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Communicated by T. Gramchev

Abstract. We give a probabilistic formula for the solution of a non-
homogeneous Neumann problem for a symmetric nondegenerate operator
of second order in a bounded domain. We begin with a γ-Hölder matrix
and a C1,γ domain, γ > 0, and then consider extensions. The solutions are
expressed as a double layer potential instead of a single layer potential; in
particular a new boundary function is discovered and boundary random walk
methods can be used for simulations. We use tools from harmonic analysis
and probability theory.

1. Introduction. Let a = a(x), x ∈ Rd, d ≥ 1, be a d × d real ma-

trix, a0, a1 positive constants, D a bounded domain in Rd, f and g interior and

boundary functions, n(·) the unit outward pointing normal to ∂D and ∂na the
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co-normal derivative, i.e. ∂na(·) =
1

2
a∇(·) · n. We assume that for all ξ ∈ Rd we

have uniform ellipticity and boundedness

(1) a0‖ξ‖
2 ≤ a(x)ξ · ξ ≤ a1‖ξ‖

2.

Consider the following non homogeneous Neumann problem

1

2
∇ · a∇u

D
= −f,

∂nau
∂D
= g.

(2)

The interior operator in (2) will be denoted by A. It is well known, see e.g.

[15], that the above problem has a solution (unique modulo additive constants)

whenever the following compatibility, or centering, condition holds

(3)

∫

D
f(x)dx+

∫

∂D
g(α)dα = 0,

in which case solutions u are understood in the weak sense

(4) 1/2

∫

D
a∇u · ∇ϕdx =

∫

D
fϕdx+

∫

∂D
gϕdα,

for all ϕ in a suitable space.

1.1. Notations. We adopt standard notations especially when function

spaces are involved, e.g. the subscripts c and 0 stand respectively for “compact

support” and “vanish at infinity”, the superscript ∗ for “dual” and D(·) for “do-

main of”. Our a.e.’s are understood to be with respect to the Lebesgue measure

of the underlying space and a.s. stands for almost surely. Moreover, the letters

x, y, . . . are reserved for interior variables, whereas α, β, . . . stand for bound-

ary variables. The volume of D, respectively the area of ∂D, is denoted by |D|,

respectively |∂D|. The normalised Lebesgue measure dα/|∂D| will be sometimes

noted µ0. The scalar product in L2(∂D,µ0) is denoted by (·, ·)∂ . Unimportant

constants will be denoted by c, c′ . . . and they may vary from line to line.

1.2. Motivation and results. There exist already probabilistic repre-

sentations for the solution u. The first probabilistic formula for u in (2) where

f = 0 is due to [14] in the case A = ∆/2 in balls where dealing with the local time

L(t), see Section 2.5, is made easy thanks to the presence of spherical symmetries.
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Then, exploiting the machinery of probabilistic potential theory and especially

the Shur-Meyer representation theorem for additive functionals, [5] generalized

this result to more general smooth domains D. This work has been improved,

still in the case of the Laplacian, to the situation of Lipschitz domains in [4] using

techniques from PDE theory and analysing the fundamental solution of the par-

abolic PDE with a reflecting boundary condition which describes the transition

density of reflecting Brownian motion.

In our approach it seemed to us more natural to work directly on the

boundary stochastic processes in an intrinsic way and consider non differentiable

a. We take advantage of an ergodicity phenomenon in the boundary. Theorem

4 below shows that for an appropriate boundary function N , see (18), which

we call the Neumann boundary function in honor of Carl Gottried Neumann,

the Neumann problem (2) can be reduced to a Dirichlet problem (7) whereby

expressing the solution u in terms of a double layer potential instead of a single

layer potential which is the standard theory for the Neumann problem,

(5) u(x) = Gf(x) −

∫

∂D
∂na(α)G(x, α)N(α)dα,

where G(·, ·) is the Green function for D, under sufficient regularity on the data;

see (22) and (23) for the general case. We emphasize that the functionN is not the

trace on the boundary of the ordinary Neumann kernel, see e.g. [15], which plays

the role of a Green function for the Neumann problem. To our knowledge our

theorems are new, see e.g. [25] for a recent account of the layer potential theory

in a Lipschitz domain and its applications. We expect that our representation

formulas will also yield new results in the aforementioned field because the study

of the boundary stochastic processes works at the level of the sample paths, see

e.g. the classical work of [21] in Potential Theory. Probability solutions to some

PDEs and problems in Analysis is not new and solutions can sometimes be given

before analytic ones. Concerning rough data, loosely speaking, our work on the λ-

semigroup suggests a unified intuitive probabilistic counterpart to recent analytic

advances in the study of the Neumann problem. Indeed new variants of function

spaces are now being frequently introduced (it is not possible to list them all here

in a comprehensive way) and added to the wealth of function spaces already in

existence, see e.g. [1]. This reconfirmation of the deep interplay between Analysis

and Probability Theory is a contribution of our paper, in addition to the novelty

of our representations.

We begin in section 4 with classical data: a γ-Hölder matrix and a C1,γ-

domain, γ = 1−d/p for some large p; under these classical conditions the solution
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of the A-Dirichlet problem admits a proper gradient on the boundary, i.e. at least

bounded. Clearly, the results of this section are still valid in the situations where

a bounded gradient on the boundary exists, see Section 4.3 for a variant. On

the other hand, when f = 0 we can take a continuous and D Lipschitz; our

representation formula below (23) is of some interest since it provides an alter-

native expression for the integral representation of [4] in which A = (1/2)∆ and

where specific properties of the reflecting Brownian motion are used. However,

the Neumann boundary function N̄ in (23) is associated with a special boundary

semigroup which we call the λ-semigroup. A Hunt process associated with the

λ-semigroup can be firmly identified when ∂D is essentially uniformly C1, see

[1, Section 7.51.] We give in Section 3 a more explicit discussion about these

boundary stochastic processes. In Section 5.2 we study a class of problems where

the function N̄ can be expressed in terms of the trace process itself and give an

interior representation which generalises the probabilistic formula of [5].

Note that as far as practical simulations are concerned, the boundary

random walk method in [23] may serve as a model for future implementations.

1.3. Assumptions on the data. In this paper p > d unless explicitly

stated.

1.3.1. When f is non-trivial.

Condition 1. The boundary ∂D is a finite disjoint union of closed and

bounded surfaces in W 2,p.

When p > d, the boundary is given locally by C1,γ(Rd−1) functions, γ =

1 − d/p. As far as our coefficients are concerned, we assume that

Condition 2. a ∈W 1,p(D), f ∈ Lp(D) and g ∈ L∞(∂D) with

d
∑

i,j,k

‖∂xk
aij‖Lp(D) + ‖f‖Lp(D) ≤ a1.

