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Abstract. We estimate a regression function on a point process by the
Tukey regressogram method in a general setting and we give an application
in the case of a Risk Process. We show among other things that, in classical
Poisson model with parameter ρ, if W is the amount of the claim with finite
espectation E(W ) = m, Sn (resp. Rn) the accumulated interval waiting

time for successive claims (resp. the aggregate claims amount) up to the
nth arrival, the regression curve of R on S predicts ruin arrival time when
the premium intensity c is less than ρm whatever be the initial reverve.
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1. General hypotheses Our study is motivated by the following real

problem:

GH1: Let (Tn)n N∗ be a claim arrival process and Xn = Tn − Tn−1,

n = 1, 2 . . . , be the interval arrival times we suppose i.i.d having the same dis-

ribution as a variable X with values in R+. Denote by F (x) = P (X < x) its

distribution which we suppose continuous with density f̂ , strictly positive and

continuous. We put T0 = 0 and Sn = X1 + X2 + · · · + Xn.

Sn is the accumulated claim up to the nth arrival. We suppose that, with the ith

variable Xi is associated a second variable Wi such that the (Xi,Wi) are inde-

pendant. We impose Xi and Wi to be dependent. Wi is interpreted as the claim

amount of the nth claim. Define Rn := W1 + W2 . . . + Wn the aggregate claims

amount of the claims occuring up to the nth arrival.

Define Nt := sup{n ∈ N|(Rn, Sn) ∈ [0, t] × R+}.

This paper is devoted to the study of the regression function E(RNt/SNt =

x). With this aim in view we give the statement in a general setting.

GH2: Let f0 be a bidimensional point process f0 defined on a probability

space
(
Ω,A, P

)
with values in R+×R+. For any Borel set A of R+×R+ denote

by f0(A) the number of points falling in A. We suppose that l = f0(R+ ×R+)

is finite almost surely and that the mean measure µ of f0 is finite on bounded

Borel sets and admits a Radon Nikodym derivative f∗.

Let f0,1 be the first projection of f0. We denote by µ1 its mean measure

and f its Radon Nikodym density. If l ≥ 1, let (X1, Y1) ,. . . ,(Xl, Yl) be the points

of the process ordered such that X1 < · · · < Xl.

We define (X0, Y0)=(0, 0). Let α = 1, 2 and suppose l = l0, l0 > 0.

The model of regression we are considering satisfies the following:

a) E
(
Y α

j /X1 = x1, . . . ,Xj = xj, . . . ,Xl0 = xl0

)
= E

(
Y α

j /Xj = xj

)
for j =

1, . . . , l0

b) E
(
Y α

j /Xj = x
)

is independent of j and l0 for j = 1, . . . , l0. We denote this

funtion as Ψα(x)
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This model had been investigated by Dia [5], Dia et al. [8], Diakhaby

[10], Dia et al. [9].

Consider fi for i = 1, . . . , n n i.i.d points processes having the same distri-

bution as f0 and f(n) their superposition in the sens of Cox [2]. Let

m = f(n)(R+ × R+) and f1,(n) be the first projection of f(n). If α=1 we de-

note as Ψ the function Ψα.

The estimator we are dealing with is the fixed bandwidth regressogram

of Tukey [18] developped later by Major [14], Geffroy [12]. It was utilized for

estimating the regression function on a Poisson Process in [6].

Suppose m ≥ 1 and let
(
X

(n)
1 , Y

(n)
1

)
, . . . ,

(
X

(n)
m , Y

(n)
m

)
be the points of

f(n). If m = 0 we put
(
X

(n)
0 , Y

(n)
0

)
= (0, 0).

Let k be a function of n. We denote

∆k,r =

[
r

k
,
r + 1

k

[
, r ∈ N

Jn,r =
{

i, i ≥ 1X
(n)
i ∈ ∆k,r

}

νn,r = cardJn,r

Y n,r =






1

νn,r

∑

i∈Jn,r

Y
(n)
i if νn,r > 0

0 otherwise.

We then define Ψn,k the estimator of Ψ by

(∀r ≥ 0) (∀x ∈ ∆k,r) Ψn,k(x) := Y n,r.

2. The main theorems. Let f0,1 be the first projection of f0 and let

us consider the following hypotheses:

• H1) f is continuous and strictly positive.

