Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

GEOMETRY OF WARPED PRODUCT SEMI-INVARIANT SUBMANIFOLDS OF A LOCALLY RIEMANNIAN PRODUCT MANIFOLD*

Mehmet Atçeken
Communicated by O. Mushkarov

Abstract

In this article, we have studied warped product semi-invariant submanifolds in a locally Riemannian product manifold and introduced the notions of a warped product semi-invariant submanifold. We have also proved several fundamental properties of a warped product semi-invariant in a locally Riemannian product manifold.

1. Introduction. It is well-known that the notion of warped products plays some important role in differential geometry as well as in physics. For a recent survey on warped products as Riemannian submanifolds, we refer to $[3,4,5,6]$.
[^0]The geometry warped product CR-submanifolds in complex manifolds was introduced in [3, 4]. It was proved in [3] that there exist no a proper CRwarped product in the form $N=N_{\perp} \times_{f} N_{T}$ in any Kaehler manifold M, where N_{\perp} is a totally real submanifold and N_{T} is a holomorphic submanifold of M. On the other hand, in this article we have proved that there exist no a proper warped product semi-invariant submanifold in the form $N=N_{T} \times_{f} N_{\perp}$ in any locally Riemannian product manifold M, where N_{T} is an invariant submanifold and N_{\perp} is an anti-invariant submanifold of M.

Let M be an m-dimensional manifold with a tensor of type $(1,1)$ such that $F \neq I, F^{2}=I$, then M is said to be an almost product manifold with almost product structure F. If an almost product manifold M has a Riemannian metric g such that $g(F X, Y)=g(X, F Y)$, for any $X, Y \in \Gamma(T M)$, then M is called an almost Riemannian product manifold, where $\Gamma(T M)$ means the set of all differentiable vector fields on M. We denote the Levi-Civita connection on M by $\bar{\nabla}$ with respect to g. If $\left(\bar{\nabla}_{X} F\right) Y=0$, for any $X, Y \in \Gamma(T M)$, then M is called a locally Riemannian product manifold[2].

Let M be a Riemannian manifold with almost Riemannian product structure F and let N be a Riemannian manifold isometrically immersed in M. For each $x \in N$, we denote by D_{x} the maximal invariant subspace of the tangent space $T_{x} N$ of N. If the diemnsion of D_{x} is the same for all x in N, then D_{x} gives an invariant distribution D on N.

A submanifold N in a locally Riemannian product manifold is called semiinvariant submanifold if there exists on N a differentiable invariant distribution D whose orthogonal complementary D^{\perp} is an anti-invariant distribution, i.e., $F\left(D^{\perp}\right) \subset T N^{\perp}$. A semi-invariant submanifold is called an anti-invariant(resp. an invariant) submanifold if $\operatorname{dim}\left(D_{x}\right)=0$ (resp. $\operatorname{dim}\left(D_{x}^{\perp}\right)=0$. It is called a proper semi-invariant submanifold if it is a neither invariant nor an anti-invariant.

A semi-invariant submanifold N of a locally Riemannian product manifold M is called a semi-Riemannian product of an invariant submanifold N_{T} and an anti-invariant submanifold N_{\perp} of M are totally geodesic submanifolds in N. The notion of semi-invariant in a locally Riemannian product manifolds was introduced in [2, 9].

Let N_{1} and N_{2} be two Riemannian manifolds with Riemannian metrics g_{1} and g_{2}, respectively, and f is a differentiable and positive definite function on N_{1}. Consider the product manifold $N_{1} \times N_{2}$ with its projection $\pi: N_{1} \times N_{2} \longrightarrow N_{1}$ and $\eta: N_{1} \times N_{2} \longrightarrow N_{2}$. The warped product manifold $N=N_{1} \times_{f} N_{2}$ is the manifold $N_{1} \times N_{2}$ equipped with the Riemannian metric structure such that

$$
g(X, Y)=g_{1}\left(\pi_{*} X, \pi_{*} Y\right)+f^{2}(\pi(x)) g_{2}\left(\eta_{*} X, \eta_{*} Y\right)
$$

for any $X, Y \in \Gamma(T N)$, where $*$ the symbol stand for the differential. Thus we have $g=g_{1}+f^{2} g_{2}$, where f is called the warping function of the warped product. The warped product manifold $N=N_{1} \times_{f} N_{2}$ is characterized by N_{1} and N_{2} are totally geodesic and totally umbilical submanifolds of N, respectively[8].