1.3.2. The case f = 0.

Condition 3. The matrix a is continuous and ∂D is a finite disjoint

union of closed and bounded surfaces in C0,1.

1.4. An equivalent PDE formulation. We shall adopt a boundary

treatment by elliminating the interior function f . In this section we assume that

f 6= 0, (1) and conditions 1 and 2 hold.
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Set g0 = g − ∂naGf and consider the homogeneous Neumann problem

Au0
D
= 0, ∂nau0

∂D
= g0. By the Green formula we have

∫

∂D
g0dα = 0. This shows

that the homogeneous Neumann problem is compatible and that u = Gf + u0

gives the solution (modulo additive constants) of the system (2). The rest of

the paper is devoted to establishing a probabilistic representation for both Gf

and u0.

2. Preliminaries. In this section we gather for the convenience of the

reader some insights and facts that will be needed below. We have endeavoured to

underline somewhat deep intuitive facts and to keep to the minimum the various

definitions which are to be found in the references at the end of the paper. At

times, an issue is settled by means of an example. Our paper can be understood

on intuitive grounds.

2.1. Sobolev spaces and multipliers. Let 1 ≤ p ≤ ∞. The Sobolev

space W 1,p(Rd) consists, see e.g. [1], of all u ∈ Lp(Rd) s.t. for some v ∈ Lp(Rd),

(6)

∫

Rd

u(x)∇ϕ(x)dx = −

∫

Rd

v(x)ϕ(x)dx,∀ϕ ∈ C∞
c (Rd).

The space W 2,p(Rd) is defined in the obvious way. The functions in these spaces

are defined within sets of Lebesgue measure zero. For sub-domains D of Rd there

are several ways to define the Sobolev spaces, however for a bounded Lipschitz

one, they all turn out to be equivalent to (6) with D instead of Rd. When D has

bounded C1 boundary and p > d we have W 2,p(D) ⊂ C1(D̄).

The fractional Sobolev spaces W s,p(Rd), s ∈ R, are defined thanks to the

Fourier transform. Manifold fractional Sobolev spaces are defined in a similar

way thanks to a system of local coordinates and reduction to (a sub-domain of) a

Euclidean space. When ∂D is locally given by Rd−1-Lipschitz functions we have

W 1/2,2(∂D) = {ϕ ∈ L2(∂D)/

∫

∂D×∂D

|ϕ(α) − ϕ(β)|2

‖α− β‖d
dαdβ <∞}.

The set of traces of W 1,2(D) functions on ∂D is the space W 1/2,2(∂D) and the

trace operator Tr : W 1,2(D) → W 1/2,2(∂D) is onto. It is compact when taking

values in the larger space L2(∂D), see [3, Section 2]. We shall write ϕ∂ for Tr(ϕ)

and suppress the superscript ∂ when no ambiguity arises.
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2.1.1. Sobolev multipliers. According to classical results, see e.g. the

comments following Lemmas 8.1 and 8.2 of [16] and Theorem 6.31 of [13], some

regularity of the domain, e.g. C2,α, α > 0, is needed to derive at least C2-

regularity results up to the boundary for the various elliptic boundary value

problems. However, by means of the theory of Sobolev multipliers it is possi-

ble to relax the regularity conditions on the boundary and still have W 2,p(D)-

regularity. Loosely speaking, the multiplier theory bears some resemblance with

the theory of Dirichlet forms (see Section 2.3) in that the technics act at the

level of the variational formulas without trying to explicitly tackle the quantities

that appear individually in these formulas, see the example given on p. 1 of [18]

and [2] for an insight. In the classical Sobolev treatment of PDEs, variational

solutions are usually shown to have more regularity depending on the regular-

ity of the data. The multiplier space M(Wm,p(D) → W l,p(D)) is the class of

functions ϕ s.t. the pointwise product ϕu ∈ W l,p(D) for all u ∈ Wm,p(D). Let

us consider the problem Au
D
= −f,Bu

∂D
= g where A(·) =

∑

|ν|≤2

aν(x)D
ν(·) and

B(·) =
∑

|ν|≤1

bν(α)Dν(·) where aν ∈ C(D̄), bν ∈ C1(D̄) and ν is a multi-index.

If p > d, f ∈ Lp(D), g ∈ W 1−(1/p),p(∂D) and the boundary is W 2−(1/p),p then

u ∈W 2,p(D) by Theorem 7.3.2 in [18].

2.2. The Green and Harmonic operators. Let us consider the

Dirichlet problem Aw
D
= −f,w

∂D
= ϕ. Given the inequalities (1) and condi-

tions 1, 2, it follows from Theorem 15.1 in [16] that the function w belongs to

W 2,p(D) ∩ C1,γ(D̄). The norms of w in both W 2,p(D) and C1,γ(D̄) are bounded

by a constant which depends only on d, p, a0, a1, ‖w‖L2(D), ‖ϕ‖W 2,p(D) and D,

where ϕ stands for an extension to D of our boundary values.

The solution when ϕ = 0 is given by w = Gf where G is the Green

operator. On the other hand, the solution of the Dirichlet problem

Aw
D
= 0,

w
∂D
= ϕ,

(7)

where ϕ ∈ W 1/2,2(∂D) is said to be A-harmonic and noted Hϕ; H is called the

harmonic operator applied to the boundary function ϕ. The harmonic measure

at x, i.e. the integral kernel of H, is denoted by H(x, dα) and represents the exit

measure from D for our reflecting diffusion X(t) below. See [15] sections 1.2 and

1.3 for some properties of the operators G,H in a more general setting.
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2.3. Dirichlet forms and their potential theory. The Gauss ap-

proach to the solution of (7) (historically with A = ∆) is to minimise the quantity

E(u, u) over a suitable domain D(E) of the following symmetric form

(8) E(u, v) = 1/2

∫

D
a∇u · ∇vdx.

See e.g. [19] for a comprehensive historical account. The number E(u, u) is called

the Dirichlet integral or energy form and does indeed have the corresponding

Gauss’s physical interpretation. The probabilistic counterpart of the theory in-

augurated by Gauss concerns symmetric Markov processes. The form E is a

quadratic form which is essentially a kinetic energy and therefore represents a

movement. The Lebesgue measure is unsufficient for a natural treatment as we

are constantly dealing with a hidden concept of derivation and its difficulties

linked to manipulating higher order infinitesimals in Lebesgue means over vari-

ous sets. Gradually relaxing the conditions on the data the following concept of

capacity has appeared for an open subset E of D

(9) cap(E) = inf{‖u‖2
L2(D) + E(u, u)/u ≥ 1 a.e. on E},

and we set cap(E) = ∞ if the set within the braces is empty (for fundamentals

see [11]). The set function cap(·) is only countably sub-additive and the concept

of integration with respect to cap(·) is a special one (called the Choquet integral

and extensively used in Fuzzy Analysis for example) but nevertheless provides

a finer description of small sets than does the Lebesgue measure, see e.g. [6].