• H2) Ψα exists and is continuous for α = 1, 2.
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• H3) for any x in R+

P

(
f0,1

(
[x, x + ∆x[

)
≥ 2

)
= o(∆x).

• H4) f0,1 satisfies the approximation (see [3])

P

(
f0,1(I) = 1

)
∼= µ1(I),

whenever I is an interval with arbitrarily small length.

• H5) the second factorial moment of f0,1(I) exists for every bounded inter-

val I.

Remark 2.1. It results from the hypothesis H3 that f0,1 is without

double points, that is

(∀i, j) (1 ≤ i < j)P

(
̟ : Xi(̟) = Xj(̟), l > 1

)
= 0.

Therefore the points X1, . . . ,Xl can be strictily ordered with probability one (see

[3]).

Theorem 2.1. If for l = k ≥ 1 E(Y α
j /Xj = x) is finite and independent

of k and j, j = 1, . . . , k, then

Ψα(x) =
1

f(x)

∫

R

yαf∗(x, y) dy,

where f(x) =

∫

R

f∗(x, y) dy.

Theorem 2.2. Suppose that the hypotheses H1, H2, H3, H4, H5 are

satisfied. If
n

k2
→ +∞ and k = o

(
n

Log n

)
as n → +∞ then

(∀x ∈ R) lim
n→∞

E
[
(Ψn,k(x) − Ψ(x))2

]
= 0

i.e Ψn,k(x) converges in quadratic mean to Ψ(x).
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3. Preliminary results.

Lemma 3.1. If l = k, then the variables (X1, Y1) , . . . , (Xk, Yk) are ab-

solutely continuous with respect to the Lebesgue measure with conditional density

[P (l = k)]−1hi
kf

∗, i = 1, . . . , k, say. Moreover

∞∑

k=1

(
k∑

i=1

hi
k

)
= 1.

P r o o f. Let Φ = χA, be the indicator function of a Borel set A. We have

E

(
l∑

i=1

Φ((Xi, Yi))

)
= µ(A)

=
∞∑

k=1

k∑

i=1

P ((Xi, Yi) ∈ A, l = k).(3.1)

Since P ((Xi, Yi) ∈ A, l = k) ≤ µ(A), there exists Borel measurable function hi
k

such that

P ((Xi, Yi) ∈ A, l = k) =

∫

A
hi

k(x, y) dµ(x, y) =

∫

A
hi

k(x, y)f∗(x, y) dx dy.

Therefore

(3.2)
∞∑

k=1

(∫

A

k∑

i=1

hi
k(x, y) dx dy

)
=

∫

A
f∗(x, y) dx dy.

The Beppo-Levi theorem implies that

(3.3)

∞∑

k=1

(
k∑

i=1

hi
k(x, y)f∗(x, y)

)

= f∗(x, y)

and so we have established the lemma. �

A similar result was obtained for the one dimensional process f0,1. The

variables Xi, i = 1, . . . , k are absolutely continuous with respect to Lebesgue

measure with conditional density [P (l = k)]−1gi
k(x)f(x) and

∞∑

k=1

[
k∑

i=1

gi
k

]
= 1.
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Remark 3.2.

• (Xi, Yi), i ≥ 1 exists only if l ≥ i. The event ((Xi, Yi), l < i) is an empty

set.

• Suppose (Xi, Yi) = (Xi,1, Yi,1) + · · · + (Xi,s, Yi,s) is a sum of s independent

random variables with density then, permuting the summation in (3.1),

(3.2) and (3.3) we have:

P ((Xi, Yi) ∈ A) =

∫

A

+∞∑

k=i

hi
k(x, y)f∗(x, y)) dx dy.

Hence the density f (i) of (Xi, Yi), which is the s-convolution of the density

of (Xi,j , Yi,j), j = 1, . . . , s, can be expressed formally as:

f (i)(x, y) =
+∞∑

k=i

hi
k(x, y)f∗(x, y). (see e.g. [15, p. 128] for convolution of

multivarate functions). Conversely if such decompostion of (Xi, Yi) exists

then equality (3.1) and the remark just above give:

∞∑

i=1

P ((Xi, Yi) ∈ A) = µ(A).

Hence µ admits a derivative f∗(x, y) =

+∞∑

i=1

f (i)(x, y) almost everywhere.

An analogous remark holds in the one dimensional case (see [4, p. 84] for

the density of a renewal process).

