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ABSTRACT. A relation between an arbitrary bounded operator A and dis-
sipative operator A, built by A in the following way Ay = A + ip*Q_¢p,
where A — A* =ip*Jp, (J = Q4+ — Q— is involution), is studied.

The characteristic functions of the operators A and A, are expressed
by each other using the known Potapov-Ginsburg linear-fractional trans-
formations. The explicit form of the resolvent (A — MI)~! is expressed by
(A4 = AI)~! and (A% — XI)~! in terms of these transformations. Further-
more, the functional model [10, 12] of non-dissipative operator A in terms
of a model for A, which evolves the results, was obtained by Naboko, S.
N. [7].

The main constructive elements of the present construction are shown to
be the elements of the Potapov-Ginsburg transformation for corresponding
characteristic functions.
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Introduction. Construction of functional models for a non-dissipative
bounded operator A comes across to considerable difficulties. First, a dilation of
A is self-adjoint in J-metric (but not in Hilbert metric) and it does not have an
appropriate spectral decomposition. Second, the operation of taking an orthogo-
nal complement in the space of dilation, due to the indefiniteness of J, has its own
problem in connection with the existence of the isotropic subspace. Naboko, S. N.
in his work [7] concerning a construction of functional model for non-dissipative
operator used Potapov-Ginsburg’s transformation.

This work is a continuation of the subject, and extends the approach of
Naboko, S. N. on the other case.

1. Potapov-Ginsburg transformation.
1.1. Consider a colligation A [1, 3, 5],

(1) A=(AH g E,J),

which has the colligation relationship of the form A — A* = ip*Jp, where H,
are Hilbert spaces A: H - H, p: H - E, J=F — Fand J=J"=J lisan
involution, i.e. J =Q4+ — Q_, and Q1+ = E(I + J) are orthoprojectors in E onto
EL =Q+FE, where E, 1 E_ since Q+Q_ = 0.

The open system equations Fa = {Ra,Sa} associated with A (1) have
the form [4]

@  Ba i%h“) + Ah(t) = 9" Ju(t) = " (ur (t) — u—(1));
h(0) = ho;

(8)  Sa o va(t) +o_() = us(t) +u_(t) — iph(t),

where wu(t),v(t) are vector functions from E, h(t) is a vector function from H,

t € Ry and v4(t) = Qv(t), us(t) = Qxu(t).
Since u_(t) = v_(t) + iQ_ph(t), then equation (2) may bewritten as

L) + An(D) + i Qph(t) = " (s (1) — v_ (1)),

Note that the operator

(4) Ap=A+ip"Q-p
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is dissipative since A, — A% = i9*Jp + 2ip*Q_p = ip*p, p*p > 0. Therefore,
the family

(5) A—F:(A-‘HH?()D:E:I)

is a dissipative colligation [4].
The open system Fa, = {RAJr, SAJr} associated with Ay has the form

]

(6) Ra, Z’%h@) + Aph(t) = o (ug () = v-(1));
) h(0) = ho;

(7) Say ¢+ va(t) —u_(t) = up(t) —v_(t) — iph(t),

where u_(t) = v_(t) +iQ_ph(t).

Thus, h(t) is a solution of two Cauchy problems simultaneously. On the
one hand, h(t) is a solution of (2) when in the right hand side of the equation is
u4(t) —u_(t). On the other hand, h(t) satisfies equation (6) when in the right
hand side is uy (t) — v_(t), where v_(t) = u_(t) —iQ_h(t).

Determine the connection between the transfer mappings Sa and Sa_ .
From (3) and (7) it follows that

Q+Sau(t) = ve(t)
and
Sy (s () = v-(£)) = vy (£) — u_(2).
Therefore
Sp(Qr —Q-Sp)u(t) = (Q+Sa — Q-)u(t).
Similarly, since
QS (us () —v_ (1) = vy (2)
and
QS (ur (t) = v_()) = —u_(),

it is obvious that

Sa(Q4 — Q-Sa,)(ur(t) — v_ (1) = (Q4Sa, — Q-)(us () — v_(1)).
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Proposition 1. The mappings Sn (3) and Sa, (7) corresponding to the
colligations A (1) and Ay (5), where A and Ay satisfy the relations (4), are
connected by the equalities

SA+(Q+ - Q—SA) = (Q+5A - Q—);

(8)
Sa(Q+ —Q-Sa,) = (Q+Sa, —Q-).