Indeed, a subset E ⊂ Rd with cap(E) = 0 has zero Lebesgue measure whereas

cap(E) may be infinite at an E with zero Lebesgue measure. Thanks to cap(·)

accurate representatives of elements of D(E) can be defined. A function u is

quasi-continuous if it is continuous outside open sets of arbitrarily small capacity.

A function ϕ in D(E) has always a quasi-continuous representative ϕ̃, unique

modulo sets of zero capacity. A statement depending on x ∈ E is said to hold

quasi-everywhere (q.e.) on E if there is a set E0 ⊂ E with zero capacity s.t. the

statement is true ∀x ∈ E\E0.

2.4. The Steklov problem. We now outline the main results (as far as

we are concerned here) from [3]. The following PDE where λ is a real number

Au
D
= 0,

∂nau
∂D
=

λ

|∂D|
u,

(10)



324 Abdelatif Benchérif-Madani

is called the (normalized) Steklov problem. In [3] the domain D is bounded Lip-

schitz and the matrix a continuous. The variational formulation for the problem

(10) (i.e. for example establishing thanks to a Lagrange multiplier argument a

Euler-Lagrange equation then solving it) shows that the spectrum is non nega-

tive. The eigenspace corresponding to λ = 0 is shown to be of dimension one,

it is generated by the function S0 = 1. Thanks to a variational formulation for

the first non zero eigenvalue it is possible to derive a boundary trace inequality

which shows that the following inner product in W 1,2(D)

(ϕ,ψ)a =
1

2

∫

D
a∇ϕ · ∇ψdx+ (ϕ∂ , ψ∂)∂ ,

turns out to be equivalent to the standard norm of W 1,2(D). Let Ba be the closed

unit ball of W 1,2(D) relative to ‖ · ‖a and B∂,1
a be the bounded closed and convex

set of elements ϕ ∈ Ba with the constraint

∫

∂D
ϕ∂dα = 0. Put

δ1 = sup{‖ϕ∂‖∂/ϕ ∈ B∂,1
a }.

Then it is shown that the maximizers S1 of this problem are Steklov eigenfunc-

tions corresponding to the first non zero eigenvalue λ1 and moreover we have

δ1 =
1

1 + λ1
. Successive eigenvalues and eigenfunctions are found thanks to an

iterative procedure. They satisfy (S∂
j , S

∂
k )∂ =

1

1 + λj
δjk, j, k ≥ 0, where δjk is

the Kronecker symbol. The spectrum is shown to be discrete, each λj has finite

multiplicity and λj → ∞ as j → ∞. Moreover, the sequence of all the Steklov

eigenfunctions {Sj , j ≥ 0} is an orthonormal basis for the subspace, say W 1,2
a (D),

of W 1,2(D) which is ‖ · ‖a-orthogonal to W 1,2
0 (D), i.e.

(11) W 1,2(D) = W 1,2
0 (D) ⊕W 1,2

a (D).

The Fourier-Steklov coefficients of a function ϕ ∈W 1,2
a (D) in the Steklov system

is denoted by ϕj . It is also established that the system {
√

1 + λjS
∂
j , j ≥ 0} is an

orthonormal basis for the space L2(∂D,µ0). We shall subsequently write S̃∂
j for

√

1 + λjS
∂
j and ϕ∂

j for the coefficients of ϕ ∈ L2(∂D) in this boundary Steklov

system, i.e. ϕ∂
j =

∫

∂D
ϕ(α)S̃∂

j (α)dµ0, j ≥ 0. For example in the case of a ball in

Rd, these are just the well known spherical harmonics, see e.g. [8]. In the unit

disc of R2, we have in polar coordinates x = (r cosα, r sinα), r ≤ 1, α ∈ [0, 2π),
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for j ≥ 1

S2j−1(x) = rj sin(jα)

S2j(x) = rj cos(jα)

λ2j−1 = λ2j = j.

(12)

These Steklov eigenfunctions allow us to give an explicit series representation

for the solution w in W 1,2(D) of the Dirichlet problem (7). We have for ϕ ∈

W 1/2,2(∂D),

(13) Hϕ =
∞
∑

j=0

√

1 + λjϕ
∂
j Sj,

from which one deduces the interesting spectral characterization of W 1/2,2(∂D):

a function ϕ ∈W 1/2,2(∂D) iff

(14)

∞
∑

j=0

(1 + λj)(ϕ
∂
j )2 <∞.

2.5. Probability background. Analytic concepts are being increasingly

translated into probabilistic ones and because the latter are couched in terms

of the sample paths, one enjoys a great freedom to formulate problems (and

solutions), at least on the intuitive level. The best known stochastic processes

are the Feller ones. Let E be essentially a locally compact metric space. A

semigroup Pt on E is said to be Feller if the class C0(E) is left invariant under

Pt. The important class of Markov chains is not Feller. A whole generation

of mathematicians has endeavoured to unify the theory of Markov processes,

the name of P. A. Meyer is strongly associated with the story and the field of

Probabilistic Potential Theory in now on firm grounds. Surprisingly, all Markov

processes are essentially obtained by a suitable compactification of the Feller

semigroups (see the intuition based book of D. Williams [27]) and this leads to

the concept of “Right Process”. Constructing a Markov process corresponding

to only L2-semigroups is more involved since a Riesz representation theorem for

the continuous linear functionals on classes of continuous functions is no more

available. This is indeed the case of our λ-process below.

If a,D were more regular, then A would be a classical elliptic operator

giving rise to an Itô reflecting diffusion, which is Feller, see [17]. When a is
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only measurable we can still build a diffusion process thanks to the theory of

Dirichlet forms, see [11]. Regular Dirichlet forms are associated with the class of

Hunt processes (which includes the Feller ones). In sharp contrast to the Feller

processes, the Hunt processes are defined at the level of the sample paths. A Hunt

process possesses useful properties which are essentially the right continuity of

paths, their quasi-left continuity and the strong Markov property.

The appropriate Dirichlet form is here the symmetric bilinear form on

L2(D) given by (8) with domain D(E) = W 1,2(D). It is well known that under

condition (1) the form E is closed, regular and strongly local in D̄, see e.g [12].