4. The proofs of the theorems.

P r o o f o f T h e o r em 2.1. Since Yj and Xj are only defined if l ≥ j we

have from the Lemma 3.1 and hypothesis GH2 b)

Ψα(x) = E(Y α
j /Xj = x) =

+∞∑

k=j

∫

R+

yαhj
k(x, y)f∗(x, y) dx dy

+∞∑

k=j

gj
k(x)f(x)
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for each j. We deduce that for all s ≥ 1

Ψα(x) =

s∑

j=1

+∞∑

k=j

∫

R+

yαhj
k(x, y)f∗(x, y) dx dy

s∑

j=1

+∞∑

k=j

gj
k(x)f(x)

.

Hence, letting s tend to +∞ and by using Fubini’s theorem we obtain

Ψα(x) =

+∞∑

k=1

k∑

j=1

∫

R+

yαhj
k(x, y)f∗(x, y) dx dy

+∞∑

k=1

k∑

j=1

gj
k(x)f(x)

the series in the numerator being convergent.

Lemma 3.1 and the Beppo-Levi Theorem complete the proof of the the-

orem. �

Let r := [kx] for fixed x in R∗
+ where [z] stands for the integer part of a

real number z. ∆j
k,r := (νn,r = j).

Consider the following partition of the set Jn,r defined by

Jn,r :=

n⋃

s=1

J (s)
n,r

where J (s)
n,r stands for the set of indexes i such that X

(n)
i , element of the s-th

component of f1,(n) denoted by f1,s, belongs to ∆k,r.

Let ν
(s)
n,r := cardJ (s)

n,r where card denotes the cardinal number of a set.

Lemma 4.1. Suppose that H1, H2, H3 are satisfied. Then there exists

a point ζk,r,α in the closure of ∆k,r such that

(∀j ≥ 1), (∀i ∈ Jn,r), E((Y
(n)
i )α/∆j

k,r) = Ψα(ζk,r,α).

P r o o f.
∫

νn,r=j

(
Y

(n)
i

)α
dP =

∑

j1,j2,...,js,...,jn

j1+j2+···+jn=j

∫

ν
(s)
n,r=js

(
Y

(n)
i

)α
dP.
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We make the convention that the integral in the right hand side is nul if J (s)
n,r = ∅

or if i /∈ J (s)
n,r .

Therefore if J (s)
n,r 6= ∅ and i ∈ J (s)

n,r by the hypothesis GH2 a) we have
∫

ν
(s)
n,r=js,i∈J

(s)
n,r

(Y
(n)
i )α dP =

∫

X
(n)
i

∈∆k,r,...,X
(n)
ijs

∈∆k,r

Ψα(xi)dF
X

(n)
i ,...,X

(n)
ijs

(xi, . . . , xijs
),

where (X
(n)
i , . . . ,X

(n)
ijs

) stands for the js variables of the set (ν
(s)
n,r = js).

Since Ψα is continuous, we obtain
∫

ν
(s)
n,r=js

(Y
(n)
i )α dP = P (ν(s)

n,r = js)Ψα(ζs)

with ζs belonging to the closure of ∆k,r. Hence
∫

νn,r=j
(Y

(n)
i )α dP =

∑

j1,j2,...,js,...,jn

j1+j2+···+jn=j

P (ν(s)
n,r = js)Ψα(ζs).

E
(
(Y

(n)
i )α/∆j

k,r

)
=

1

P
(
∆j

k,r

)
∫

νn,r=j
(Y

(n)
i )α dP is then between min

x∈∆k,r

Ψα(x)

and max
x∈∆k,r

Ψα(x). Since Ψα is continuous, the lemma is proved. �

Proposition 4.1. If H1, H2, H3, H4, H5 are satisfied and
n

k2
→ ∞,

n → ∞ then

1) lim
n→+∞

+∞∑

j=1

P (∆j
k,r) = 1.

2) lim
n→+∞

+∞∑

j=1

1

j
P (∆j

k,r) = 0.

3) lim
n→+∞

n

+∞∑

j=1

1

j2
P (∆j

k,r) = 0.

P r o o f. 1. Write

+∞∑

j=1

P (∆j
k,r) = 1 − P (∆0

k,r).
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We have

P (∆0
k,r) = (P (f0,1(∆k,r) = 0))n

= (1 − (P (f0,1(∆k,r) = 1) + P (f0,1(∆k,r) ≥ 2)))n

and

P (f0,1(∆k,r) = 1) = µ1(∆k,r) + o

(
1

k

)
(4.1)

=

∫ r+1
k

r
k

f(x) dx + o

(
1

k

)
=

1

k
f(τ) + o

(
1

k

)
(4.2)

where τ ∈ ∆k,r because of H4 and the continuity of f .

