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Abstract. A relation between an arbitrary bounded operator A and dis-
sipative operator A+, built by A in the following way A+ = A + iϕ∗Q−ϕ,

where A − A∗ = iϕ∗Jϕ, (J = Q+ − Q− is involution), is studied.

The characteristic functions of the operators A and A+ are expressed
by each other using the known Potapov-Ginsburg linear-fractional trans-
formations. The explicit form of the resolvent (A − λI)−1 is expressed by
(A+ − λI)−1 and (A∗

+ − λI)−1 in terms of these transformations. Further-
more, the functional model [10, 12] of non-dissipative operator A in terms
of a model for A+, which evolves the results, was obtained by Naboko, S.
N. [7].

The main constructive elements of the present construction are shown to
be the elements of the Potapov-Ginsburg transformation for corresponding
characteristic functions.
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Introduction. Construction of functional models for a non-dissipative

bounded operator A comes across to considerable difficulties. First, a dilation of

A is self-adjoint in J-metric (but not in Hilbert metric) and it does not have an

appropriate spectral decomposition. Second, the operation of taking an orthogo-

nal complement in the space of dilation, due to the indefiniteness of J , has its own

problem in connection with the existence of the isotropic subspace. Naboko, S. N.

in his work [7] concerning a construction of functional model for non-dissipative

operator used Potapov-Ginsburg’s transformation.

This work is a continuation of the subject, and extends the approach of

Naboko, S. N. on the other case.

1. Potapov-Ginsburg transformation.

1.1. Consider a colligation △ [1, 3, 5],

(1) △ = (A,H,ϕ,E, J),

which has the colligation relationship of the form A − A∗ = iϕ∗Jϕ, where H, E

are Hilbert spaces A : H → H, ϕ : H → E, J = E → E and J = J∗ = J−1 is an

involution, i.e. J = Q+ −Q−, and Q± =
1

2
(I ± J) are orthoprojectors in E onto

E± = Q±E, where E+⊥E− since Q+Q− = 0.

The open system equations F△ = {R△, S△} associated with △ (1) have

the form [4]

R△ :





i
d

dt
h(t) + Ah(t) = ϕ∗Ju(t) = ϕ∗(u+(t) − u−(t));

h(0) = h0;
(2)

S△ : v+(t) + v−(t) = u+(t) + u−(t) − iϕh(t),(3)

where u(t), v(t) are vector functions from E, h(t) is a vector function from H,

t ∈ R+ and v±(t) = Q±v(t), u±(t) = Q±u(t).

Since u−(t) = v−(t) + iQ−ϕh(t), then equation (2) may bewritten as

i
d

dt
h(t) + Ah(t) + iϕ∗Q−ϕh(t) = ϕ∗(u+(t) − v−(t)).

Note that the operator

(4) A+ = A + iϕ∗Q−ϕ
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is dissipative since A+ − A∗
+ = iϕ∗Jϕ + 2iϕ∗Q−ϕ = iϕ∗ϕ, ϕ∗ϕ ≥ 0. Therefore,

the family

(5) △+ = (A+,H, ϕ,E, I)

is a dissipative colligation [4].

The open system F△+
=
{
R△+

, S△+

}
associated with △+ has the form

[4]

R△+
:





i
d

dt
h(t) + A+h(t) = ϕ∗(u+(t) − v−(t));

h(0) = h0;
(6)

S△+
: v+(t) − u−(t) = u+(t) − v−(t) − iϕh(t),(7)

where u−(t) = v−(t) + iQ−ϕh(t).

Thus, h(t) is a solution of two Cauchy problems simultaneously. On the

one hand, h(t) is a solution of (2) when in the right hand side of the equation is

u+(t) − u−(t). On the other hand, h(t) satisfies equation (6) when in the right

hand side is u+(t) − v−(t), where v−(t) = u−(t) − iQ−h(t).

Determine the connection between the transfer mappings S△ and S△+
.

From (3) and (7) it follows that

Q±S△u(t) = v±(t)

and

S△+
(u+(t) − v−(t)) = v+(t) − u−(t).

Therefore

S△+
(Q+ − Q−S△)u(t) = (Q+S△ − Q−)u(t).