In this paper, we defined and studied a new class of semi-invariant submanifolds, called warped product semi-invariant submanifold, in a Locally Riemannian product manifold. Firstly, we prove that if $N=N_{T} \times{ }_{f} N_{\perp}$ is a warped product semi-invariant submanifold of locally Riemannian product manifold M such that N_{T} is an invariant and N_{\perp} is an anti-invariant submanifold of M, then N is a Riemannian product. By contrast, we show that there exist many warped product semi-invariant submanifolds in the form $N=N_{\perp} \times_{f} N_{T}$ in a locally Riemannian product manifold which are not Riemannian product by reversing the two factor manifolds N_{T} and N_{\perp} and it called warped product semi-invariant submanifold. So we have investigated the class of warped product semi-invariant submanifold and we establish the fundamental theory of such submanifolds.
2. Preliminaries. If N is an isometrically immersed submanifold in a Riemannian manifold M, then the formulas of Gauss and Weingarten for N in M are given, respectively, by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2}
\end{equation*}
$$

for any $X, Y \in \Gamma(T N)$ and $V \in \Gamma\left(T N^{\perp}\right)$, where $\bar{\nabla}$ and ∇ denote the Riemannian connections on M and N, respectively, h is the second fundamental form, ∇^{\perp} is the normal connection on normal bundle and A is the shape operator of N in M. The second fundamental form and the shape operator are related by

$$
\begin{equation*}
g\left(A_{V} X, Y\right)=g((h(X, Y), V) \tag{3}
\end{equation*}
$$

where, g denotes the Riemannian metric on M as well as N. For any a submanifold N of a Riemannian manifold M, the equation of Gauss is given by

$$
\begin{align*}
\bar{R}(X, Y) Z & =R(X, Y) Z+A_{h(X, Z)} Y-A_{h(Y, Z)} X+\left(\bar{\nabla}_{X} h\right)(Y, Z) \\
& -\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{4}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T N)$, where \bar{R} and R denote the Riemannian curvature tensors of M and N, respectively. The covariant derivative of h is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(\nabla_{X} Z, Y\right) \tag{5}
\end{equation*}
$$

The equation of Codazzi is also given by

$$
\begin{equation*}
(\bar{R}(X, Y) Z)^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{6}
\end{equation*}
$$

where $(\bar{R}(X, Y) Z)^{\perp}$ denotes the normal component of $\bar{R}(X, Y) Z$.
If $(\bar{R}(X, Y) Z)^{\perp}=0$, then N is said to be curvature-invariant submanifold of M.

We recall the following general lemma from [8] for later use.
Lemma 2.1. Let $N=N_{1} \times{ }_{f} N_{2}$ be a warped product manifold with warping function f, then we have
1.) $\quad \nabla_{X} Y \in \Gamma\left(T N_{1}\right)$ for each $X, Y \in \Gamma\left(T N_{1}\right)$
2.) $\quad \nabla_{X} Z=\nabla_{Z} X=X(\ln f) Z, \quad$ for each $X \in \Gamma\left(T N_{1}\right), \quad Z \in \Gamma\left(T N_{2}\right)$
3.) $\quad \nabla_{Z} W=\nabla_{Z}^{N_{2}} W-g(Z, W) \frac{\operatorname{grad} f}{f}$, for each $Z, W \in \Gamma\left(T N_{2}\right)$,
where ∇ and $\nabla^{N_{2}}$ denote the Levi-Civita connections on N and N_{2}, respectively.

In this section, we study semi-invariant submanifolds in a locally Riemannian product manifold M which are warped products of the form $N_{1} \times{ }_{f} N_{2}$. Here firstly, we suppose that N_{1} is an invariant and N_{2} is anti-invariant, after then, N_{1} is an anti-invariant submanifold and N_{2} is an invariant submanifold of M with respect to F. Now, we denote the orthogonal complementary of $F(T(N))$ in $T N^{\perp}$ by V, then we have direct sum

$$
\begin{equation*}
T N^{\perp}=F(T N) \oplus V \tag{7}
\end{equation*}
$$

We can easily see that V is an invariant distribution with respect to F.
Now, let N be any submanifold of a locally Riemannian product manifold M. Then for any $X \in \Gamma(T N), F X$ can be written the following way:

$$
\begin{equation*}
F X=t X+n X \tag{8}
\end{equation*}
$$

where $t X$ and $n X$ denote the tangential and normal components of $F X$, respectively. Similarly, for any $V \in \Gamma\left(T N^{\perp}\right), F V$ can be written the following way:

$$
\begin{equation*}
F V=B V+C V \tag{9}
\end{equation*}
$$

where $B V$ and $C V$ denote the tangential and normal components of $F X$, respectively. By direct calculations, from the (8) and (9), we can derive

$$
\begin{equation*}
t^{2}+B n=I, \quad n t+C n=0 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
t B+B C=0, \quad n B+C^{2}=I \tag{11}
\end{equation*}
$$

3. Warped product semi-invariant submanifolds in locally Riemannian product manifolds. Useful characterizations of warped product semi-invariant submanifolds in locally Riemannian product manifolds will be given the following theorems.

Theorem 3.1. If $N=N_{T} \times_{f} N_{\perp}$ is a warped product semi-invariant submanifold of a locally Riemannian product manifold M such that N_{T} is an invariant submanifold and N_{\perp} is an anti-invariant submanifold of M, then N is a locally Riemannian product.

Proof. We suppose that $N=N_{T} \times{ }_{f} N_{\perp}$ be a warped product semiinvariant submanifold in a locally Riemannian product manifold M such that N_{T} is an invariant submanifold and N_{\perp} is an anti-invariant submanifold M. Then from the Lemma 2.1, we know that

$$
\begin{equation*}
\nabla_{X} Z=\nabla_{Z} X=X(\ln f) Z \tag{12}
\end{equation*}
$$

for any $X \in \Gamma\left(T N_{T}\right)$ and $Z \in T N_{\perp}$. By using symmetric of h, A, taking into account of (1) and (2), we get

$$
\begin{aligned}
g\left(\nabla_{X} Z, W\right) & =g\left(\nabla_{Z} X, W\right)=g\left(\bar{\nabla}_{Z} X, W\right)=g\left(\bar{\nabla}_{Z} F X, F W\right) \\
X(\ln f) g(Z, W) & =g(h(Z, F X), F W)=g\left(\bar{\nabla}_{F X} Z, F W\right)=g\left(\bar{\nabla}_{F X} F Z, W\right) \\
& =-g\left(A_{F Z} F X, W\right)=-g\left(A_{F Z} W, F X\right)=-g(h(F X, W), F Z) \\
& =-X(\ln f) g(W, Z)
\end{aligned}
$$

for any $W \in \Gamma\left(T N_{\perp}\right)$, that is, $X(\ln f) g(Z, W)=0$. It follows that $X(\ln f)=0$, for any $X \in \Gamma\left(T N_{T}\right)$, that is, f is a constant function on N_{T}. Thus N is a locally Riemannian product.

Now, we will give two examples warped products in a locally Riemannian product manifolds to illustrate our results such that N_{\perp} is an anti-invariant and N_{T} is an invariant.

Example 3.1. Let N be a submanifold in \mathbb{R}^{4} with coordinates $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ given by

$$
x_{1}=u \cos \theta, \quad x_{2}=u \sin \theta, \quad y_{1}=u \cos \beta, \quad \text { and } \quad y_{2}=u \sin \beta
$$

where $u>0, \theta$ and β denote arbitrary parameters.
It is easily to check that the tangent bundle of N is spanned by the vectors

$$
\begin{aligned}
Z_{1} & =\cos \theta \frac{\partial}{\partial x_{1}}+\sin \theta \frac{\partial}{\partial x_{2}}+\cos \beta \frac{\partial}{\partial y_{1}}+\sin \beta \frac{\partial}{\partial y_{2}} \\
Z_{2} & =-u \sin \theta \frac{\partial}{\partial x_{1}}+u \cos \theta \frac{\partial}{\partial x_{2}} \\
Z_{3} & =-u \sin \beta \frac{\partial}{\partial y_{1}}+u \cos \beta \frac{\partial}{\partial y_{2}}
\end{aligned}
$$

Next, we will define the almost Riemannian product structure of \mathbb{R}^{4} by

$$
F\left(\frac{\partial}{\partial x_{i}}\right)=-\frac{\partial}{\partial x_{i}} \text { and } F\left(\frac{\partial}{\partial y_{i}}\right)=\frac{\partial}{\partial y_{i}} \quad i=1,2 .
$$

