − x), a.e. t ∈ R.
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Let S (resp. S−1) be the translation by 1 (resp. -1). Introduce the set

Ω =
{

z ∈ C, − ln ρ(S−1) ≤ Im z ≤ ln ρ(S)
}

,

where ρ(A) is the spectral radius of A and let I be the interval [− ln ρ(S−1), ln ρ(S)].
Assuming the identity map i : H −→ L1

loc(R) continuous, it follows from the
closed graph theorem that if Sx(H) ⊂ H, for x ∈ R, then the operator Sx is
bounded from H into H. In this paper we suppose that H satisfies the following
conditions:

(H1) Cc(R) ⊂ H ⊂ L1
loc(R), with continuous inclusions, and Cc(R) is

dense in H.

(H2) For every x ∈ R, Sx(H) ⊂ H and supx∈K ‖Sx‖ < +∞, for every
compact set K ⊂ R.

(H3) For every α ∈ R let Tα be the operator defined by

Tα : H ∋ f(x) −→ f(x)eiαx, x ∈ R.

We have Tα(H) ⊂ H and, moreover, supα∈R
‖Tα‖ < +∞.

(H4) There exists C > 0 and a ≥ 0 such that ‖Sx‖ ≤ Cea|x|, ∀x ∈ R.

Set |||f ||| = supα∈R
‖Tαf‖, for f ∈ H. The norm ||| · ||| is equivalent to

the norm of H and without loss of generality, we can consider below that Tα is
an isometry on H for every α ∈ R. Obviously, the condition (H3) holds for a
very large class of Hilbert spaces.

We give some examples of Hilbert spaces satisfying our hypothesis.

Example 1. A weight ω on R is a non negative function on R such that

sup
x∈R

ω(x + y)

ω(x)
< +∞, ∀ y ∈ R.

Denote by L2
ω(R) the space of measurable functions on R such that

∫

R

|f(x)|2ω(x)2dx < +∞.

The space L2
ω(R) equipped with the norm

‖f‖ =

(∫

R

|f(x)|2ω(x)2dx

) 1
2
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is a Hilbert space satisfying our conditions (H1)–(H3). Moreover, we have the
estimate

(1.1) ‖St‖ ≤ Cem|t|, ∀ t ∈ R,

where C > 0 and m ≥ 0 are constants. This follows from the fact that ω
is equivalent to the special weight ω0 constructed in [1]. The details of the
construction of ω0 are given in [6], [1]. Below after Theorem 2 we give some
examples of weights.

Definition 1. A bounded operator M on H is called a multiplier if

MSx = SxM, ∀x ∈ R.

Denote by M the algebra of the multipliers. Our aim is to obtain a rep-
resentation theorem for multipliers on H and to characterize the spectrum of S.
These two problems are closely related. In [6] we have obtained a representation
theorem for multipliers on L2

ω(R). Here we generalize our result for multipliers
on a Hilbert space and shift operators satisfying the conditions (H1)–(H4). Our
proof is shorter than that in [6]. The main improvement is based on an appli-
cation of the link between the spectrum σ(St) of a element of the group (St)t∈R

and the spectrum σ(A) of the generator A of this group. In general, in the setup
we deal with the spectral mapping theorem

σ(St) \ {0} = eσ(tA)

is not true. To establish the crucial estimate in Theorem 4 we use the general
results (see [3] and [5]) for the characterization of the spectrum of St by the
behavior of the resolvent of A. This idea has been used in [8] for L2

ω(R) but one
point in our argument needs a more precise proof and in this paper we do this in
the general case.

Denote by (f)a the function

R ∋ x −→ f(x)eax.

We prove the following

Theorem 1. For every M ∈ M, and for every

a ∈ I = [− ln ρ(S−1), ln ρ(S)],

we have
1) (Mf)a ∈ L2(R), ∀ f ∈ Cc(R).
2) There exists µ(a) ∈ L∞(R) such that
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∫

R

(Mf)(x)eaxe−itxdx = µ(a)(t)

∫

R

f(x)eaxe−itxdx, a.e.

i.e.
(̂Mf)a = µ(a)(̂f)a.