By H3 we have P (f0,1(∆k,r) ≥ 2) = o

(
1

k

)
.

Hence

P (∆0
k,r) = en Log(1−( 1

k
f(τ)+o( 1

k )))(4.3)

∼= e
−n
k (f(τ)+ǫ( 1

k )).(4.4)

Since
n

k
→ ∞ as n → +∞ and f(τ) → f(x) > 0 by continuity of f , the part 1)

of the proposition is proved.

2. This equality can be written in the form
∞∑

j=1

1

j
P
(
∆j

k,r

)
= E

(
1

νn,r

)
.

Let us show that νn,r → +∞ with probability one as n → +∞.

Let 0 < ǫ < 1. We have from (4.2)

P (f0,1 (∆k,r) > ǫ) ≥ P (f0,1 (∆k,r) = 1) =
1

k
f(τ) + o

(
1

k

)
.

It follows that it exists δ > 0 such that P (νn,r > ǫ) >
δ

k
. Since

n

k
→ +∞ as

n → +∞ the series
+∞∑

s=1

P (f1,s (∆k,r) > ǫ) = +∞. Therefore by the Borel-Cantelli

lemma infinitely many events (f1,s (∆k,r) > ǫ) occur with probability one. Hence

νn,r =
n∑

1

f1,s (∆k,r) → +∞ with probability one.
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The Lebesgue dominated convergence theorem completes the proof.

3. It is equivalent to show that lim
n→+∞

E

(
n

ν2
n,r

)
= 0. Write

n

ν2
n,r

=
1

nµ2
1(∆k,r)

(
nµ1(∆k,r)

νn,r

)2

.(4.5)

nµ1(∆k,r)

νn,r
=

nµ1(∆k,r)
∑n

s=1 ν
(s)
n,r

.(4.6)

But E

(
ν

(s)
n,r

µ1(∆k,r)

)

= 1 and the random variables
ν

(s)
n,r

µ1(∆k,r)
, s = 1, . . . , n are in-

dependent and identically distributed. Hence
nµ1(∆k,r)

νn,r
tends to 1 with proba-

bility one as n → +∞ by the strong low of large numbers; therefore it is bounded

with probability one. Since µ1(∆k,r) =

∫ r+1
k

r
k

f(x) dx =
f(τ)

k
with τ ∈ ∆k,r

and f(τ) → f(x) > 0 as n → +∞ by the continuity of f , we then obtain
n

ν2
n,r

= O

(
k2

n

)
a.s.

The Lebesgue dominated convergence theorem completes the proof. �

Proposition 4.2. Under the conditions of Theorem 2.2, if H4 is satis-

fied then

lim
n→+∞

+∞∑

j=1

1

j2

∑

i6=i′

cov(Y
(n)
i′ , Y

(n)
i /∆j

k,r)P (∆j
k,r) = 0.

P r o o f. We suppose that i and i′ belong to the same J (s)
n,r and

cardJ (s)
n,r ≥ 2 otherwise the covariance is nul.

Let s be fixed and i, i′ belong to J (s)
n,r .

The inequality

| cov(Y
(n)
i′ , Y

(n)
i /∆j

k,r)| ≤ (E((Y
(n)
i )2/∆j

k,r))
1
2 (E((Y

(n)
i′ )2/∆j

k,r))
1
2
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implies

∑

i6=i′

∣∣∣cov
(
Y

(n)
i′ , Y

(n)
i /∆j

k,r

)∣∣∣P
(
∆j

k,r

)

≤
∑

i6=i′

E

(
χ

∆j

k,r

(
E

((
Y

(n)
i

)2
/∆j

k,r

))1
2
(

E

((
Y

(n)
i′

)2
/∆j

k,r

)) 1
2

)

≤
j∑

β=2

E




∑

i6=i′

J
(s)
n,r

χ
∆j

k,r

Ψ2(ζk,r,2)/ cardJ (s)
n,r = β




P
(
cardJ (s)

n,r = β
)

≤
j∑

β=2

β(β − 1)Ψ2(ζk,r,2)P (νn−1,r = j − β)P
(
ν(s)

n,r = β
)

.