Then the space $F(T N)$ becomes

$$
\begin{aligned}
F Z_{1} & =-\cos \theta \frac{\partial}{\partial x_{1}}-\sin \theta \frac{\partial}{\partial x_{2}}+\cos \beta \frac{\partial}{\partial y_{1}}+\sin \beta \frac{\partial}{\partial y_{2}} \\
F Z_{2} & =u \sin \theta \frac{\partial}{\partial x_{1}}-u \cos \theta \frac{\partial}{\partial x_{2}} \\
F Z_{3} & =-u \sin \beta \frac{\partial}{\partial y_{1}}+u \cos \beta \frac{\partial}{\partial y_{2}} .
\end{aligned}
$$

Since $F Z_{1}$ is orthogonal to $T N, F Z_{2}$ and $F Z_{3}$ are tangent to $T N, T N_{\perp}$ and $T N_{T}$ can be choosen subspaces $\operatorname{sp}\left\{Z_{1}\right\}$ and $\operatorname{sp}\left\{Z_{2}, Z_{3}\right\}$, respectively. Furthermore the Riemannian metric tensor of $M=N_{\perp} \times{ }_{f} N_{T}$ is given by

$$
g=2 d u^{2}+u^{2}\left(d \theta^{2}+d \beta^{2}\right)=g_{N_{\perp}} \times_{u^{2}} g_{N_{T}}
$$

Thus $N=N_{\perp} \times{ }_{u^{2}} N_{T}$ is a warped product semi-invariant submanifold with 3dimensional of Riemannian product manifold \mathbb{R}^{4} with warping function $f=u$.

Example 3.2. Consider in the Riemannian product manifold $\mathbb{R}^{5}=$ $\mathbb{R}^{3} \times \mathbb{R}^{2}$ with coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ the submanifold N given by the equations

$$
x_{4}^{2}=x_{2}^{2}+x_{3}^{2}, \quad x_{1}-x_{5}=0
$$

Then we have

$$
\begin{array}{r}
T N=\operatorname{span}\left\{Z_{1}=\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{5}}, \quad Z_{2}=\cos \alpha \frac{\partial}{\partial x_{2}}+\sin \alpha \frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{4}}\right. \\
\left.Z_{3}=-v \sin \alpha \frac{\partial}{\partial x_{2}}+v \cos \alpha \frac{\partial}{\partial x_{3}}\right\}
\end{array}
$$

v, α denote the arbitrary parameters. It follow that

$$
F Z_{1}=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{5}}, \quad F Z_{2}=\cos \alpha \frac{\partial}{\partial x_{2}}+\sin \alpha \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{4}} \text { and } F Z_{3}=Z_{3} .
$$

Since the vector fields $F Z_{1}$ and $F Z_{2}$ are orthogonal to $T N$ and $F Z_{3}$ is tangent to $T N, T N_{\perp}$ and $T N_{T}$ can be taken as $\operatorname{sp}\left\{Z_{1}, Z_{2}\right\}$ and $\operatorname{sp}\left\{Z_{3}\right\}$, respectively. Moreover, the metric of N is given

$$
g=2\left(d u^{2}+d v^{2}\right)+v^{2} d \alpha^{2}=2 g_{N_{\perp}}+v^{2} g_{N_{T}}
$$

Thus $N=N_{\perp} \times{ }_{u^{2}} N_{T}$ is a warped product semi-invariant submanifold of \mathbb{R}^{5} with warping function $f=v$.

Now, let $N=N_{\perp} \times{ }_{f} N_{T}$ be a warped product semi-invariant submanifolds in a locally Riemannian product manifold M which are warped products of the form $N_{\perp} \times{ }_{f} N_{T}$, where N_{\perp} is an anti-invariant submanifold and N_{T} is an invariant submanifold of M with respect to F. If we denote the Levi-Civita connections on M and N by $\bar{\nabla}$ and ∇, respectively, then from (1), (2), (8) and (9), we have

$$
\begin{align*}
\bar{\nabla}_{X} F Y & =F \bar{\nabla}_{X} Y \\
\nabla_{X} t Y+h(X, t Y)-A_{n Y} X+\nabla_{X}^{\perp} n Y & =t\left(\nabla_{X} Y\right)+n\left(\nabla_{X} Y\right) \\
& +B h(X, Y)+C h(X, Y) \tag{13}
\end{align*}
$$