Similarly, since

Q+S△+
(u+(t) − v−(t)) = v+(t)

and

Q−S△+
(u+(t) − v−(t)) = −u−(t),

it is obvious that

S△(Q+ − Q−S△+
)(u+(t) − v−(t)) = (Q+S△+

− Q−)(u+(t) − v−(t)).
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Proposition 1. The mappings S△ (3) and S△+
(7) corresponding to the

colligations △ (1) and △+ (5), where A and A+ satisfy the relations (4), are

connected by the equalities

(8)
S△+

(Q+ − Q−S△) = (Q+S△ − Q−);

S△(Q+ − Q−S△+
) = (Q+S△+

− Q−).

Note that transformation (8) also has been obtained in [1].

In a similar way, from (8) it follows that

(9)
(Q+ + S△+

Q−)S△ = Q− + S△+
Q+;

(Q+ + S△Q−)S△+
= Q− + S△Q+.

Transfer mappings S△ (3) and S△+
(7) correspond to the characteristic functions

[4, 10],

(10) S△(λ) = I − iϕ(A − λI)−1ϕ∗J, S△+
(λ) = I − iϕ(A+ − λI)−1ϕ∗

of the colligations △ (1) and △+ (5) respectively.

Theorem 1 ([2]). Each of the characteristic functions S△(λ) and S△+
(λ)

(10) of colligations △ (1) and △+ (5) under condition (4) can be expressed by

each other using the Potapov-Ginsburg transformation,

(11)

1. S△+
(λ) = (Q+ · S△(λ) · Q−)(Q+ − Q−S△(λ))−1;

2. S△(λ) = (Q+ + S△+
(λ)Q−)−1(Q− + S△+

(λ)Q+);

3. S△(λ) = (Q+S△+
(λ) − Q−)(Q+ − Q−S△+

(λ))−1;

4. S△+
(λ) = (Q+ + S△(λ)Q−)−1(Q− + S△(λ)Q+).

One can easily see that the respective inverses in (11) exist and are

bounded in appropriate domains. For example, the inversibility of Q++S△+
(λ)Q−

in (11)2 follows from the formula

(Q+ + S△+
(λ)Q−)S△(λ) = Q− + S△+

(λ)Q+

by virtue of boundedness and holomorphy of Q−+S△+
(λ)Q+ in C− when |λ| ≫ 1.

Furthermore,
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(12) (Q+ + S△+
(λ)Q−)−1 = Q+ + S△(λ)Q−.

(Q+ + S△+
(λ)Q−)(Q+ + S△(λ)Q−)

= (I − iϕ(A+ − λI)−1ϕ∗Q−)(I + iϕ(A − λI)−1ϕ∗Q−)

= I − iϕ(A+ − λI)−1ϕ∗Q− + iϕ(A − λI)−1ϕ∗Q−

−iϕ(A+ − λI)−1iϕ∗Q−ϕ(A − λI)−1ϕ∗Q−

and using (4) we get

I−iϕ
{
(A+− λI)−1− (A − λI)−1+ (A+− λI)−1(A+− A)(A − λI)−1ϕ∗Q−

}
= I.

1.2. In this section we derive formulas similar to (11) which connect the

linear-fractional transforms S△(λ) and S△+
(λ). First of all, note that from (4)

it follows that

(13) A = A∗
+ + iϕ∗Q+ϕ,

as it is evident that

A = AR +
i

2
(ϕ∗Q+ϕ − ϕ∗Q−ϕ) = (AR +

i

2
ϕ∗ϕ)∗ + iϕ∗Q+ϕ.

Theorem 2 ([2]). For characteristic functions S△(λ) and S△+
(λ) (10)

of colligations △ (1) and △+ (5), the formulas of Potapov and Ginsburg [9],

(14)

1. S∗

△+
(λ) = (Q+ − Q−S△(λ))(Q+S△(λ) − Q−)−1;

2. S△(λ) = (Q− + S∗

△+
(λ)Q+)−1(Q+ + S∗

△+
(λ)Q−);

3. S△(λ) = (Q+ − Q−S∗

△+
(λ))(Q+S∗

△+
(λ) − Q−)−1;

4. S∗

△+
(λ) = (Q− + S△(λ)Q+)−1(Q+ + S△(λ)Q−).

are valid when (4) holds.

