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GEOMETRY OF WARPED PRODUCT SEMI-INVARIANT
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Abstract. In this article, we have studied warped product semi-invariant
submanifolds in a locally Riemannian product manifold and introduced the
notions of a warped product semi-invariant submanifold. We have also
proved several fundamental properties of a warped product semi-invariant
in a locally Riemannian product manifold.

1. Introduction. It is well-known that the notion of warped products
plays some important role in differential geometry as well as in physics. For
a recent survey on warped products as Riemannian submanifolds, we refer to
[3, 4, 5, 6].
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The geometry warped product CR-submanifolds in complex manifolds
was introduced in [3, 4]. It was proved in [3] that there exist no a proper CR-
warped product in the form N = N⊥ ×f NT in any Kaehler manifold M , where
N⊥ is a totally real submanifold and NT is a holomorphic submanifold of M . On
the other hand, in this article we have proved that there exist no a proper warped
product semi-invariant submanifold in the form N = NT ×f N⊥ in any locally
Riemannian product manifold M , where NT is an invariant submanifold and N⊥

is an anti-invariant submanifold of M .

Let M be an m-dimensional manifold with a tensor of type (1,1) such
that F 6= I, F 2 = I, then M is said to be an almost product manifold with
almost product structure F . If an almost product manifold M has a Riemannian
metric g such that g(FX,Y ) = g(X,FY ), for any X,Y ∈ Γ(TM), then M is
called an almost Riemannian product manifold, where Γ(TM) means the set of
all differentiable vector fields on M . We denote the Levi-Civita connection on
M by ∇̄ with respect to g. If (∇̄XF )Y = 0, for any X,Y ∈ Γ(TM), then M is
called a locally Riemannian product manifold[2].

Let M be a Riemannian manifold with almost Riemannian product struc-
ture F and let N be a Riemannian manifold isometrically immersed in M . For
each x ∈ N , we denote by Dx the maximal invariant subspace of the tangent
space TxN of N . If the diemnsion of Dx is the same for all x in N , then Dx gives
an invariant distribution D on N .

A submanifold N in a locally Riemannian product manifold is called semi-
invariant submanifold if there exists on N a differentiable invariant distribution
D whose orthogonal complementary D⊥ is an anti-invariant distribution, i.e.,
F (D⊥) ⊂ TN⊥. A semi-invariant submanifold is called an anti-invariant(resp.
an invariant) submanifold if dim(Dx) = 0(resp. dim(D⊥

x ) = 0). It is called a
proper semi-invariant submanifold if it is a neither invariant nor an anti-invariant.

A semi-invariant submanifold N of a locally Riemannian product man-
ifold M is called a semi-Riemannian product of an invariant submanifold NT

and an anti-invariant submanifold N⊥ of M are totally geodesic submanifolds in
N . The notion of semi-invariant in a locally Riemannian product manifolds was
introduced in [2, 9].

Let N1 and N2 be two Riemannian manifolds with Riemannian metrics g1

and g2, respectively, and f is a differentiable and positive definite function on N1.
Consider the product manifold N1 × N2 with its projection π : N1 × N2 −→ N1

and η : N1 × N2 −→ N2. The warped product manifold N = N1 ×f N2 is the
manifold N1 × N2 equipped with the Riemannian metric structure such that

g(X,Y ) = g1(π∗X,π∗Y ) + f2(π(x))g2(η∗X, η∗Y )
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for any X,Y ∈ Γ(TN), where ∗ the symbol stand for the differential. Thus we
have g = g1 +f2g2, where f is called the warping function of the warped product.
The warped product manifold N = N1 ×f N2 is characterized by N1 and N2 are
totally geodesic and totally umbilical submanifolds of N , respectively[8].