3) If
◦
I 6= ∅ then the function µ(z) = µ(Im z)(Re z) is holomorphic on

◦
Ω.

Definition 2. Given M ∈ M, if
◦
Ω 6= ∅, we call symbol of M the function

µ defined by

µ(z) = µ(Im z)(Re z), ∀ z ∈
◦
Ω.

Moreover, if a = − ln ρ(S−1) or a = ln ρ(S), the symbol µ is defined for z = x+ia
by the same formula for almost all x ∈ R.

Denote by σ(A) the spectrum of the operator A. From Theorem 1 we
deduce the following interesting spectral result.

Theorem 2. We have

σ(S) =
{

z ∈ C :
1

ρ(S−1)
≤ |z| ≤ ρ(S)

}
.

To prove this characterization of the spectrum of S we exploit the exis-
tence of a symbol for every multiplier. Notice that in general S is not a normal
operator and there are no spectral calculus which could characterize the spec-
trum of S. On the other hand, Theorem 2 has been used in [9] to obtain spectral
mapping theorems for a class of multipliers. Now we give some examples of
weights.

Example 2. The function ω(x) = ex is a weight. For the associated
weighted space L2

ω(R) we obtain σ(S) = {z ∈ C, |z| = e}.

Example 3. The functions of the form ω(x) = 1 + |x|α, for α ∈ R are
weights and we get σ(S) = {z ∈ C, |z| = 1}.

Example 4. Let ω(x) = ea|x|b with a > 0 and 0 < b < 1. Then in L2
ω(R)

we have
σ(S) = {z ∈ C, e−a ≤ |z| ≤ ea}.

Example 5. Functions like

e
|x|

ln(2+|x|) , e|x|(1 + |x|2)n, for n > 0

also are weights.



Multipliers 211

The weights in the Examples 4 and 5 are used to illustrate Beurling
algebra theory (cf. [10]).

2. Proof of Theorem 1. For φ ∈ Cc(R) denote by Mφ the operator
of convolution by φ on H. We have

(Mφf)(x) =

∫

R

f(x − y)φ(y)dy, ∀ f ∈ H.

It is clear that Mφ is a multiplier on H for every φ ∈ Cc(R).
In [7] we proved the following

Theorem 3. For every M ∈ M, there exists a sequence (φn)n∈N ⊂ Cc(R)
such that:

i) M = lim
n→∞

Mφn
with respect to the strong operator topology.

ii) We have ‖Mφn
‖ ≤ C‖M‖, where C is a constant independent of M

and n.

The main difficulty to establish Theorem 1 is the proof of an estimate for
φ̂n(z) for z ∈ Ω by the norm of Mφn

.

Theorem 4. For every φ ∈ Cc(R) and every α ∈ Ω we have

∣∣∣
∫

R

φ(x)e−iαxdx
∣∣∣ ≤ ‖Mφ‖.

Theorem 1 is deduced from Theorem 3 and Theorem 4 following exactly
the same arguments as in Section 3 of [6] and Section 3 of [7]. The function µ(a)

introduced in Theorem 1 is obtained as the limit of ((̂φn)a)n∈N with respect to
the weak topology of L2(R). The reader could consult [6] and [7] for more details.
Here we give a proof of Theorem 4 by using the link between the spectrum of S
and the spectrum of the generator A of the group (St)t∈R.

P r o o f o f T h e o r em 4. Let λ ∈ C be such that eλ ∈ σ(S). First we
show that there exists a sequence (nk)k∈N of integers and a sequence (fnk

)k∈N of
functions of H such that

(2.1)
∥∥∥
(
etA − e(λ+2πink)t

)
fnk

∥∥∥ −→ 0, nk → ∞, ‖fnk
‖ = 1, ∀ k ∈ N.

Let A be the generator of the group (St)t∈R. We have to deal with two cases:

(i) λ ∈ σ(A),
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(ii) λ /∈ σ(A).