Note that transformation (8) also has been obtained in [1].
In a similar way, from (8) it follows that

(Qr +52,Q-)SA =Q— + 57, Q;

9
o (Q+ +SAQ-)San, = Q-+ SpQ+.

Transfer mappings Sa (3) and Sa, (7) correspond to the characteristic functions
[4, 10],

(10) SaN) =1 —ip(A=A)TH T, Sa, (A) =T —ip(Ay — A7

of the colligations A (1) and A4 (5) respectively.

Theorem 1 ([2]). Each of the characteristic functions Sx(X) and Sa, (N)
(10) of colligations A (1) and Ay (5) under condition (4) can be expressed by
each other using the Potapov-Ginsburg transformation,

L SA,(N)=(Qy-Sa(N)-Q)(Qy —Q-Sa(N)™;
2. Sa(N) = (Q+ +Sa,(NQ-)"HQ- + 5a, (NQ4);
3. SAN) = (Q4Sa, (\) — Q) Q1 —Q-Sa, (M)}
4 )

Sa,(A) = (Qr +5A(NQ-) Q-+ Sa(N)Q+).

(11)

One can easily see that the respective inverses in (11) exist and are
bounded in appropriate domains. For example, the inversibility of Q1 +Sa, (A\)Q—
n (11), follows from the formula

(Q+ + 54, (NQ-)SA(N) = Q-+ Sa, (N)Q+

by virtue of boundedness and holomorphy of @_+Sa, (A\)Q4 in C_ when |[A| > 1.
Furthermore,
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(12) (Q+ +Sa, (NQ) ' =Q1 +SA(NQ-.

(Qr + 52, (NQ)Q+ +SA(N)Q-)
= (I —ip(Ay =AD" Q)T +ip(A = M) Q)
= T —ip(AL = M) 710" Q- +ip(A— M) Tp* Q-
—ip(Ay = M) 7lig*Q_p(A — AI) " Q-
and using (4) we get
T—ip{(Ar= M) = (A=A "'+ (AL - M) N AL - A)A- D) Q- =1

1.2. In this section we derive formulas similar to (11) which connect the
linear-fractional transforms Sa(A) and Sa, (A). First of all, note that from (4)
it follows that

(13) A=A +ip Qe

as it is evident that

/I:* * L 3
A=Ap+ - ( Qi —9"Q ) = (AR+§¢90) +ip Q1.

Theorem 2 ([2]). For characteristic functions SA(X) and Sa, (X) (10)
of colligations A\ (1) and Ay (5), the formulas of Potapov and Ginsburg [9],

SZJX) (Qy —Q-SA(MN)(Q+Sa(N) — Q)Y

14 SA(N) = (Q-+ S5, (NQ+) 1 (Q+ + S, (NQ-);

SA(N) = (Q+ —Q-SA, M)(Q+SA, (M) —Q-)7h
+)”

5, (N = Q-+ SA(NQ

L

HQ+ 4+ SA(N)Q-).

are valid when (4) holds.