for any $X, Y \in \Gamma(T N)$. Taking account of the tangential and normal components of (13), we have

$$
\begin{equation*}
\left(\nabla_{X} t\right) Y=A_{n Y} X+B h(X, Y) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} n\right) Y=C h(X, Y)-h(X, t Y) \tag{15}
\end{equation*}
$$

where the derivations of t and n are, respectively, defined by

$$
\begin{aligned}
\left(\nabla_{X} t\right) Y & =\nabla_{X} t Y-t\left(\nabla_{X} Y\right) \\
\left(\nabla_{X} n\right) Y & =\nabla_{X}^{\perp} n Y-n\left(\nabla_{X} Y\right)
\end{aligned}
$$

Next, we will give the following theorems.
Theorem 3.3. Let $N=N_{\perp} \times{ }_{f} N_{T}$ be a warped product semi-invariant submanifold of a locally Riemannian product manifold M such that N_{\perp} is an anti-invariant submanifold and N_{T} is an invariant submanifold of M. Then the integral manifolds N_{\perp} and N_{T} are always integrable.

Proof. Taking $X \in \Gamma\left(T N_{T}\right)$ and $U \in \Gamma\left(T N_{\perp}\right)$ in the equation (13) and consider Lemma 2.1, then we have

$$
-A_{n U} X+\nabla_{X}^{\perp} n U=F(U(\ln f) X)+B h(X, U)+C h(X, U)
$$

It follows that

$$
\begin{equation*}
-A_{n U} X=U(\ln f) t X+B h(X, U) \text { and } \nabla_{X}^{\perp} n U=C h(X, U) \tag{16}
\end{equation*}
$$

Furthermore, taking $U \in \Gamma\left(T N_{\perp}\right)$ and $X \in \Gamma\left(T N_{T}\right)$ in (13) and since F is also linear, we have

$$
\begin{equation*}
B h(U, X)=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
h(t X, U)=C h(U, X) \tag{18}
\end{equation*}
$$

Then the equation (16) becomes

$$
\begin{equation*}
A_{n U} X=-U(\ln f) t X \tag{19}
\end{equation*}
$$

On the other hand, the formulas of Gauss and Weingarten and consider Lemma 2.1, we can derive

$$
\begin{equation*}
A_{n U} V=-B h(V, U) \tag{20}
\end{equation*}
$$

which is also equivalent to

$$
\begin{equation*}
A_{n U} V=A_{n V} U \tag{21}
\end{equation*}
$$

for any $U, V \in \Gamma\left(T N_{\perp}\right)$. Whereas, taking into account of (3) and the shape operator A is self-adjoint, we get

$$
\begin{aligned}
g\left(A_{n U} V, Z\right) & =g(h(V, Z), n U)=g\left(\bar{\nabla}_{Z} V, F U\right)=g\left(\bar{\nabla}_{Z} F V, U\right) \\
& =-g\left(A_{n V} Z, U\right)=-g\left(A_{n V} U, Z\right)
\end{aligned}
$$

which gives

$$
\begin{equation*}
A_{n U} V=-A_{n V} U \tag{22}
\end{equation*}
$$

for any $U, V \in \Gamma\left(T N_{\perp}\right)$ and $Z \in \Gamma(T N)$. Thus (21) and (22) give us

$$
\begin{equation*}
A_{n U} V=0 \text { and } B h(U, V)=0 \tag{23}
\end{equation*}
$$

for any $U, V \in \Gamma\left(T N_{\perp}\right)$. In the same way, taking account of (1), (2), (8), (9) and (17), we get

$$
\begin{aligned}
-A_{n U} X+\nabla_{X}^{\perp} n U & =F\left(\nabla_{U} X\right)+C h(U, X) \\
& =U(\ln f) t X+C h(U, X)
\end{aligned}
$$

for any $U \in \Gamma\left(T N_{\perp}\right)$ and $X \in \Gamma\left(T N_{T}\right)$. Thus we have

$$
\begin{equation*}
A_{n U} X=-U(\ln f) t X \text { and } \nabla_{X}^{\perp} n U=C h(U, X) \tag{24}
\end{equation*}
$$