There exists a continuous strong Markov process X(t) in D̄ associated with E .

The form E can be extended to the larger Dirichlet space Fe which is Hilbert

when endowed with the inner product E iff (E ,D(E)) is transient. By definition,

ϕ ∈ Fe iff there exists an E-Cauchy sequence hn in W 1,2(D) s.t. hn → ϕ a.e. in

D. We have W 1,2(D) = Fe
⋂

L2(D). Starting from D, the exit properties of X(t)

from D are identical to those of the absorbing process X0(t) which is associated

with E on the domain W 1,2
0 (D). Since the latter is transient (intuitively speaking,

a process is transient if it wanders off to infinity a.s. whereas recurrents ones keep

on coming back to already visited regions), it follows that when ϕ ∈ W 1,2(D)

we have Hϕ∂(x) = Hϕ∂(x) = Ex[ϕ∂(Xτ )], x ∈ D, where the operator H(·) is

associated with the limit as λ → 0+ of the λ-order hitting kernel Hλ
F (x,E) =

Ex[exp(−λτF )IE(XτF
)], E being a Borel subset of D̄, F a nearly Borel subset

of ∂D and τF = inf{t > 0/X(t) ∈ F}. For example a Brownian particle B(t)

starting inside a Euclidean ball, d ≥ 1, must exit the ball in finite time a.s.. For

a regular boundary, the quantity

H0
∂D(x,E) = P x(Bτ∂D

∈ E)

is given by the Poisson integral (at x) of the boundary function IE , i.e. it solves

the Dirichlet problem with boundary function IE. Obviously, we can take more

general boundary functions than indicators. The point is that since we work at

the level of the sample paths we can go very far when choosing these boundary

functions. A subset F is nearly Borel if ∃B1, B2 Borel sets s.t. B1 ⊂ F ⊂ B2

with P (∃t ≥ 0/X(t) ∈ B2\B1) = 0.

We emphasize that the operator H is applied to a larger boundary space

than merely W 1/2,2(∂D) outside of which the Sobolev-PDE Dirichlet problem (7)

is not solvable, see Sections 3.1 and 3.3.

The local time on the boundary, i.e. L(t) =

∫ t

0
I{∂D}(Xs)ds, is a con-

tinuous additive functional which is associated with the surface measure dα
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via the Revuz correspondence. Intuitively, L(t) measures the time spent at

∂D up to t. In fact, we rigorously have L(t) = lim
δ→0

(1/δ)

∫ t

0
IDδ(Xs)ds where

Dδ = {x ∈ D̄/d(x, ∂D) ≤ δ}. In general additive functionals (still noted L(t))

are essentially adapted, right continuous, non decreasing and time homogeneous,

i.e. L(t+ s, ω) = L(s, ω) + L(t, θs(ω)), t, s ≥ 0 where θ.(ω) is the shift operator.

For a motivated account see [9, Chapter 15]. Here is a sum up. Take a smooth

matrix a and D = Rd. For a bounded function h set L(t) =

∫ t

0
h(Xs)ds. A

random Laplace transform relative to the measure dL(t) is defined, averaged at

x ∈ Rd and shown to be represented as a suitable space integral of a certain

kernel. The simplest case being that of h(x) = 1, x ∈ Rd, leading straightaway

to the resolvent operator of the diffusion X. More subtle killings are then consid-

ered but the theory concerns essentially L(t)’s with a finite potential Ex(L(∞)).

In Revuz [22] a breakthrough to recurrent processes is achieved and shown to

have links with the ergodic properties of X. The idea is to look for the “speed”

of L(t) which has a similarity with the search for the infinitesimal generator in

semigroup theory.

The trace of Xt on the boundary is denoted by X∂
t , i.e. X∂

t = X(τt),

where τt is the right continuous inverse of L(t), i.e. τt = inf{s/L(s) > t}. From

the general theory of Markov processes, X∂
t is a strong Markov process with

right continuous paths. We shall set µt(α, dβ), t ≥ 0, for the law of X∂
t starting

from α, i.e. µt(α,E) = Pα(X(t) ∈ E) where the probability operators Pα act

on the space of right continuous boundary functions and are knitted together

by the strong Markov property, see [27]. The process X∂
t is associated with the

symmetric form on the boundary E∂(ϕ,ψ) = E(Hϕ,Hψ) with domain D(E∂)

which consists of all ϕ ∈ L2(∂D) which are equal a.e. on ∂D to the trace of

some ψ ∈ Fe, i.e. the trace space. We know from Theorem 6.2.1 of [11] that the

semigroup P ∂
t of the process X∂

t is a symmetric strongly continuous semigroup

of bounded linear operators on L2(∂D). Its non-positive selfadjoint generator A∂

seems to have been first identified in [24].

3. A key boundary semigroup. This section is of independent

interest. We suppose the condition in Section 1.3.2 holds. Let us introduce the

λ-semigroup already mentioned in Section 1.2. Let ϕ ∈ L2(∂D) and λ > 0, the

following PDE
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Auλ
D
= 0,

∂nauλ +
λ

|∂D|
uλ

∂D
= ϕ,

(15)

can be solved thanks to a standard variational argument, i.e. there exists a unique

uλ ∈W 1,2(D) s.t. ∀ψ ∈W 1,2(D) we have

1

2

∫

D
a∇uλ · ∇ψdx =

∫

∂D

(

ϕ−
λ

|∂D|
u∂

λ

)

ψ∂dα.

We shall also write uλ = uλ(ϕ). The main result of this section is the

Theorem 1. The family of boundary operators u∂
λ, λ > 0, is a symmetric

strongly continuous contraction resolvent on L2(∂D,µ0) with (λ/|∂D|)u∂
λ(1) = 1.

Its generator is associated with the closed symmetric form Ē∂(ϕ,ψ)=
1

2

∫

D
a∇Hϕ(x)·

∇Hψ(x)dx with domain D(Ē∂) = W 1/2,2(∂D). Its semigroup P̄ ∂
t admits the rep-

resentation

(16) P̄ ∂
t ϕ =

∫

∂D
ϕ(α)dµ0(α) +

∞
∑

j=1

ϕ∂
j exp

(

−
λj

|∂D|
t

)

S̃∂
j ,

for all t ≥ 0. Moreover, we have the exponential bound

(17) ‖P̄ ∂
t ϕ‖∂ ≤ c exp(−c′t)‖ϕ‖∂ ,

where c and c′ are two positive constants ∀ϕ ∈ L2(∂D) with

∫

∂D
ϕ(α)dα = 0; in

particular, the Neumann boundary function

(18) N̄(α) =

∫ ∞

0
P̄ ∂

t ϕ(α)dt,

is a well defined element of W 1/2,2(∂D).