In this paper, we defined and studied a new class of semi-invariant sub-
manifolds, called warped product semi-invariant submanifold, in a Locally Rie-
mannian product manifold. Firstly, we prove that if N = NT ×f N⊥ is a warped
product semi-invariant submanifold of locally Riemannian product manifold M

such that NT is an invariant and N⊥ is an anti-invariant submanifold of M , then
N is a Riemannian product. By contrast, we show that there exist many warped
product semi-invariant submanifolds in the form N = N⊥ ×f NT in a locally
Riemannian product manifold which are not Riemannian product by reversing
the two factor manifolds NT and N⊥ and it called warped product semi-invariant
submanifold. So we have investigated the class of warped product semi-invariant
submanifold and we establish the fundamental theory of such submanifolds.

2. Preliminaries. If N is an isometrically immersed submanifold in a
Riemannian manifold M , then the formulas of Gauss and Weingarten for N in
M are given, respectively, by

∇̄XY = ∇XY + h(X,Y )(1)

and

∇̄XV = −AV X + ∇⊥

XV(2)

for any X,Y ∈ Γ(TN) and V ∈ Γ(TN⊥), where ∇̄ and ∇ denote the Riemannian
connections on M and N , respectively, h is the second fundamental form, ∇⊥ is
the normal connection on normal bundle and A is the shape operator of N in M .
The second fundamental form and the shape operator are related by

g(AV X,Y ) = g((h(X,Y ), V ),(3)

where, g denotes the Riemannian metric on M as well as N . For any a subman-
ifold N of a Riemannian manifold M , the equation of Gauss is given by

R̄(X,Y )Z = R(X,Y )Z + Ah(X,Z)Y − Ah(Y,Z)X + (∇̄Xh)(Y,Z)

− (∇̄Y h)(X,Z),(4)
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for any X,Y,Z ∈ Γ(TN), where R̄ and R denote the Riemannian curvature
tensors of M and N , respectively. The covariant derivative of h is defined by

(∇̄Xh)(Y,Z) = ∇⊥

Xh(Y,Z) − h(∇XY,Z) − h(∇XZ, Y ).(5)

The equation of Codazzi is also given by

(R̄(X,Y )Z)⊥ = (∇̄Xh)(Y,Z) − (∇̄Y h)(X,Z),(6)

where (R̄(X,Y )Z)⊥ denotes the normal component of R̄(X,Y )Z.
If (R̄(X,Y )Z)⊥ = 0, then N is said to be curvature-invariant submanifold

of M .
We recall the following general lemma from [8] for later use.

Lemma 2.1. Let N = N1 ×f N2 be a warped product manifold with

warping function f , then we have

1.) ∇XY ∈ Γ(TN1) for each X, Y ∈ Γ(TN1)

2.) ∇XZ = ∇ZX = X(ln f)Z, for each X ∈ Γ(TN1), Z ∈ Γ(TN2)

3.) ∇ZW = ∇N2

Z W − g(Z,W )
gradf

f
, for each Z,W ∈ Γ(TN2),

where ∇ and ∇N2 denote the Levi-Civita connections on N and N2, respectively.

In this section, we study semi-invariant submanifolds in a locally Rie-
mannian product manifold M which are warped products of the form N1 ×f N2.
Here firstly, we suppose that N1 is an invariant and N2 is anti-invariant, after
then, N1 is an anti-invariant submanifold and N2 is an invariant submanifold of
M with respect to F . Now, we denote the orthogonal complementary of F (T (N))
in TN⊥ by V , then we have direct sum

TN⊥ = F (TN) ⊕ V .(7)

We can easily see that V is an invariant distribution with respect to F .
Now, let N be any submanifold of a locally Riemannian product manifold

M . Then for any X ∈ Γ(TN), FX can be written the following way:

FX = tX + nX,(8)

where tX and nX denote the tangential and normal components of FX, respec-
tively. Similarly, for any V ∈ Γ(TN⊥), FV can be written the following way:

FV = BV + CV ,(9)
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where BV and CV denote the tangential and normal components of FX, respec-
tively. By direct calculations, from the (8) and (9), we can derive

t2 + Bn = I, nt + Cn = 0,(10)

and

tB + BC = 0, nB + C2 = I.(11)

3. Warped product semi-invariant submanifolds in locally

Riemannian product manifolds. Useful characterizations of warped prod-
uct semi-invariant submanifolds in locally Riemannian product manifolds will be
given the following theorems.