Furthermore, from (1), (2), (8), (9) and consider Lemma 2.1, we have

$$
\begin{aligned}
h(Y, t X)+\nabla_{Y} t X & =F\left(\nabla_{Y} X\right)+F h(X, Y) \\
& =F\left(\nabla_{Y}^{N_{2}} X-g(X, Y) \frac{\operatorname{grad} f}{f}\right)+B h(X, Y)+C h(X, Y) \\
& =t\left(\nabla_{Y}^{N_{2}} X\right)-g(X, Y) n\left(\frac{\operatorname{grad} f}{f}\right)+B h(X, Y)+C h(X, Y)
\end{aligned}
$$

for any $X, Y \in \Gamma\left(T N_{T}\right)$. Thus we arrive

$$
\begin{equation*}
h(Y, t X)=-g(X, Y) n\left(\frac{\operatorname{grad} f}{f}\right)+C h(X, Y) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{Y}^{N_{2}} t X-g(t X, Y) \frac{\operatorname{grad} f}{f}=t\left(\nabla_{Y}^{N_{2}} X\right)+B h(X, Y) \tag{26}
\end{equation*}
$$

The equation (25) implies

$$
\begin{equation*}
h(Y, t X)=h(X, t Y) \tag{27}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(T N_{T}\right)$. By using (15) and (27), we have

$$
\begin{aligned}
n([X, Y]) & =n\left(\nabla_{X} Y-\nabla_{Y} X\right)=\nabla_{X}^{\perp} n Y-\left(\nabla_{X} n\right) Y-\nabla_{Y}^{\perp} n X+\left(\nabla_{Y} n\right) X \\
& =\left(\nabla_{Y} n\right) X-\left(\nabla_{X} n\right) Y=C h(Y, X)-h(Y, t X)-C h(X, Y) \\
& +h(X, t Y)=0
\end{aligned}
$$

for any $X, Y \in \Gamma\left(T N_{T}\right)$, that is, $[X, Y] \in \Gamma\left(T N_{T}\right)$. In the same way, by using (14) and (23) for any $U, V \in \Gamma\left(T N_{\perp}\right)$, we get

$$
\begin{aligned}
t([U, V]) & =t\left(\nabla_{U} V-\nabla_{V} U\right) \\
& =\nabla_{U} t V-\left(\nabla_{U} t\right) V-\nabla_{V} t U+\left(\nabla_{V} t\right) U \\
& =\left(\nabla_{U} t\right) V-\left(\nabla_{U} t\right) V=A_{n V} U-A_{n U} V=0,
\end{aligned}
$$

that is, $[U, V] \in \Gamma\left(T N_{\perp}\right)$. This completes the proof.
Theorem 3.3. Let $N=N_{\perp} \times_{f} N_{T}$ be a warped product of a locally Riemannian product manifold M such that N_{\perp} is an anti-invariant submanifold and N_{T} is an invariant submanifold of M. Then N is a warped product semiinvariant submanifold if and only $n t=0$.

Proof. Let us assume that N is a warped product semi-invariant submanifold of a locally Riemannian product manifold M and by Q and P, we denote the projection operators on subspaces $\Gamma\left(T N_{\perp}\right)$ and $\Gamma\left(T N_{T}\right)$, respectively, then we have

$$
P+Q=I, \quad P^{2}=P, \quad Q^{2}=Q, \quad P Q=Q P=0
$$

By using (8), we get

$$
Q t P=0, \quad n P=0, \quad t P=t
$$

from which, consider (10) and (11), we can derive

$$
\begin{equation*}
n t=0 \tag{28}
\end{equation*}
$$

which is also equivalent to

$$
\begin{equation*}
C n=0 . \tag{29}
\end{equation*}
$$

Conversely, for a warped product submanifold N of a locally Riemannian product manifold M, we suppose that $n t=0$. For any vector fields tangent X to N and V normal to N, by using (8), (9) and (29), we have

$$
\begin{aligned}
g(X, B V) & =g(n X, V) \\
g(X, F B V) & =g(F n X, V) \\
g(X, t B V) & =g(C n X, V)=0
\end{aligned}
$$

which gives $t B=0$ which is equivalent to $B C=0$ from (11). Then from (10), we conclude that

$$
\begin{equation*}
t^{3}=t \text { and } C^{3}=C \tag{30}
\end{equation*}
$$

Now, if we put

$$
\begin{equation*}
P=t^{2} \quad \text { and } \quad Q=I-P \tag{31}
\end{equation*}
$$