P r o o f. Let ϕ ∈ L2(∂D) and λ, µ > 0. The variational formulation for

(15) implies that for j ≥ 0

1

2

∫

D
a∇uλ · ∇Sjdx =

∫

∂D
(ϕ−

λ

|∂D|
u∂

λ)S∂
j dα,
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which clearly gives the interior Fourier-Steklov coefficient of uλ(ϕ) in the system

{Sj , j ≥ 0}

uλ,j(ϕ) = (uλ(ϕ), Sj)a = |∂D|

√

1 + λj

λ+ λj
(ϕ, S̃∂

j )∂ .

We have therefore

uλ(u∂
µ(ϕ)) =

∞
∑

j=0

|∂D|

√

1 + λj

λ+ λj
(u∂

µ(ϕ), S̃∂
j )∂Sj,

hence as the trace operator is compact we have

u∂
λ(u∂

µ(ϕ)) =

∞
∑

j=0

|∂D|2

(λ+ λj)(µ+ λj)
(ϕ, S̃∂

j )∂S̃
∂
j .

On the other hand, a direct calculation yields

u∂
λ(ϕ) − u∂

µ(ϕ) =

(

µ

|∂D|
−

λ

|∂D|

) ∞
∑

j=0

|∂D|2

(λ+ λj)(µ+ λj)
(ϕ, S̃∂

j )∂S̃
∂
j ,

showing that the resolvent equation holds for the family u∂
λ(ϕ), λ > 0.

Let us show that it is strongly continuous. It suffices to prove (from the

general theory) that the range {u∂
λ(ϕ)/ϕ ∈ L2(∂D)} is dense in L2(∂D). Indeed,

for ϕ = S̃∂
j , j ≥ 0, we have u∂

λ(ϕ) = (|∂D|/(λ + λj))S̃
∂
j so that the whole family

of the Steklov traces {S̃∂
j , j ≥ 0} lies in the range of u∂

λ.

To show the contraction property it suffices to write

λ

|∂D|
u∂

λ(ϕ) =
∑

j≥0

1

1 + (λj/λ)
ϕ∂

j S̃
∂
j ,

from which the result follows by calculating the norm in L2(∂D,µ0) of both sides

and noticing that ∀j ≥ 1, (λj/λ) > 0.

It now remains to identify the domain of its associated closed form Ē∂ on

L2(∂D,µ0). We use the criterion in Lemma 1.3.4 of [11], i.e. we shall prove that

lim
λ→∞

(λ/|∂D|)

∫

∂D
[ϕ− (λ/|∂D|)u∂

λ(ϕ)]ϕdα < ∞ iff ϕ ∈W 1/2,2(∂D). We have by

straightforward calculations,

λ

|∂D|

∫

∂D

(

ϕ−
λ

|∂D|
u∂

λ

)

ϕdα =
∞
∑

j=0

λ · λj

λ+ λj
(ϕ∂

j )2.
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Hence, our limit (which is a supremum) is finite iff

∞
∑

j=0

λj(ϕ
∂
j )2 <∞,

which clearly is equivalent to criterion (14) and our claim is proved.

Set Ā∂ for the generator of the resolvent u∂
λ, i.e. Ā∂ = (λ/|∂D|)− (u∂

λ)−1.

When studying the strong continuity point we saw that ∀j ≥ 0 we have

(u∂
λ)−1(S̃∂

j ) =
λ+ λj

|∂D|
S̃∂

j

from which follows the differential equation

d(P̄ ∂
t S̃

∂
j )/dt = −(λj/|∂D|)P̄ ∂

t S̃
∂
j

which gives P̄ ∂
t S̃

∂
j = S̃∂

j exp(−tλj/|∂D|). Let ϕ ∈ L2(∂D), since the operator P̄ ∂
t

is bounded, we have

P̄ ∂
t ϕ =

∫

∂D
ϕ(α)dµ0(α) +

∞
∑

j=1

ϕ∂
j exp

(

−
λj

|∂D|
t

)

S̃∂
j .

Next, let ϕ ∈ L2(∂D) be centered, i.e.

∫

∂D
ϕdα = 0 and let t > 0. Define

the boundary function N̄(t, α) =

∫ t

0
P̄ ∂

s ϕ(α)ds which belongs to the domain of Ā∂

by the general theory of semigroups. We also have Ā∂N̄(t, α) = P̄ ∂
t ϕ(α) − ϕ(α).

The semigroup P̄ ∂
t clearly satisfies the exponential bound (17) at ϕ. This not

only implies that P̄ ∂
t ϕ → 0 as t → ∞ but also that

∫ t

0
P̄ ∂

s ϕds → N̄ , strongly

in L2(∂D). As Ā∂ is closed it follows that N̄ ∈ D(Ā∂) ⊂ W 1/2,2(∂D) and that

Ā∂N̄(t) converges strongly to Ā∂N̄ = −ϕ as t→ ∞. �

3.1. Relation between the λ and trace semigroups. Since the

forms Ē∂ and E∂ are equal on W 1/2,2(∂D), it follows that the domain of Ē∂ is

closed in that of E∂ . In fact it is a closed ideal, i.e. when 0 ≤ ϕ ≤ ψ where

ϕ ∈ D(E∂) and ψ ∈W 1/2,2(∂D) then ϕ ∈W 1/2,2(∂D). We have the

Theorem 2. Suppose the condition in Section 1.3.2 is satisfied. The

space W 1/2,2(∂D) is an ideal of D(E∂). There exists a non negative E∂-quasicon-

tinuous function F s.t. D(Ē∂) = {ϕ ∈ D(E∂)/ϕ̃ = 0 q.e. on {F = 0}}. Moreover,
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∀t ≥ 0 and ϕ ∈ L2(∂D) we have the semigroup domination

(19) |P̄ ∂
t ϕ| ≤ P ∂

t |ϕ|.

P r o o f. The existence of the Stollmann function F comes from [26]. Next,

we apply the criterion of [20]. When 0 ≤ ϕ ≤ ψ then we know from the definition

of the operator H that Hϕ ≤ Hψ which implies that Hϕ ∈ L2(D).

On the other hand, there exists an E-Cauchy sequence hn in W 1,2(D) s.t.

hn → Hϕ a.e. in D as n → ∞. Let ǫ > 0, by Egorov’s theorem ∃Eǫ ⊂ D,

with |Eǫ| < ǫ and outside of which the convergence of hn → Hϕ is uniform.