Theorem 3.1. If N = NT ×f N⊥ is a warped product semi-invariant

submanifold of a locally Riemannian product manifold M such that NT is an

invariant submanifold and N⊥ is an anti-invariant submanifold of M , then N is

a locally Riemannian product.

P r o o f. We suppose that N = NT ×f N⊥ be a warped product semi-
invariant submanifold in a locally Riemannian product manifold M such that
NT is an invariant submanifold and N⊥ is an anti-invariant submanifold M .
Then from the Lemma 2.1, we know that

∇XZ = ∇ZX = X(ln f)Z,(12)

for any X ∈ Γ(TNT ) and Z ∈ TN⊥. By using symmetric of h, A, taking into
account of (1) and (2), we get

g(∇XZ,W ) = g(∇ZX,W ) = g(∇̄ZX,W ) = g(∇̄ZFX,FW )

X(ln f)g(Z,W ) = g(h(Z,FX), FW ) = g(∇̄FXZ,FW ) = g(∇̄FXFZ,W )

= −g(AFZFX,W ) = −g(AFZW,FX) = −g(h(FX,W ), FZ)

= −X(ln f)g(W,Z),

for any W ∈ Γ(TN⊥), that is, X(ln f)g(Z,W ) = 0. It follows that X(ln f) = 0,
for any X ∈ Γ(TNT ), that is, f is a constant function on NT . Thus N is a locally
Riemannian product. �
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Now, we will give two examples warped products in a locally Riemannian
product manifolds to illustrate our results such that N⊥ is an anti-invariant and
NT is an invariant.

Example 3.1. Let N be a submanifold in R
4 with coordinates (x1, x2, y1, y2)

given by

x1 = u cos θ, x2 = u sin θ, y1 = u cos β, and y2 = u sin β,

where u > 0, θ and β denote arbitrary parameters.
It is easily to check that the tangent bundle of N is spanned by the vectors

Z1 = cos θ
∂

∂x1
+ sin θ

∂

∂x2
+ cos β

∂

∂y1
+ sin β

∂

∂y2
,

Z2 = −u sin θ
∂

∂x1
+ u cos θ

∂

∂x2
,

Z3 = −u sinβ
∂

∂y1
+ u cos β

∂

∂y2
.

Next, we will define the almost Riemannian product structure of R
4 by

F

(

∂

∂xi

)

= −
∂

∂xi

and F

(

∂

∂yi

)

=
∂

∂yi

i = 1, 2.

Then the space F (TN) becomes

FZ1 = − cos θ
∂

∂x1
− sin θ

∂

∂x2
+ cos β

∂

∂y1
+ sin β

∂

∂y2
,

FZ2 = u sin θ
∂

∂x1
− u cos θ

∂

∂x2
,

FZ3 = −u sin β
∂

∂y1
+ u cos β

∂

∂y2
.

Since FZ1 is orthogonal to TN , FZ2 and FZ3 are tangent to TN , TN⊥ and TNT

can be choosen subspaces sp{Z1} and sp{Z2, Z3}, respectively. Furthermore the
Riemannian metric tensor of M = N⊥ ×f NT is given by

g = 2du2 + u2(dθ2 + dβ2) = gN⊥
×u2 gNT

.

Thus N = N⊥ ×u2 NT is a warped product semi-invariant submanifold with 3-
dimensional of Riemannian product manifold R

4 with warping function f = u.
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Example 3.2. Consider in the Riemannian product manifold R
5 =

R
3 × R

2 with coordinates (x1, x2, x3, x4, x5) the submanifold N given by the
equations

x2
4 = x2

2 + x2
3, x1 − x5 = 0.

Then we have

TN = span

{

Z1 =
∂

∂x1
+

∂

∂x5
, Z2 = cos α

∂

∂x2
+ sin α

∂

∂x3
+

∂

∂x4
,

Z3 = −v sin α
∂

∂x2
+ v cos α

∂

∂x3

}

,

v,α denote the arbitrary parameters. It follow that

FZ1 =
∂

∂x1
−

∂

∂x5
, FZ2 = cos α

∂

∂x2
+ sinα

∂

∂x3
−

∂

∂x4
and FZ3 = Z3.