Proof. The formulas (14) may be derived by argumentation similar to
that of subsection 1.1 using the transfer mappings Sa and Sa . We present, as
an example, a direct proof of formula (14)s (other formulas are proved similarly).
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To this end, we calculate
(Q-+SA, (NQ+)Sa(N)
= (I +ip(AL = A0 eQ ) (I —ip(A = A" )
= T+ip(AL = A 'eQy —ip(A— M)~ 'p*T
—ip(A% — AN lipQp(A — A",
and after using (13) we get

(Q-+SA, (MQ+)Sa(N)

I +ip(A% — M) Q-
= Q+ + S*AJr (X)Q—7

which was to be proved. Invertibility of the operators is proved similarly to
(12). O

Among all the formulas (11) and (14), we mark out the following two
important formulas:

L SA(N) = (Q4 + 54, (NQ-) Q-+ 54, (NQ4);

15 — —
B )= (@55, Q) Qs + 55, (DQ-)

Corollary 1. The nonreal set of singularitiy points of Sa(\) in C_ and
in C belongs to the singularitiy points of (Q+ + Sa, (A\)Q-)"" in C_ and of
(Q-+SA, (MNQ+)~" in Cy respectively.

Indeed, from (15); owing to the holomorphy of Q_ 4+ Sa_ (A)Q4 in C_ we
conclude that the function Sa(A) may have singularities in the lower half plane
C_ only in zeroes of Q4 + Sa, (A\)Q—. Similar reasoning for (15)z shows that
nonreal singularities of Sa(A) in € are in zeroes of the function @ +5% , (A)Q+.

Thus, the Potapov-Ginsburg formulas (15) factor out the nonreal singu-
larities of the characteristic function Sa (A) and hence decompose nonreal spectra
of operator A relatively to C; and C_.

Resuming the results of 1.1, 1.2 we note that the Potapov-Ginsburg trian-
gular linear-fractional transforms (11), (14) ascertain one-to-one correspondence
between the class of operator functions Sa, (A) and the class function Sa(A)
(in corresponding domains). Then the dissipative operator A4 changes into the
bounded arbitrary operator A and formula (4) holds.
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2. Relation between the resolvents of A and A,.

2.1. Below we derive the explicit form of the resolvent operator of A,
expressed by the resolvent of A,. Let f € H and (A—\)"'f =gor f = Ag—\g;
then using (4) we get

f=A1g—Ag—ip"Q_pg.
If A e C_, it is evident that
(16) (Ay = AD)'f =g —i(Ar = A)7'0*Q_pg.

Applying ¢ to the both sides of the equality we obtain

e(Ap = M) f = {T —ip(Ar — M) 'o* Q- } g,

and since
I—ip(Ay = M) 7'9"Q- = Q4 + S, (NQ-,
then
09 = (Qy + 57, (NQ-) (AL = A f,

Substituting this expression in (16), we find that

g = (A=A = (A, — A7V 44y — AD)IQ Qs + Sa, (NQ) L X
oAy — A f

where A € C_ and |A| > 1.
Similarly, from (13), if A € C,., we get

g = (A=A f= (AL =MD —i(AL =AD" Qe (Q- + 84, (N)Q+) ™ x
P(A = A7,
Thus, we come to the theorem.

Theorem 3. If A, = A+ip*Q_p (4), then the resolvent of A is expressed
by the dissipative operator Ay as follows

(17) (A— X))t

— (A = AT (A = AD) T (Q4 4 Sa, (NQ) T p(Ay — AT
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when A € C_, |A| > 1,
and

(18) (A— At
(A% AN (AL AT Q (@ + Sh, (V@) e(A — AL
when A € Cp, |A] > 1.

2.2. It is known that the self-adjoint operator By acting in a Hilbert
space G is called [7, 9] a self-adjoint dilation of bounded dissipative operator A
if

(19) GDH, (AL —X)=Pg(By—-\)"tg, vreC_.

We recall [12] that a self-adjoint dilation B, of bounded dissipative operator A
is acting in the space [6, 8]

0 (o'
H =1 f=((&);hu(f)); / Hv(é)|!2d£+thl2+/HU(£)ll2d£<oo
—00 0

where v(€), u(§) € E, Suppv(§) € R_, Suppu(§) € Ry, h € H and is define on
the functions f = (v(§); h;u(§)) € H by formula

(20) Bof = (g€ Arh - 9"u(0): § 7).