It clearly follows that sup
n

‖ID\Eǫ
hn‖W 1,2(D) < ∞, so that ID\Eǫ

hn converges

weakly in W 1,2(D), perhaps through a subsequence of n. The limit is obviously

ID\Eǫ
Hϕ ∈W 1,2(D).

Note that ∇hn converge a.e. in D, perhaps through a subsequence, still

noted n. Since ID\Eǫ
Hϕ ∈W 1,2(D) then ‖∇ID\Eǫ

hn‖
2
L2(D)→‖∇ID\Eǫ

Hϕ‖2
L2(D).

It follows ∃n(ǫ) s.t. ∀n ≥ n(ǫ) we have

‖∇ID\Eǫ
Hϕ‖2

L2(D) ≤ ‖∇ID\Eǫ
hn‖

2
L2(D) + 1.

Our result follows by applying Fatou’s lemma because sup
n

‖∇hn‖L2(D) <∞. �

3.2. The λ-process. Here we impose a minor regularity condition on

D, we have the

Theorem 3. Let a be continuous and D ∈ W 2−(1/p),p, then to Ē∂ is

associated a Hunt process X̄∂
t perhaps evolving isometrically in another space, the

isometry being explained in appendix A of [11], see also the first remark in 3.3.

P r o o f. By the Sobolev embedding D ∈ C1. Let us regularize a, an

say, thanks to a standard mollifier. The sequence an ∈ C∞(D̄). Take ϕ ∈

W 1−(1/p),p(∂D). From Section 2.1.1 we know that the gradient of un
λ(ϕ) admits

a continuous extension to ∂D. This shows that the λ(n)-semigroup is identical to

the An-trace semigroup which is Markovian by [11]. It is also well known that

un
λ(ϕ) → uλ(ϕ) as n → ∞ strongly in W 1,2(D), λ > 0; it follows that u∂,n

λ (ϕ) →

u∂
λ(ϕ) strongly in L2(∂D), λ > 0. Let t, ǫ > 0, we have −ǫ ≤ P̄ ∂,n

t ϕ ≤ 1+ ǫ where

0 ≤ ϕ ≤ 1. This inequality still holds for ϕ ∈ L2(∂D) thanks to an elementary

density argument. Letting n → ∞ and then ǫ → 0 and using the Trotter-Kato
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theorem we deduce that P̄ ∂
t is Markovian. Next, apply the results of appendix A

in [11] to construct the associated Hunt process. �

3.3. Remarks. When D is uniformly C1 and W 2−(1/p),p the λ-process

can be defined on ∂D itself. Indeed it follows from [1, Section 7.51] that C∞(∂D)

is dense in W 1/2,2(∂D), since it is also dense in C(∂D) endowed with the sup-

norm, the Dirichlet form Ē∂ is regular. A Hunt process can be associated with Ē∂

as described in [11, Chapter 4] and starting from every α outside a fixed properly

exceptional set E0 ⊂ ∂D.

Since W 1/2,2(∂D)-functions are defined only within sets E0 with |E0| = 0,

it follows that E0 may be taken as the zero-set of the Stollmann function F . In

other words, the λ-process is insensitive to a whole boundary region (in E0) where

the trace process may evolve in a non trivial way. It would be interesting to find

relations between h-Hausdorff measures of E0 and the trace process.

The transition density p̄t(α, β), if it exists, should be given at least for-

mally by the series

p̄t(α, β) =

∞
∑

j=0

exp(−
λj

|∂D|
t)S̃∂

j (α)S̃∂
j (β),

for all t ≥ 0. Indeed, suppose that we have the following spectral

Condition 4. Suppose that the Steklov eigenfunctions S̃∂
j , j ≥ 1, are

bounded with ‖S̃∂
j ‖∞ = c(j) and ∀t > 0

(20)

∞
∑

j=0

c(j)2 exp(−λjt) <∞.

Then for ϕ,ψ ∈ L2(∂D) and t ≥ 0, we have by the dominated convergence

theorem

(P̄ ∂
t ϕ,ψ)∂ =

∞
∑

j=0

exp

(

−
λj

|∂D|
t

)

(ϕ, S̃∂
j )∂(ψ, S̃∂

j )∂

=

∞
∑

j=0

exp

(

−
λj

|∂D|
t

)
∫

∂D×∂D
ϕ(α)ψ(β)S̃∂

j (α)S̃∂
j (β)dµ0dµ0

=

(
∫

∂D
ϕ(α)p̄t(α, ·)dµ0(α), ψ

)

∂

,

taking smooth ψ’s yields our claim.
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4. The probabilistic representation.

4.1. The trace process generator. We have

Lemma 1. Assume that (1) and Conditions 1, 2 hold for some p > d.

Let ϕ ∈W 2,p(D), the L2-generator of the process X∂
t is the Dirichlet-to-Neumann

map applied to ϕ∂

A∂ϕ∂ = −∂naHϕ
∂ .

P r o o f. Let α ∈ ∂D and ϕ ∈ W 2,p(∂D). Note that the gradient of Hϕ

is bounded on D̄, see Section 2.2. By the Itô-Fukushima formula the additive

functional Hϕ(Xt)−Hϕ(α) is the sum of a martingale additive functional Mϕ
t of

finite energy and a continuous additive functional Nϕ
t of zero energy. Since X(t)

has continuous paths, Mϕ
t is a continuous martingale whose increasing process

is given by

∫ t

0
‖σ∇Hϕ‖2(Xs)ds, where σσ∗ = a. Therefore Mϕ

t is a Brownian

martingale of the form

∫ t

0
∇Hϕσ(Xs)dBs where Bt is Brownian motion in Rd

starting at the origin. It remains to identify the process of zero energy Nϕ
t . By

the Green formula we have

(21)
1

2

∫

D
a∇Hϕ · ∇ψdx =

∫

∂D
∂naHϕψ

∂dα,

∀ψ ∈W 1,2(D). Taking moreover ψ ∈ C(D̄) we see that

|E(Hϕ,ψ)| ≤ c sup
α∈∂D

|ψ(α)| ≤ c sup
x∈D̄

|ψ(x)|.

Theorem 2.1 of [12] shows that the condition of Corollary 5.4.2 of [11] is satisfied.