Since the vector fields FZ1 and FZ2 are orthogonal to TN and FZ3 is tangent
to TN , TN⊥ and TNT can be taken as sp{Z1, Z2} and sp{Z3}, respectively.
Moreover, the metric of N is given

g = 2(du2 + dv2) + v2dα2 = 2gN⊥
+ v2gNT

.

Thus N = N⊥×u2 NT is a warped product semi-invariant submanifold of R
5 with

warping function f = v.

Now, let N = N⊥×f NT be a warped product semi-invariant submanifolds
in a locally Riemannian product manifold M which are warped products of the
form N⊥×f NT , where N⊥ is an anti-invariant submanifold and NT is an invariant
submanifold of M with respect to F . If we denote the Levi-Civita connections
on M and N by ∇̄ and ∇, respectively, then from (1), (2), (8) and (9), we have

∇̄XFY = F ∇̄XY

∇XtY + h(X, tY ) − AnY X + ∇⊥

XnY = t(∇XY ) + n(∇XY )

+ Bh(X,Y ) + Ch(X,Y ),(13)

for any X,Y ∈ Γ(TN). Taking account of the tangential and normal components
of (13), we have

(∇Xt)Y = AnY X + Bh(X,Y )(14)
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and

(∇Xn)Y = Ch(X,Y ) − h(X, tY ),(15)

where the derivations of t and n are, respectively, defined by

(∇Xt)Y = ∇XtY − t(∇XY ),

(∇Xn)Y = ∇⊥

XnY − n(∇XY ).

Next, we will give the following theorems.

Theorem 3.3. Let N = N⊥ ×f NT be a warped product semi-invariant

submanifold of a locally Riemannian product manifold M such that N⊥ is an

anti-invariant submanifold and NT is an invariant submanifold of M . Then the

integral manifolds N⊥ and NT are always integrable.

P r o o f. Taking X ∈ Γ(TNT ) and U ∈ Γ(TN⊥) in the equation (13) and
consider Lemma 2.1, then we have

−AnUX + ∇⊥

XnU = F (U(ln f)X) + Bh(X,U) + Ch(X,U).

It follows that

−AnUX = U(ln f)tX + Bh(X,U) and ∇⊥

XnU = Ch(X,U).(16)

Furthermore, taking U ∈ Γ(TN⊥) and X ∈ Γ(TNT ) in (13) and since F is also
linear, we have

Bh(U,X) = 0(17)

and

h(tX,U) = Ch(U,X).(18)

Then the equation (16) becomes

AnUX = −U(ln f)tX.(19)

On the other hand, the formulas of Gauss and Weingarten and consider Lemma
2.1, we can derive

AnUV = −Bh(V,U),(20)
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which is also equivalent to

AnUV = AnV U,(21)

for any U, V ∈ Γ(TN⊥). Whereas, taking into account of (3) and the shape
operator A is self-adjoint, we get

g(AnUV,Z) = g(h(V,Z), nU) = g(∇̄ZV, FU) = g(∇̄ZFV,U)

= −g(AnV Z,U) = −g(AnV U,Z),

which gives

AnUV = −AnV U,(22)

for any U, V ∈ Γ(TN⊥) and Z ∈ Γ(TN). Thus (21) and (22) give us

AnUV = 0 and Bh(U, V ) = 0,(23)

for any U, V ∈ Γ(TN⊥). In the same way, taking account of (1), (2), (8), (9) and
(17), we get

−AnUX + ∇⊥

XnU = F (∇UX) + Ch(U,X)

= U(ln f)tX + Ch(U,X),

for any U ∈ Γ(TN⊥) and X ∈ Γ(TNT ). Thus we have

AnUX = −U(ln f)tX and ∇⊥

XnU = Ch(U,X).(24)