where f belongs to the domain of operator By,

d d
JEH: d_gv(f) €L (E), d—gu(f) < Lﬁh (E),

v(0) = u(0) —iph

(1)  D(B,)=

provided that all corresponding derivatives exist in the standard sence. Define
the operator J on the Hilbert space H, namely:

where f = (v(§);h;u(§)) € H.
Define an operator B in H by

(22) B =B,/
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in other words,

1d 1d
(23) Bf = (J;% (€); Arh — @™ Ju(0); J - %“(5)) ;
where f belongs to the domain of B,
0y DB { fEM: ful6) € L3 (B), fu(€) € I3 (B) }
B v(0) = u(0) — iJph '

Theorem 4. The resolvent operator of B (23), (24) may be expressed as
follows

if A€ Cy N p(A*) then

C 0
(B=XD)"'f = |i / M= Q u(s)ds +i/e_i’\(§_S)Qv(s)ds
% !

+e M La_(0) +iQ_g[(A* — A)"th
HA* = AT (04 (0) — a-(0))]3;
(25) (A" = AI)"'h+ (A" - M)‘1 " (04 (0) — u—(0));

[e.e]

i/e_i’\(f ds+z/ Q+u
3 0

+e {0, (0) + Q4 p[(A* = AI) 1A

(A" = A" (04 (0) — ﬂ(O))]}> :

where,
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and if A € C_ N p(A) then

0

¢
(B=X)~'f = | —i / eMNETQ_u(s)ds —i/ei’\(g_S)QJrv(s)ds
+€_’;Zo{ft+(0) — Q4 p[(A— ;I)_lh
+H(A = A7t (a4 (0) — 9-(0)]};
(A=) h + (A= A~ He" (s (0) — 9-(0)) 1
(25/) %) ¢

—i [ eMEIQ u(s)ds —i [ e METDQ _u(s)ds
Joaon ]
+e7 LD (0) —iQ_[(A — AI)"'h

+H(A = M) 7" (a4 (0) — 17(0))]}> ;

where,

[e'e) 0

u4(0) = —'/e_i’\SQ+u(s)ds, - (0) = —1 / e Q_u(s)ds.

0 —00

Proof. Let us derive a formula for resolvent when A € C;. (for C_ the
proof is similar). Let (B — AI)~'f = f or Bf — Af = f. This means that

JU'(€) —iav(€) =iv()  (§€R);
Ju'(§) —idu(§) = iu(§)  (£€Ry);
Ayh — Ah — @*Ju(0) = h;

5(0) = @(0) — iJph.

(26)

From u4 (§) = Q+u(&) we have the following equations:

W, (6) = NG () +iur(§) (€ € Ry);
() = —iAT_ () — iu_(§) (£ € Ry).
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Hence for uy (&) we have
¢
T =T 0 4 [ NI sds, (€ Ry,
(27) " 0
(=i [N ()ds, (e R

Similarly, for 04 (§) = Q+04(§), the equations

4 (§) = idvp (§) +ivg(§)  (EeR-);

V() = —iNT(€) —iv_(€) (€ €R—).
imply that

(28) ;0
v4(§) =1 / M=)y, (s)ds, (£ eR).

Since 5(0) = @(0) — iJoh (26), then
(29) iy (0) = 04(0) +iQuph 5 -(0) =i (0) + iQ_h.

Thus it follows that the formula A, h — Ah — ©*Ju(0) = h (26) by virtue of (29)
can be written in the following form

Ayh— Ah — @*[04.(0) + iQph — G_(0)] = h.
Therefore
h= (A" = X)) h + (A" — M)~ to* (04 (0) — @ (0)),
which proves the first formula in (25) by virtue of (27), (28), (29). O

Theorem 5. If A\ € C_Np(A), the operator B (23), (24) is a dilation of
the operator A,
Pyg(B—X)""' g =(A- A7,
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and if A € C4 N p(A*), the operator B is a dilation of operator A*,

Py(B— M)y = (A" =D)L

The proof follows from (24).