P r o o f. The formulas (14) may be derived by argumentation similar to

that of subsection 1.1 using the transfer mappings S△ and S△+
. We present, as

an example, a direct proof of formula (14)2 (other formulas are proved similarly).
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To this end, we calculate

(Q− + S∗

△+
(λ)Q+)S△(λ)

= (I + iϕ(A∗
+ − λI)−1ϕQ+)(I − iϕ(A − λI)−1ϕ∗J)

= I + iϕ(A∗
+ − λI)−1ϕQ+ − iϕ(A − λI)−1ϕ∗J

−iϕ(A∗
+ − λI)−1iϕQ+ϕ(A − λI)−1ϕ∗J,

and after using (13) we get

(Q− + S∗
△+

(λ)Q+)S△(λ) = I + iϕ(A∗
+ − λI)−1ϕ∗Q−

= Q+ + S∗

△+
(λ)Q−,

which was to be proved. Invertibility of the operators is proved similarly to

(12). �

Among all the formulas (11) and (14), we mark out the following two

important formulas:

(15)
1. S△(λ) = (Q+ + S△+

(λ)Q−)−1(Q− + S△+
(λ)Q+);

2. S△(λ) = (Q− + S∗
△+

(λ)Q+)−1(Q+ + S∗
△+

(λ)Q−).

Corollary 1. The nonreal set of singularitiy points of S△(λ) in C− and

in C+ belongs to the singularitiy points of (Q+ + S△+
(λ)Q−)−1 in C− and of

(Q− + S∗

△+
(λ)Q+)−1 in C+ respectively.

Indeed, from (15)1 owing to the holomorphy of Q−+S△+
(λ)Q+ in C− we

conclude that the function S△(λ) may have singularities in the lower half plane

C− only in zeroes of Q+ + S△+
(λ)Q−. Similar reasoning for (15)2 shows that

nonreal singularities of S△(λ) in C+ are in zeroes of the function Q−+S∗

△+
(λ)Q+.

Thus, the Potapov-Ginsburg formulas (15) factor out the nonreal singu-

larities of the characteristic function S△(λ) and hence decompose nonreal spectra

of operator A relatively to C+ and C−.

Resuming the results of 1.1, 1.2 we note that the Potapov-Ginsburg trian-

gular linear-fractional transforms (11), (14) ascertain one-to-one correspondence

between the class of operator functions S△+
(λ) and the class function S△(λ)

(in corresponding domains). Then the dissipative operator A+ changes into the

bounded arbitrary operator A and formula (4) holds.
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2. Relation between the resolvents of A and A+.

2.1. Below we derive the explicit form of the resolvent operator of A,

expressed by the resolvent of A+. Let f ∈ H and (A−λI)−1f = g or f = Ag−λg;

then using (4) we get

f = A+g − λg − iϕ∗Q−ϕg.

If λ ∈ C−, it is evident that

(16) (A+ − λI)−1f = g − i(A+ − λI)−1ϕ∗Q−ϕg.

Applying ϕ to the both sides of the equality we obtain

ϕ(A+ − λI)−1f =
{
I − iϕ(A+ − λI)−1ϕ∗Q−

}
ϕg,

and since

I − iϕ(A+ − λI)−1ϕ∗Q− = Q+ + S△+
(λ)Q−,

then

ϕg = (Q+ + S△+
(λ)Q−)−1ϕ(A+ − λI)−1f.

Substituting this expression in (16), we find that

g = (A − λI)−1f = (A+ − λI)−1f + i(A+ − λI)−1ϕ∗Q−(Q+ + S△+
(λ)Q−)−1 ×

ϕ(A+ − λI)−1f

where λ ∈ C− and |λ| ≫ 1.

Similarly, from (13), if λ ∈ C+, we get

g = (A − λI)−1f = (A∗
+ − λI)−1f − i(A∗

+ − λI)−1ϕ∗Q+(Q− + S∗

△+
(λ)Q+)−1 ×

ϕ(A∗
+ − λI)−1f.

Thus, we come to the theorem.