In the case (i) we have λ ∈ σp(A)∪σc(A)∪σr(A), where σp(A) is the point
spectrum, σc(A) is the continuous spectrum and σr(A) is the residual spectrum
of A. If we have

λ ∈ σp(A) ∪ σc(A),

it is easy to see that there exists a sequence (fm)m∈N ⊂ H such that

‖(A − λ)fm‖ −→
m→+∞

0, ‖fm‖ = 1, ∀m ∈ N.

Then the equality

(eAt − eλt)fm =
( ∫ t

0
eλ(t−s)eAsds

)
(A − λ)fm,

yields
‖(eAt − eλt)fm‖ −→

m→+∞
0, ∀ t ∈ R

and we obtain (2.1). If λ /∈ σp(A) ∪ σc(A), we have λ ∈ σr(A) and

Ran(A − λI) 6= H,

where Ran(A − λI) denotes the range of the operator A − λI. Therefore there
exists h ∈ D(A∗), ‖h‖ = 1, such that

〈f, (A∗ − λ)h〉 = 0, ∀ f ∈ D(A).

This implies (A∗ − λ)h = 0 and we take f = h. Then

〈(eAt − eλt)f, f〉 = 〈f, (eA∗t − eλt)f〉 =

〈
f,

(∫ t

0
eλ(t−s)eA∗sds

)
(A∗ − λ)f

〉
= 0.

In this case we set nk = k and

fk = f, ∀ k ∈ N

and we get again (2.1).

The case (ii) is more difficult since if λ /∈ σ(A), we have eλ ∈ σ(eA)\eσ(A).
Taking into account the results about the spectrum of a semi-group in

Hilbert space [5] satisfying the condition (H4) (see also [3] for the contraction
semi-groups), we deduce that there exists a sequence of integers nk, such that
|nk| → ∞ and

‖(A − (λ + 2πink)I)−1‖ ≥ k, ∀ k ∈ N.
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Let (gnk
)k∈N be a sequence such that

‖gnk
‖ = 1,

∥∥∥
(
(A − (λ + 2πink)I)−1

)
gnk

∥∥∥ ≥ k/2, ∀ k ∈ N.

We define

fnk
=

(
(A − (λ + 2πink)I)−1

)
gnk∥∥∥

(
(A − (λ + 2πink)I)−1

)
gnk

∥∥∥
.

Then we obtain

(
etA − e(λ+2πink)t

)
fnk

=

∫ t

0
e(λ+2πink)(t−s)esAds

(
A − (λ + 2πink)

)
fnk

and for every t we deduce

lim
k→+∞

∥∥∥
(
etA − e(λ+2πink)t

)
fnk

∥∥∥ = 0.

Thus is established (2.1) for every λ such that eλ ∈ σ(S).

Now consider

φ̂(−iλ) =

∫

R

〈
φ(t)

(
e(λ+2πink)t − etA

)
fnk

, e2πinktfnk

〉
dt

+

∫

R

〈
φ(t)etAfnk

, e2πinktfnk

〉
dt

= Jnk
+

∫

R

〈
φ(t)etAfnk

, e2πinktfnk

〉
dt,

where Jnk
→ 0 as nk → ∞. On the other hand, we have

Ink
=

∫

R

〈
φ(t)etAfnk

, e2πinktfnk

〉
dt =

〈[∫

R

φ(t)e−2πinktfnk
(. − t)dt

]
, fnk

〉

=

〈∫

R

φ(. − y)e−2πink(.−y)fnk
(y)dy, fnk

〉
=

〈(
Mφ(fnk

e2πink.)
)
, e2πink.fnk

〉

and |Ink
| ≤ ‖Mφ‖. Consequently, we deduce that

|φ̂(−iλ)| ≤ ‖Mφ‖.
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Next a similar argument yields

(2.2) |φ̂(−iλ − a)| ≤ ‖Mφ‖, ∀ a ∈ R.

In fact, if for t ∈ R there exists a sequence (hn)n∈N ⊂ H such that
(etA − eλt)hn → 0 as n → ∞ with ‖hn‖ = 1, we consider

∫

R

〈
(φ(t)(eλt − eAt))hn, e−iathn

〉
dt = φ̂(−iλ − a) −

〈∫

R

φ(t)eiatetAhndt, hn

〉
.