3. Functional Model of the Operator A. Here we derive an
explicit form of the operator A in terms of functional model of dissipative operator
A, [10]. Let us consider that Ay is acting as in the the functional model [§],
namely, let H coincides with

S 2
(30) Hp— 12 ( I AL (©) ) . ( H?(E) ) |
SA+ (5) I Hi(E)
where operators A and A* act in in the following way, [8],
§f1(6)
A = ;
D) ( EF2(6) +ig2(0) )
(31)

§f1(§) —ig1(0) )
£f2(€) ’

where Sa , (€) is the characteristic function (10) of colligation A (5) and HZ(E)
are Hardy classes of F-valued functions corresponding to the half-planes Cy, then
92(0) and ¢1(0) are the values of Fourier transform of g2(z) and g¢i(x) at zero
respectively, and

(A31)(€) = (

[e.o]

w(0) = 5= [ (6) + Sa, O N(€)eds

(32)

[e.9]

n@) = 5o [ (1) + Sh, @€ s

—00

where g1 (), g2(z) € L?.
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Using the form ¢ functional realization [8, 12], we derive that

_q1(0
@*Q@f=(Q a0 )

Q-92(0)

therefore, in virtue of (4), we have

—1Q_qg1(0
(32) (AF)() = ( §f1(€) —iQ-g1(0) >

£f2(€) +iQ4g2(0)

Remark. The collegation is simple [6, 12] if H=span{A"¢*FE;n € Z }.
Thus, we have the following result.

Theorem 6. Let a simple colligation /A (1) be defined, where J = Q4 —
Q- is involution (Q+ are orthoprojectors and Q1 Q_ = 0), and Sa_ () be a
function built by the characteristic function Sa(\) = I —ip(A— N)~1o*J of the
colligation /N with the help of the Potapov-Ginsburg triangular linear-fractional
transform (11). Then the main operator of colligation A\ is unitary equivalent to
the functional model (33) acting in the space Hp (30).

Obviously, A* in Hp is presented by

(33) (A" )(&) =

( £f1(8) —1Q+91(0) )
Ef2(6) +iQ_g2(0)

Let us derive the resolvent of operator A (33), let f = (A — A)~!u, where
u(§) € Hp (30), then

u1(§) +1Q-g1(0)

f1(6) = ;

() O 000
ug — 1+ 92

f2(§) = 355 ~

Let A € C_. Multiplying the first equation of (35) by Sa, (&), adding result to
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the second equation, and integrating, we get

o)
1

—ig2(0) = 5 [ (f2&) + S, () /1(£))d¢

—00

dg.

(35) - / Q+92(0 (f)Q 91(0)

Now using uz(£)+Sa, (§)ui(§) € H2(E) and an analogue of the Cauchy theorem
for H2 (E) [11], we get

igg(O) = (U2 + SA+U1)()\).

To calculate g;(0), we multiply the second equation of (35) by Sh, (€) and add
to the first equation, then after the integration we get
o0

1

—ig1(0) = 9 (f1(&) + SA, (§) f2(8))dE

—00

1 [ w(€)+Sh, (©ua(€)

T 2mi E—\ dt
1 T Q-gi(0) - Sh, (£)Q+92(0)
(36) +o- Y dg.

It is not difficult to see that each integral on the right side (37) is equal to
zero. To confirm this, use the Cauchy theorem for H2 (E) [11] and the fact that
u1(€) + Sa, (§ua(§) € HI(E). Thus, we have

A=) ~h] () = —— " >
(37) [( ) ] (©) E—A ( uz(§) — Q4 (u2 + Sa u1)(A)
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when A € C_.
If we take A € C4 then by the similar consideration we get g2(0) = 0 and
91(0) = i(u1 + S, u2)(A). Consequently,
1 u1(§) — Q—(ur + SH, u2)(N)
(38) (A=AD)"] () = 7— ( ’ :
[ ] §—A uz(§)

Theorem 7. In each reqular point \ the resolvent (A — NI)~! of the
operator A (33) acting in the space Hp (30) has the form (38), when A € C_,
and (39), when A € C.
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