Theorem 3. If A+ = A+iϕ∗Q−ϕ (4), then the resolvent of A is expressed

by the dissipative operator A+ as follows

(17) (A − λI)−1

= (A+ − λI)−1 + i(A+ − λI)−1ϕ∗Q−(Q+ + S△+
(λ)Q−)−1ϕ(A+ − λI)−1
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when λ ∈ C−, |λ| ≫ 1,

and

(18) (A − λI)−1

= (A∗
+ − λI)−1 − i(A∗

+ − λI)−1ϕ∗Q+(Q− + S∗
△+

(λ)Q+)−1ϕ(A∗
+ − λI)−1

when λ ∈ C+, |λ| ≫ 1.

2.2. It is known that the self-adjoint operator B+ acting in a Hilbert

space G is called [7, 9] a self-adjoint dilation of bounded dissipative operator A+

if

(19) G ⊇ H, (A+ − λI) = PH(B+ − λI)−1 |H , ∀λ ∈ C−.

We recall [12] that a self-adjoint dilation B+ of bounded dissipative operator A+

is acting in the space [6, 8]

H =



f = (v(ξ);h;u(ξ));

0∫

−∞

‖v(ξ)‖2 dξ + ‖h‖2 +

∞∫

0

‖u(ξ)‖2 dξ < ∞





where v(ξ), u(ξ) ∈ E, Supp v(ξ) ∈ R−, Suppu(ξ) ∈ R+, h ∈ H and is define on

the functions f = (v(ξ);h;u(ξ)) ∈ H by formula

(20) B+f =

(
1

i

d

dξ
v(ξ);A+h − ϕ∗u(0);

1

i

d

dξ
u(ξ)

)
,

where f belongs to the domain of operator B+,

(21) D(B+) =





f ∈ H :
d

dξ
v(ξ) ∈ L2

R
−

(E),
d

dξ
u(ξ) ∈ L2

R+
(E),

v(0) = u(0) − iϕh





,

provided that all corresponding derivatives exist in the standard sence. Define

the operator J on the Hilbert space H, namely:

Jf = (Jv(ξ), h, Ju(ξ))

where f = (v(ξ);h;u(ξ)) ∈ H.

Define an operator B in H by

(22) B = B+J,
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in other words,

(23) Bf =

(
J

1

i

d

dξ
v(ξ);A+h − ϕ∗Ju(0);J

1

i

d

dξ
u(ξ)

)
,

where f belongs to the domain of B,

(24) D(B) =

{
f ∈ H : d

dξ
v(ξ) ∈ L2

R
−

(E), d
dξ

u(ξ) ∈ L2
R+

(E);

v(0) = u(0) − iJϕh

}
.

Theorem 4. The resolvent operator of B (23), (24) may be expressed as

follows

if λ ∈ C+ ∩ ρ(A∗) then

(B − λI)−1f =


i

ζ∫

−∞

eiλ(ξ−s)Q+v(s)ds + i

0∫

ξ

e−iλ(ξ−s)Q−v(s)ds

+e−iλζ{ũ−(0) + iQ−ϕ[(A∗ − λI)−1h

+(A∗ − λI)−1ϕ∗ (ṽ+ (0) − ũ−(0))]};

(A∗ − λI)−1h + (A∗ − λI)−1ϕ∗ (ṽ+ (0) − ũ−(0)) ;(25)

i

∞∫

ξ

e−iλ(ξ−s)Q−u(s)ds + i

ζ∫

0

eiλ(ξ−s)Q+u(s)ds

+eiλζ{ṽ+(0) + iQ+ϕ[(A∗ − λI)−1h

+(A∗ − λI)−1ϕ∗ (ṽ+ (0) − ũ−(0))]}


 ,

where,

ũ−(0) = i

∞∫

0

eiλsQ−u(s)ds, ṽ+ (0) =

0∫

−∞

e−iλsQ+v(s)ds,
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and if λ ∈ C− ∩ ρ(A) then

(25′)

(B − λI)−1f =


−i

ζ∫

−∞

eiλ(ξ−s)Q−v(s)ds − i

0∫

ξ

eiλ(ξ−s)Q+v(s)ds

+e−iλζ{ũ+(0) − iQ+ϕ[(A − λI)−1h

+(A − λI)−1ϕ∗ (ũ+ (0) − ṽ−(0))]};

(A − λI)−1h + (A − λI)−1ϕ∗ (ũ+ (0) − ṽ−(0)) ;

−i

∞∫

ξ

eiλ(ξ−s)Q+u(s)ds − i

ζ∫

0

e−iλ(ξ−s)Q−u(s)ds

+e−iλζ{ṽ−(0) − iQ−ϕ[(A − λI)−1h

+(A − λI)−1ϕ∗ (ũ+ (0) − ṽ−(0))]}


 ,

where,

ũ+(0) = −i

∞∫

0

e−iλsQ+u(s)ds, ṽ− (0) = −i

0∫

−∞

eiλsQ−v(s)ds.