then we can derive that $P+Q=I, \quad P^{2}=P, \quad Q^{2}=Q, \quad P Q=Q P=0$, which show that Q and P are orthogonal complementary projection operators and define orthogonal complementary distributions such as D^{\perp} and D, respectively, where D and D^{\perp} denote the distributions which are belong to $T N_{T}$ and $T N_{\perp}$, respectively. From the equations (28), (30) and (31) we can derive

$$
t P=t, \quad t Q=0, \quad Q t P=0 \quad \text { and } \quad n P=0
$$

These equations show that the distribution D is an invariant and the distribution D^{\perp} is also an anti-invariant. This completes the proof.

Theorem 3.4. Let N be a semi-invariant submanifold of a locally Riemannian product manifold M. Then N is a locally warped product semi-invariant submanifold if and only if the shape operator of N satisfies

$$
\begin{equation*}
A_{F U} Z=F(U(\mu)) Z, \quad U \in \Gamma\left(T N_{\perp}\right), \quad Z \in \Gamma\left(T N_{T}\right) \tag{32}
\end{equation*}
$$

for some function μ on N satisfying $W(\mu)=0$, for any $W \in \Gamma\left(T N_{T}\right)$.
Proof. We suppose that $N=N_{\perp} \times N_{T}$ is a warped product semiinvariant submanifold in a locally Riemannian product manifold M. Then from (19), we have

$$
A_{F U} X=-F(U(\ln f)) X
$$

for any $U \in \Gamma\left(T N_{\perp}\right)$ and $X \in \Gamma\left(T N_{T}\right)$. Because f is a function on N_{\perp}, we can easily to see that $W(\ln f)=0$, for all $W \in \Gamma\left(T N_{T}\right)$.

Conversely, let us assume that N is a semi-invariant submanifold in a locally Riemannian product manifold M satisfying

$$
A_{F U} X=F(U(\mu)) X, \quad U \in \Gamma\left(T N_{\perp}\right) \text { and } \quad X \in \Gamma\left(T N_{T}\right)
$$

for some function μ with $W(\mu)=0$, for all $W \in \Gamma\left(T N_{T}\right)$. Then from (1) and (23), we arrive

$$
g\left(\nabla_{U} V, X\right)=g\left(\bar{\nabla}_{U} V, X\right)=g\left(\bar{\nabla}_{U} F V, F X\right)=-g\left(A_{F V} U, F X\right)=0
$$

for any $U, V \in \Gamma\left(T N_{\perp}\right)$ and $X \in\left(T N_{T}\right)$. Thus the anti-invariant submanifold N_{\perp} is totally geodesic in N. In the same way;

$$
\begin{aligned}
g\left(\nabla_{X} Y, U\right) & =g\left(\bar{\nabla}_{X} Y, U\right)=-g\left(\bar{\nabla}_{X} U, Y\right)=-g\left(\bar{\nabla}_{X} F U, F Y\right) \\
& =g\left(A_{F U} X, F Y\right)=U(\mu) g(X, Y)
\end{aligned}
$$

for any $X, Y \in \Gamma\left(T N_{T}\right)$ and $U \in \Gamma\left(T N_{\perp}\right)$. Since the invariant submanifold N_{T} of semi-invariant submanifold N is always integrable and $W(\mu)=0$, for each $W \in \Gamma\left(T N_{T}\right)$, which implies that N_{T} is an extrinsic sphere in N, that is, it is a totally umbilical submanifold with the mean curvature is parallel in N. Thus we know that N is a locally Riemannian warped product $N_{\perp} \times_{f} N_{T}$, where N_{\perp} and N_{T} are anti-invariant and invariant submanifolds of M, respectively, and f is the warping function. The proof is complete.

Lemma 3.1. Let $N=N_{\perp} \times{ }_{f} N_{T}$ be a warped product semi-invariant submanifold of a locally Riemannian product manifold M. Then we have
1.) $g\left(h\left(T N_{\perp}, T N_{\perp}\right), F T N_{\perp}\right)=0$
2.) $g(h(F X, U), F Y)=U(\ln f) g(X, Y)$
3.) $g\left(h\left(T N_{\perp}, T N_{T}\right), F T N_{\perp}\right)=0$
4.) $g\left(h\left(T N_{T}, F\left(T N_{T}\right)\right), F T N_{\perp}\right)=0$ if and only if $N=N_{\perp} \times_{f} N_{T}$ is a trivial Riemannian product in M, for each $U \in \Gamma\left(T N_{\perp}\right), X, Y \in \Gamma\left(T N_{T}\right)$.