The term on the left goes to 0 as n → ∞, so it is sufficient to show that the
second term on the right is bounded by ‖Mφ‖. We have

(∫

R

φ(t)eiatetAhndt

)
(x) =

∫

R

φ(t)eiathn(x − t)dt

=

∫

R

φ(x − y)eia(x−y)hn(y)dy = eiax[Mφ(e−ai.hn)](x), a.e.

and we obtain

|φ̂(−iλ − a)| ≤ ‖Mφ‖.

Next consider the second case when we have a sequence (fnk
)k∈N with the

properties above. Multiplying by ei(2πnk−a)tfnk
, we obtain

φ̂(−iλ − a) =

∫

R

〈
φ(t)etAfnk

, ei(2πnk−a)tfnk

〉
dt + Ink

,

where Ink
→ 0 as nk → ∞. To examine the integral on the right, we apply the

same argument as above, using the fact that (2πnk − a) ∈ R. This completes the
proof of (2.2). The property (2.2) implies that if for some λ0 ∈ C we have

|φ̂(λ0)| ≤ ‖Mφ‖,

then

|φ̂(λ)| ≤ ‖Mφ‖, ∀λ ∈ C, s.t. Im λ = Im λ0.

There exists α0 ∈ σ(S) such that |α0| = ρ(S). Then we obtain that

|φ̂(z)| ≤ ‖Mφ‖,
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for every z such that Im z = ln ρ(S). In the same way there exists η ∈ σ(S−1)

such that |η| = ρ(S−1) and α1 =
1

η
∈ σ(S). Then applying the above argument

to α1, we get

|φ̂(z)| ≤ ‖Mφ‖,

for every z such that Im z = − ln ρ(S−1). Since φ ∈ Cc(R) we have

|φ̂(z)| ≤ C‖φ‖∞ek| Im z| ≤ K‖φ‖∞, ∀ z ∈ Ω,

where C > 0, k > 0 and K > 0 are constants. An application of the Phragmen-
Lindelöff theorem for the holomorphic function φ̂(z) yields

|φ̂(α)| ≤ ‖Mφ‖

for all α ∈ Ω. 2

Now we pass to the proof of Theorem 2. It is based on Theorem 1 com-
bined with the arguments in [9] to cover our more general case. For the conve-
nience of the reader we give the details.

P r o o f o f Th e o r e m 2. Let α ∈ C be such that eα /∈ σ(S). Then it is
clear that T = (S − eαI)−1 is a multiplier. Let a ∈ [− ln ρ(S−1), ln ρ(S)]. Then
there exists ν(a) ∈ L∞(R) such that

(̂Tf)a = ν(a)(̂f)a, ∀ f ∈ Cc(R), a.e.

For g ∈ Cc(R), the function (S−eαI)g is also in Cc(R). Replacing f by (S−eαI)g,
for g ∈ Cc(R) we get

(̂g)a(x) = ν(a)(x)F
(
[(S − eαI)g]a

)
(x), ∀ g ∈ Cc(R), a.e.

and

(̂g)a(x) = ν(a)(x)ĝ(a)(x)[ea−ix − eα], ∀ g ∈ Cc(R), a.e.

Choosing a suitable g ∈ Cc(R), we have

ν(a)(x)(ea−ix − eα) = 1, a.e.

On the other hand, ν(a) ∈ L∞(R). Thus we obtain that Reα 6= a and we conclude
that

ea+ib ∈ σ(S), ∀ b ∈ R.
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Since S is invertible, it is obvious that

σ(S) ⊂ {z ∈ C,
1

ρ(S−1)
≤ |z| ≤ ρ(S)},

Consequently, we obtain

σ(S) = {z ∈ C,
1

ρ(S−1)
≤ |z| ≤ ρ(S)}

and this completes the proof. 2
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Université de Metz UMR 7122

Ile du Saulcy

57045 Metz Cedex 1 France

e-mail: petkova@univ-metz.fr Received February 19, 2009