It follows that Nϕ
t is of bounded variation and that its Revuz measure is equal

to −(1/2)a∇Hϕ.n(α)dα so that Nϕ
t = −1/2

∫ t

0
a∇Hϕ.n(Xs)dL(s). Making the

time substitution corresponding to τt and then taking an expectation we see that

P ∂
t ϕ(α) − ϕ(α) =

∫ t

0
P ∂

s ψ(α)ds where ψ = −∂naHϕ. By the Cauchy-Schwarz

inequality
∥

∥

∥

∥

P ∂
t ϕ− ϕ

t
− ψ

∥

∥

∥

∥

2

L2(∂D)

=

∫

∂D

[

1

t

∫ t

0
(P ∂

s ψ − ψ)(α)ds

]2

dα

≤
1

t

∫ t

0
‖P ∂

s ψ − ψ‖2
L2(∂D)ds,
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which converges to zero as t→ 0, showing our result. �

4.2. The Neumann boundary function N .

Corollary 1. Under the same conditions as in Lemma 1, the λ-process

and the trace process are identical.

P r o o f. Let ϕ ∈ W 2,p(D). The W 2,p(D) solution Hϕ∂ of the Dirichlet

problem (7) satisfies the variational relation (21). Let ψ ∈ W 1,2(D); solving if

need be a Dirichlet problem with boundary data ψ∂ , we can assume ψ to be

A-harmonic. We can write

Ē∂(ϕ∂ , ψ∂) = −

∫

∂D
(A∂ϕ∂)ψ∂dα.

Since this relation is valid for all smooth ψ we see that Ā∂ϕ∂ = A∂ϕ∂ . A density

argument shows that the λ-process and the trace process are identical. �

The corollary shows that the Neumann boundary function (18) is also

given by N =

∫ ∞

0
P ∂

t ϕdt with

∫

∂D
ϕ(α)dα = 0. We are now in the position to

state the

Theorem 4. Assume that uniform ellipticity and boundedness (1), and

Conditions 1 and 2. The Neumann boundary function can be defined in terms of

the trace semigroup. A weak solution of the Neumann problem (2) is given by

u(x) = Ex

[
∫ τ

0
f(Xt)dt+N(Xτ )

]

= Gf(x) +

∫

∂D
H(x, α)N(α)dα,

(22)

where τ = τ∂D.

P r o o f. It is well known that we have Gf(x) = Ex

∫ τ

0
f(Xt)dt.

Let us turn to u0, see Section 1.4. Let ϕ ∈ W 1,2(D). As

∫

∂D
g0dα = 0,

the argument of the last point of the proof of Theorem 1 applies, i.e. we have

limt→∞A∂N(t) = A∂N = −g0, where N(t) =

∫ t

0
P ∂

s g0ds. Setting u0 = HN we

have by definition of the form E∂

1

2

∫

D
a∇u0 · ∇Hϕ

∂dx =

∫

∂D
g0.ϕ

∂dα.
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On the other hand ϕ = ϕ0 + ϕa where ϕ0 ∈W 1,2
0 (D) and ϕa ∈W 1,2

a (D),

see (11). We clearly have Hϕ∂ = Hϕ∂
a and therefore by (13) we deduce that

(HN,Hϕ∂)a = (HN,Hϕ∂
a)a =

∞
∑

j=0

(1 + λj)N
∂
j ϕ

∂
a,j ,

(HN,ϕ)a = (HN,ϕa)a =

∞
∑

j=0

(1 + λj)N
∂
j ϕ

∂
a,j .

Therefore ∀ϕ ∈W 1,2(D) we have

1

2

∫

D
a∇u0 · ∇ϕdx =

∫

∂D
g0ϕdα,

and our theorem is proved. �

4.3. A W 2−(1/p),p-domain. Assume moreover that D is uniformly C1

and a ∈ C1. Passing to the adjoint semigroup P ∂,∗
t , it is well known that the

L2-spectral gap (17) also takes place in the sense of the total variation norm

‖P ∂,∗
t µ(·) − P ∂,∗

t µ0(·)‖TV = 2 sup
E∈B(∂D)

|P ∂,∗
t µ(E) − P ∂,∗

t µ0(E)|,

for all measures µ with densities in L2(∂D,µ0). If our process is dα-irreducible,

i.e. ∀E ⊂ ∂D\E0 with |E| > 0 one has Eα

∫ ∞

0
IE(X∂

t )dt > 0, α ∈ ∂D\E0, and

aperiodic, i.e. for some E ⊂ ∂D\E0 of positive area there is a t0 s.t. ∀t ≥ t0 and

∀α ∈ ∂D\E0 one has P ∂
t (α,E) > 0 we can show that Dirac point masses also

converge exponentially to equilibrium in ‖ · ‖TV thanks to a Lyapounov function

argument. We have

Theorem 5. Under the above conditions, the convergence in (17) takes

place (regarding the adjoint semigroup) in the total variation norm.

P r o o f. The Steklov eigenfunction S̃∂
1 is continuous on the compact

∂D, by Section 2.1.1. For some large constant c define the Lyapounov function

W (α) = S̃∂
1 (α) + c and write

A∂W = −λ1W + λ1c

= −ǫλ1W + [λ1c− (1 − ǫ)λ1W ].



336 Abdelatif Benchérif-Madani

Enough room is left to exhibit inside the brackets a petite set (a well established

french word). Indeed, define for a suitable ǫ the non empty compact set K =

{S̃∂
1 ≤ cǫ/(1 − ǫ)}. It follows that A∂W ≤ −ǫλ1W + cλ1IK . It then suffices to

apply Theorem 5.2 of [10]. �

5. Examples and extensions. We now illustrate the above theory.

5.1. The representation when f = 0. Without the constraint of

interior regularity, we have the following theorem which is proved as in Theorem 4,

Theorem 6. Assume that (1) and the condition in Section 1.3.2 hold.

A weak solution of the Neumann problem (2) is given by

(23) u(x) = ExN̄(Xτ ) =

∫

∂D
H(x, α)N̄ (α)dα,

where τ = τ∂D.

5.2. A class of problems. In view of the last remark of Section 3.3

and of the fact that the λ-process transition semigroup is anyway absolutely

continuous a.e. (this follows immediately from equation (16) by taking indicators

whose sets are of Lebesgue measure zero) it is not too restrictive to assume in

this section that

Condition 5. Suppose that D ∈ W 2−(1/p),p and uniformly C1 and that

the λ-process has a transition density p̄∂
t (α, β) that is jointly continuous in ∂D,

∀t > 0.

The set of couples a,D which satisfy Condition 5 is not empty. Indeed,

take e.g. planar Brownian motion reflecting in the unit disc. From (12) it follows

by elementary analysis that the series in Section 3.3 is uniformly convergent. We

have

Theorem 7. Under Condition 5, Theorem 6 is valid with the trace

process Neumann boundary function. Moreover, the latter is bounded and the

convergence in the time integral takes place in L∞(∂D).