Proof. 1.) The proof is obvious from (3) and (23).
2.) $g(h(F X, U), F Y)=g\left(\bar{\nabla}_{U} F X, F Y\right)=g\left(\bar{\nabla}_{U} X, Y\right)=g\left(\nabla_{U} X, Y\right)$

$$
=U(\ln f) g(X, Y)
$$

for any $U \in \Gamma\left(T N_{\perp}\right)$ and $X, Y \in \Gamma\left(T N_{T}\right)$.
3.) The proof is obvious from (3) and (23).

$$
\text { 4.) } \begin{aligned}
g(h(X, F Y), F U) & =g\left(\bar{\nabla}_{X} F Y, F U\right)=g\left(\bar{\nabla}_{X} Y, U\right) \\
& =-g\left(\bar{\nabla}_{X} U, Y\right)=-g\left(\nabla_{X} U, Y\right)=U(\ln f) g(X, Y)=0
\end{aligned}
$$

for any $X, Y \in \Gamma\left(T N_{T}\right)$ and $U \in \Gamma\left(T N_{\perp}\right)$, if and only if f is a constant function on N_{\perp} if and only if $N=N_{\perp} \times_{f} N_{T}$ is a locally Riemannian product.
4. Conclusion. The geometry of warped products in the Riemannian product manifolds is totally different from the geometry of warped products in Complex manifolds. Namely, In Kaehler manifolds, if $N=N_{\perp} \times{ }_{f} N_{T}$ is a warped product CR-submanifold such that N_{\perp} is a totally real submanifold and N_{T} is a holomorphic submanifold, then it has to be a CR-product(see [3]), whereas, in the Riemannian product manifolds, if $N=N_{T} \times_{f} N_{\perp}$ is a warped product semi-invariant submanifold such that N_{T} is an invariant submanifold and N_{\perp} is an anti-invariant submanifold, then N has to be a Riemannian product(see Theorem 3.1). Moreover, In complex manifolds, the dimension of holomorphic distribution is even, whereas, in the Riemannian product manifolds, the dimension of invariant distribution may be even or odd(see Example 3.1 and 3.2).

REFERENCES

[1] M. Atçeken. Warped Product Semi-Slant Submanifolds of in Locally Riemannian Product Manifolds. Bull. Austral. Math. Soc. 77 (2008), 177-186.
[2] A. Bejancu. Semi-Invariant Submanifolds of Locally Product Riemannian Manifold. An. Univ. Timişoara, Ser. Stiinţe Mat. 22 (1984), 3-11.
[3] B. Y. Chen. Geometry of Warped Product CR-Submanifolds in Kaehler Manifolds. Monatsh. Math. 133 (2001), 177-195.
[4] B. Y. Chen. CR-Warped Products in Complex Projective Spaces with Compact Holomorphic Factor. Monatsh. Math. 141 (2004), 177-186.
[5] K. L. Duggal. Warped Product of Lightlike Manifolds. Nonlinear Anal. 47 (2001), 3061-3072.
[6] K. Matsumoto, I. Mihai. Warped Product Submanifolds in Sasakian Space Forms. SUT J. Math. 38, 2 (2002), 135-144.
[7] K. Matsumoto. On Submanifolds of Locally Product Riemannian Manifolds. TRU Math. 18, 1982, 145-157.
[8] B. O'Neill. Semi-Riemannian Geometry with Applications to Relativity. Academic Press Inc, 1983.
[9] S. Tachibana. Some Theorems on a Locally Product Riemannian Manifold. Tohoku Math. J. 12 (1960), 281-292.

Gaziosmanpasa University
Faculty of Arts and Sciences
Department of Mathematics
60250 Tokat, Turkey
e-mail: matceken@gop.edu.tr
Received July 1, 2009

[^0]: *Supported by the Scientific Research Fund of St. Kl. Ohridski Sofia University under contract 90/2008.

 2000 Mathematics Subject Classification: 53C42, 53C15.
 Key words: Riemannian warped product, Riemannian product and warped product semiinvariant.