P r o o f. Let us derive a formula for resolvent when λ ∈ C+ (for C− the

proof is similar). Let (B − λI)−1f = f̃ or Bf̃ − λf̃ = f . This means that

(26)





Jṽ′(ξ) − iλṽ(ξ) = iv(ξ) (ξ ∈ R−);

Jũ′(ξ) − iλũ(ξ) = iu(ξ) (ξ ∈ R+);

A+h̃ − λh̃ − ϕ∗Jũ(0) = h;

ṽ(0) = ũ(0) − iJϕh̃.

From ũ±(ξ) = Q±ũ(ξ) we have the following equations:

ũ′
+(ξ) = iλũ+(ξ) + iu+(ξ) (ξ ∈ R+);

ũ′
−(ξ) = −iλũ−(ξ) − iu−(ξ) (ξ ∈ R+).
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Hence for ũ±(ξ) we have

(27)

ũ+(ξ) = ũ+(0)eiλξ + i

ξ∫

0

eiλ(ξ−s)u+(s)ds, (ξ ∈ R+),

ũ−(ξ) = i

ξ∫

0

ei−λ(ξ−s)u−(s)ds, (ξ ∈ R+).

Similarly, for ṽ±(ξ) = Q±ṽ±(ξ), the equations

ṽ′+(ξ) = iλṽ+(ξ) + iv+(ξ) (ξ ∈ R−);

ṽ′−(ξ) = −iλṽ−(ξ) − iv−(ξ) (ξ ∈ R−).

imply that

(28)

ṽ−(ξ) = ei−λξ ṽ−(0) + i

ξ∫

0

e−iλ(ξ−s)v−(s)ds, (ξ ∈ R−),

ṽ+(ξ) = i

ξ∫

−∞

eiλ(ζ−s)v+(s)ds, (ξ ∈ R−).

Since ṽ(0) = ũ(0) − iJϕh̃ (26), then

(29) ũ+(0) = ṽ+(0) + iQ+ϕh̃ ; ṽ−(0) = ũ−(0) + iQ−ϕh̃.

Thus it follows that the formula A+h̃ − λh̃ − ϕ∗Jũ(0) = h (26) by virtue of (29)

can be written in the following form

A+h̃ − λh̃ − ϕ∗[ṽ+(0) + iQ+ϕh̃ − ũ−(0)] = h.

Therefore

h̃ = (A∗ − λI)−1h + (A∗ − λI)−1ϕ∗ (ṽ+ (0) − ũ−(0)) ,

which proves the first formula in (25) by virtue of (27), (28), (29). �

Theorem 5. If λ ∈ C− ∩ ρ(A), the operator B (23), (24) is a dilation of

the operator A,

PH(B − λI)−1 |H = (A − λI)−1,
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and if λ ∈ C+ ∩ ρ(A∗), the operator B is a dilation of operator A∗,

PH(B − λI)−1 |H = (A∗ − λI)−1.

The proof follows from (24).

3. Functional Model of the Operator A. Here we derive an

explicit form of the operator A in terms of functional model of dissipative operator

A+ [10]. Let us consider that A+ is acting as in the the functional model [8],

namely, let H coincides with

(30) HP = L2

(
I S∗

△+
(ξ)

S△+
(ξ) I

)
⊖

(
H2

−(E)

H2
+(E)

)
,

where operators A+ and A∗
+ act in in the following way, [8],

(31)

(A+f)(ξ) =

(
ξf1(ξ)

ξf2(ξ) + ig2(0)

)
;

(A∗
+f)(ξ) =

(
ξf1(ξ) − ig1(0)

ξf2(ξ)