P r o o f. Let t > 0. Applying Lemma 2.3 of [7] we have p̄t(α, β) > 0 in

∂D. In particular, ∃c(t) > 0 s.t. ∀α, β ∈ ∂D

(24) c(t) ≤ p̄t(α, β).
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Exponential convergence for the trace process can now be proved.

Lemma 2. Under the above notations, the process X∂
t possesses a unique

invariant probability measure, i.e. µ0, and there exist two positive constants c, c′

s.t. for all t ≥ 0,

(25) sup
α∈∂D

‖P ∂
t (α, ·) − µ0(·)‖TV ≤ c exp(−c′t),

where ‖ · ‖TV stands for the total variation norm.

P r o o f. We use a Doeblin argument. It follows from (24) and (19) that

there exists a non trivial probability measure ν s.t. for any t ≥ 0, we have for

some c > 0, cν(dβ) ≤ P ∂
t (α, dβ) for all α ∈ ∂D. Hence, for any two probability

measures µ1 and µ2 on ∂D we have

(26) ‖P ∂,∗
t µ1 − P ∂,∗

t µ2‖TV ≤ c‖µ1 − µ2‖TV .

This inequality is easily established when the measures µ1 and µ2 are mutually

singular as in this case ‖µ1 − µ2‖TV = 2. The general case follows thanks to

the Hahn decomposition since there is a covering of total mass 1/2 between the

measures P ∂,∗
t µ1 and P ∂,∗

t µ2. Upon iterating the inequality (25) with µ2 = µ the

Lemma is established. �

We also have the

Lemma 3. The function P ∂
t g0 is bounded and we have for some positive

c, c′ and all t ≥ 0,

‖P ∂
t g0‖L∞(∂D) ≤ c exp(−c′t).

P r o o f. Let gn
0 =

∑

i c
n
i IF n

i
, where the cni ’s are constants and the Fn

i ’s

are Borel subsets of ∂D, be a sequence of step functions converging uniformly to

g0. We have by a well known inequality,
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[P ∂
t g

n
0 (α)]2

=

[
∫

∂D
gn
0 (β)µt(α, dβ)

]2

≤ 2

[
∫

∂D
gn
0 (β)(µt(α, dβ) − µ0(dβ))

]2

+ 2

[
∫

∂D
gn
0 (β)µ0(dβ)

]2

≤ 2 sup
i

(cni )2

(

∑

i

|µt(α,F
n
i ) − µ0(F

n
i )|

)2

+ 2

[
∫

∂D
gn
0 (β)µ0(dβ)

]2

≤ c exp(−c′t)‖gn
0 ‖

2
L∞(∂D) + c′′

[
∫

∂D
gn
0 (β)µ0(dβ)

]2

.

It now suffices to use the fact that g0 is centered and let n tend to ∞. �

The theorem immediately follows from the last two lemmas. �

5.3. Interior representation. For simplicity assume that the domain

D and the functions a, f , g are smooth. It is well known that the process X(t)

defines a strongly continuous semigroup of bounded linear operators Pt on L2(D)

with

∂tPtϕ(x)
D
=APtϕ(x),

∂naPtϕ(α)
∂D
= 0,

where ϕ ∈ L2(D). It is also well known that an interior spectral gap in L2(D)

for Pt

(27) ‖Ptϕ‖2,D ≤ c exp(−c′t)‖ϕ‖2,D ,

provided

∫

D
ϕdx = 0, follows directly from the Poincaré inequality

∫

D
ϕ2dx ≤ c

∫

D
‖∇ϕ‖2dx,

where ϕ ∈ W 1,2(D) with

∫

D
ϕdα = 0. The function

∫ ∞

0
Ptϕdt is then well

defined and belongs to the domain of the L2-generator A of the process X.
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Let g̃ be any smooth function which satisfies ∂na g̃ = g on ∂D. Rewrite

the system (2) as

Aũ
D
= −f̃ ,

∂na ũ
∂D
= 0,

(28)

where f̃ = f +Ag̃ and ũ = u− g̃. By taking the function g̃ − (1/|∂D|)

∫

D
g̃dx if

necessary, we can assume that

∫

D
g̃dx = 0. The solution of the Dirichlet problem

Aw
D
= −f̃ , w∂ = 0, is given by w = Gf̃ where G is the Green operator. The

boundary function ∂naGf̃ is in L∞(∂D). It is clear that the function ũ = Gf̃ +v,

where v is the solution of the (compatible) Neumann problem Av
D
= 0, ∂nav

∂D
=

−∂naGf̃ , gives the solution (modulo additive constants) of the system (28).

Let x ∈ D. Theorem 4 gives with the obvious notations u(x) = g̃(x) +

Gf̃(x) +HÑ(x). We have by the dominated convergence theorem

HÑ(x) = −Ex

∫ ∞

0
P ∂

t (∂naGf̃)(Xτ )dt

= − lim
T→∞

∫

∂D
dαH(x, α)

∫ T

0
dtP ∂

t (∂naGf̃)(α)

= − lim
T→∞

∫

∂D
dαH(x, α)Eα

∫ T

0
∂naGf̃(Xτt)dt

= − lim
T→∞

∫

∂D
dαH(x, α)Eα

∫ τT

0
∂naGf̃(Xs)dL(s)

= lim
T→∞

Ex[EXτ

∫ τT

0
f̃(Xs)ds],

where we used in the last but one line the Itô formula for Gf̃ on the process X,

i.e. we have for any α ∈ ∂D

−Eα

∫ τT

0
∂naGf̃(Xs)dL(s) = Eα

∫ τT

0
f̃(Xs)ds.

We deduce by the strong Markov property that

HÑ(x) = lim
T→∞

[

Ex

∫ τT

0
f̃(Xs)ds

]

−Gf̃(x),
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where the limit exists since f̃ has spatial mean zero. Note also that τT → ∞ as

T → ∞ almost surely by uniform ellipticity and we have

Gf̃(x) +HÑ(x) = lim
T→∞

Ex

[
∫ τT

0
f̃(Xs)ds

]

= Ex

[
∫ ∞

0
f̃(Xs)ds

]

= lim
T→∞

Ex

[
∫ T

0
f̃(Xs)ds

]

.

A further application of the Itô formula yields

Exg̃(XT ) = g̃(x) + Ex

∫ T

0
Ag̃(Xs)ds− Ex

∫ T

0
g(Xs)dL(s),

which implies by the spectral gap (27) and by the fact that g̃ is centered

u(x) = lim
T→∞

[

Ex

∫ T

0
f(Xs)ds+ Ex

∫ T

0
g(Xs)dL(s)

]

.

The Brosamler relation, see [5], follows by taking the particular case A = (1/2)∆

and f = 0.
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