Furthermore, from (1), (2), (8), (9) and consider Lemma 2.1, we have

h(Y, tX) + ∇Y tX = F (∇Y X) + Fh(X,Y )

= F

(

∇N2

Y X − g(X,Y )
gradf

f

)

+ Bh(X,Y ) + Ch(X,Y )

= t(∇N2

Y X) − g(X,Y )n

(

gradf

f

)

+ Bh(X,Y ) + Ch(X,Y ),

for any X,Y ∈ Γ(TNT ). Thus we arrive

h(Y, tX) = −g(X,Y )n

(

gradf

f

)

+ Ch(X,Y ),(25)
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and

∇N2

Y tX − g(tX, Y )
gradf

f
= t(∇N2

Y X) + Bh(X,Y ).(26)

The equation (25) implies

h(Y, tX) = h(X, tY ),(27)

for any X,Y ∈ Γ(TNT ). By using (15) and (27), we have

n([X,Y ]) = n(∇XY −∇Y X) = ∇⊥

XnY − (∇Xn)Y −∇⊥

Y nX + (∇Y n)X

= (∇Y n)X − (∇Xn)Y = Ch(Y,X) − h(Y, tX) − Ch(X,Y )

+ h(X, tY ) = 0,

for any X,Y ∈ Γ(TNT ), that is, [X,Y ] ∈ Γ(TNT ). In the same way, by using
(14) and (23) for any U, V ∈ Γ(TN⊥), we get

t([U, V ]) = t(∇UV −∇V U)

= ∇U tV − (∇U t)V −∇V tU + (∇V t)U

= (∇U t)V − (∇U t)V = AnV U − AnUV = 0,

that is, [U, V ] ∈ Γ(TN⊥). This completes the proof. �

Theorem 3.3. Let N = N⊥ ×f NT be a warped product of a locally

Riemannian product manifold M such that N⊥ is an anti-invariant submanifold

and NT is an invariant submanifold of M . Then N is a warped product semi-

invariant submanifold if and only nt = 0.

P r o o f. Let us assume that N is a warped product semi-invariant sub-
manifold of a locally Riemannian product manifold M and by Q and P , we denote
the projection operators on subspaces Γ(TN⊥) and Γ(TNT ), respectively, then
we have

P + Q = I, P 2 = P, Q2 = Q, PQ = QP = 0.

By using (8), we get

QtP = 0, nP = 0, tP = t,
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from which, consider (10) and (11), we can derive

nt = 0,(28)

which is also equivalent to

Cn = 0.(29)

Conversely, for a warped product submanifold N of a locally Riemannian
product manifold M , we suppose that nt = 0. For any vector fields tangent X

to N and V normal to N , by using (8), (9) and (29), we have

g(X,BV ) = g(nX, V )

g(X,FBV ) = g(FnX,V )

g(X, tBV ) = g(CnX,V ) = 0,

which gives tB = 0 which is equivalent to BC = 0 from (11). Then from (10),
we conclude that

t3 = t and C3 = C.(30)

Now, if we put

P = t2 and Q = I − P,(31)

then we can derive that P + Q = I, P 2 = P, Q2 = Q, PQ = QP = 0, which
show that Q and P are orthogonal complementary projection operators and define
orthogonal complementary distributions such as D⊥ and D, respectively, where D

and D⊥ denote the distributions which are belong to TNT and TN⊥, respectively.
From the equations (28), (30) and (31) we can derive

tP = t, tQ = 0, QtP = 0 and nP = 0.

These equations show that the distribution D is an invariant and the distribution
D⊥ is also an anti-invariant. This completes the proof. �

Theorem 3.4. Let N be a semi-invariant submanifold of a locally Rie-

mannian product manifold M . Then N is a locally warped product semi-invariant

submanifold if and only if the shape operator of N satisfies

AFUZ = F (U(µ))Z, U ∈ Γ(TN⊥), Z ∈ Γ(TNT ),(32)
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for some function µ on N satisfying W (µ) = 0, for any W ∈ Γ(TNT ).