)
,

where S△+
(ξ) is the characteristic function (10) of colligation △+ (5) and H2

±(E)

are Hardy classes of E-valued functions corresponding to the half-planes C±, then

g2(0) and g1(0) are the values of Fourier transform of g2(x) and g1(x) at zero

respectively, and

(32)

g2(x) =
1

2π

∞∫

−∞

(f2(ξ) + S△+
(ξ)f1(ξ))e

iξxdξ;

g1(x) =
1

2π

∞∫

−∞

(f1(ξ) + S∗
△+

(ξ)f2(ξ))e
iξxdξ.

where g1(x), g2(x) ∈ L2.
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Using the form ϕ functional realization [8, 12], we derive that

ϕ∗Q−ϕf =

(
Q−g1(0)

Q−g2(0)

)
,

therefore, in virtue of (4), we have

(32) (Af)(ξ) =

(
ξf1(ξ) − iQ−g1(0)

ξf2(ξ) + iQ+g2(0)

)
.

Remark. The collegation is simple [6, 12] if H=span{Anϕ∗E;n ∈ Z+}.

Thus, we have the following result.

Theorem 6. Let a simple colligation △ (1) be defined, where J = Q+ −

Q− is involution (Q± are orthoprojectors and Q+Q− = 0), and S△+
(λ) be a

function built by the characteristic function S△(λ) = I − iϕ(A−λI)−1ϕ∗J of the

colligation △ with the help of the Potapov-Ginsburg triangular linear-fractional

transform (11). Then the main operator of colligation △ is unitary equivalent to

the functional model (33) acting in the space HP (30).

Obviously, A∗ in HP is presented by

(33) (A∗f)(ξ) =

(
ξf1(ξ) − iQ+g1(0)

ξf2(ξ) + iQ−g2(0)

)
.

Let us derive the resolvent of operator A (33), let f = (A − λI)−1u, where

u(ξ) ∈ HP (30), then

(34)





f1(ξ) =
u1(ξ) + iQ−g1(0)

ξ − λ
;

f2(ξ) =
u2(ξ) − iQ+g2(0)

ξ − λ
.

Let λ ∈ C−. Multiplying the first equation of (35) by S△+
(ξ), adding result to
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the second equation, and integrating, we get

−ig2(0) =
1

2πi

∞∫

−∞

(f2(ξ) + S△+
(ξ)f1(ξ))dξ

=
1

2πi

∞∫

−∞

u2(ξ) + S△+
(ξ)u1(ξ)

ξ − λ
dξ

−
1

2π

∞∫

−∞

Q+g2(0) − S△+
(ξ)Q−g1(0)

ξ − λ
dξ.(35)

Now using u2(ξ)+S△+
(ξ)u1(ξ) ∈ H2

−(E) and an analogue of the Cauchy theorem

for H2
−(E) [11], we get

ig2(0) = (u2 + S△+
u1)(λ).

To calculate g1(0), we multiply the second equation of (35) by S∗

△+
(ξ) and add

to the first equation, then after the integration we get

−ig1(0) =
1

2πi

∞∫

−∞

(f1(ξ) + S∗

△+
(ξ)f2(ξ))dξ

=
1

2πi

∞∫

−∞

u1(ξ) + S∗
△+

(ξ)u2(ξ)

ξ − λ
dξ

+
1

2π

∞∫

−∞

Q−g1(0) − S∗
△+

(ξ)Q+g2(0)

ξ − λ
dξ.(36)

It is not difficult to see that each integral on the right side (37) is equal to

zero. To confirm this, use the Cauchy theorem for H2
+(E) [11] and the fact that

u1(ξ) + S△+
(ξ)u2(ξ) ∈ H2

+(E). Thus, we have

(37)
[
(A − λI)−1u

]
(ξ) =

1

ξ − λ

(
u1(ξ)

u2(ξ) − Q+(u2 + S△+
u1)(λ)

)
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when λ ∈ C−.

If we take λ ∈ C+ then by the similar consideration we get g2(0) = 0 and

g1(0) = i(u1 + S∗

△+
u2)(λ). Consequently,

(38)
[
(A − λI)−1u

]
(ξ) =

1

ξ − λ

(
u1(ξ) − Q−(u1 + S∗

△+
u2)(λ)

u2(ξ)

)
.

Theorem 7. In each regular point λ the resolvent (A − λI)−1 of the

operator A (33) acting in the space HP (30) has the form (38), when λ ∈ C−,

and (39), when λ ∈ C+.
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