P r o o f. We suppose that N = N⊥ ×f NT is a warped product semi-
invariant submanifold in a locally Riemannian product manifold M . Then from
(19), we have

AFUX = −F (U(ln f))X,

for any U ∈ Γ(TN⊥) and X ∈ Γ(TNT ). Because f is a function on N⊥, we can
easily to see that W (ln f) = 0, for all W ∈ Γ(TNT ).

Conversely, let us assume that N is a semi-invariant submanifold in a
locally Riemannian product manifold M satisfying

AFUX = F (U(µ))X, U ∈ Γ(TN⊥) and X ∈ Γ(TNT ),

for some function µ with W (µ) = 0, for all W ∈ Γ(TNT ). Then from (1) and
(23), we arrive

g(∇UV,X) = g(∇̄UV,X) = g(∇̄UFV,FX) = −g(AFV U,FX) = 0,

for any U, V ∈ Γ(TN⊥) and X ∈ (TNT ). Thus the anti-invariant submanifold
N⊥ is totally geodesic in N . In the same way;

g(∇XY,U) = g(∇̄XY,U) = −g(∇̄XU, Y ) = −g(∇̄XFU,FY )

= g(AFUX,FY ) = U(µ)g(X,Y ),

for any X,Y ∈ Γ(TNT ) and U ∈ Γ(TN⊥). Since the invariant submanifold NT

of semi-invariant submanifold N is always integrable and W (µ) = 0, for each
W ∈ Γ(TNT ), which implies that NT is an extrinsic sphere in N , that is, it is
a totally umbilical submanifold with the mean curvature is parallel in N . Thus
we know that N is a locally Riemannian warped product N⊥ ×f NT , where N⊥

and NT are anti-invariant and invariant submanifolds of M , respectively, and f

is the warping function. The proof is complete. �

Lemma 3.1. Let N = N⊥ ×f NT be a warped product semi-invariant

submanifold of a locally Riemannian product manifold M . Then we have

1.) g(h(TN⊥, TN⊥), FTN⊥) = 0

2.) g(h(FX,U), FY ) = U(ln f)g(X,Y )

3.) g(h(TN⊥, TNT ), FTN⊥) = 0
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4.) g(h(TNT , F (TNT )), FTN⊥) = 0 if and only if N = N⊥ ×f NT is a trivial

Riemannian product in M , for each U ∈ Γ(TN⊥), X,Y ∈ Γ(TNT ).

P r o o f. 1.) The proof is obvious from (3) and (23).

2.) g(h(FX,U), FY ) = g(∇̄UFX,FY ) = g(∇̄UX,Y ) = g(∇UX,Y )

= U(ln f)g(X,Y ),

for any U ∈ Γ(TN⊥) and X,Y ∈ Γ(TNT ).
3.) The proof is obvious from (3) and (23).

4.) g(h(X,FY ), FU) = g(∇̄XFY,FU) = g(∇̄XY,U)

= −g(∇̄XU, Y ) = −g(∇XU, Y ) = U(ln f)g(X,Y ) = 0

for any X,Y ∈ Γ(TNT ) and U ∈ Γ(TN⊥), if and only if f is a constant function
on N⊥ if and only if N = N⊥ ×f NT is a locally Riemannian product. �

4. Conclusion. The geometry of warped products in the Riemannian
product manifolds is totally different from the geometry of warped products in
Complex manifolds. Namely, In Kaehler manifolds, if N = N⊥×f NT is a warped
product CR-submanifold such that N⊥ is a totally real submanifold and NT is
a holomorphic submanifold, then it has to be a CR-product(see [3]), whereas,
in the Riemannian product manifolds, if N = NT ×f N⊥ is a warped product
semi-invariant submanifold such that NT is an invariant submanifold and N⊥ is an
anti-invariant submanifold, then N has to be a Riemannian product(see Theorem
3.1). Moreover, In complex manifolds, the dimension of holomorphic distribution
is even, whereas, in the Riemannian product manifolds, the dimension of invariant
distribution may be even or odd(see Example 3.1 and 3.2).
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