We have for such i and i′

+∞∑

j=1

1

j2

∑

i6=i′

∣∣∣cov
(
Y

(n)
i′ , Y

(n)
i /∆j

k,r

)∣∣∣P
(
∆j

k,r

)

≤
+∞∑

j=1

1

j2

j∑

β=2

β(β − 1)Ψ2(ζk,r,2)P (νn−1,r = j − β) P
(
ν(s)

n,r = β
)

≤
+∞∑

β=1

β(β − 1)P
(
ν(s)

n,r = β
) +∞∑

j=β

1

j2
P (νn−1,r = j − β)

≤ Ψ2(ζk,r,2)η
(2)
k,r




+∞∑

j=1

1

j2
P (νn−1,r = j) + P (νn−1,r = 0)





where η
(2)
k,r stands for the second factorial moment of f0,1(∆k,r).
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Hence for i and i′ belonging to Jn,r we have

(4.7)

+∞∑

j=1

1

j2

∑

i6=i′

∣∣∣cov
(
Y

(n)
i′ , Y

(n)
i /∆j

k,r

)∣∣∣P
(
∆j

k,r

)

≤ nΨ2(ζk,r,2)η
(2)
k,r




+∞∑

j=1

1

j2
P (νn−1,r = j) + P (νn−1,r = 0)



 .

We have from (4.3) and (4.4)

Log (nP (νn−1,r = 0)) ∼= Log n − (n − 1)

k

(
f(τ) + ǫ

(
1

k

))

which tends to −∞ as n → +∞.

Thus part 2. and 3. of Proposition 4.1 then complete the proof of the

proposition. �

P r o o f o f T h e o r em 2.2. By Lemma 4.1 we have

E(Ψn,k(x)) = E(E(Ψn,k(x)/νn,r)) = Ψ(ζk,r,1)
+∞∑

j=1

P (∆j
k,r).(4.8)

In the same way

E
(
Ψ2

n,k(x)
)

=
+∞∑

j=1

E
(
Ψ2

n,k(x)/∆j
k,r

)
P
(
∆j

k,r

)
.

E
(
Ψ2

n,k/∆
j
k,r

)
=

1

j2

∑

i

E

((
Y

(n)
i

)2
/∆j

k,r

)
+

1

j2

∑

i6=i′

E
(
Y

(n)
i′ Y

(n)
i /∆j

k,r

)
.

Express
+∞∑

j=1

1

j2

∑

i6=i′

E
(
Y

(n)
i′ Y

(n)
i /∆j

k,r

)
P
(
∆j

k,r

)

as

+∞∑

j=1

1

j2

∑

i6=i′

cov
(
Y

(n)
i′ , Y

(n)
i /∆j

k,r

)
P
(
∆j

k,r

)

+ Ψ2(ζk,r,1)

+∞∑

j=1

P
(
∆j

k,r

)
− Ψ2 (ζk,r,1)

+∞∑

j=1

1

j
P
(
∆j

k,r

)
.
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Proposition 4.1 and Proposition 4.2 imply that this last expression tends to Ψ2(x)

as n → +∞.

On the other hand

+∞∑

1

1

j2

∑

i

E

((
Y

(n)
i

)2
/∆j

k,r

)
P
(
∆j

k,r

)
≤ Ψ2 (ζk,r,2)

+∞∑

j=1

1

j
P
(
∆j

k,r

)
.

The right hand side of this inequality tends to 0 as n → +∞ by Proposition 4.1.

It follows that E(Ψ2
n,k(x)) → Ψ2(x) as n → +∞.

The Proposition 4.2 again implies, by equality (4.3), that E(Ψn,k(x)) →
Ψ(x) as n → +∞. Hence Var(Ψn(x)) → 0 as n → +∞.

Since lim
n→+∞

(BiasΨn,k(x))2 = 0 the proof of the theorem is complete. �

Remark 4.2. If there exists Y independent of the process such that Yi <

Y for i = 1, 2, . . . then E

((
Y

(n)
i

)2
/∆j

k,r

)
< Ψ1(ζk,r,1)E(Y ) and the theorem

remains valid if Y has a finite moment. Therefore, in this case, we shall restrict

ourself to processes for which in the general hypotheses GH2 α = 1.

5. Application. We suppose the hypothesis in the preceding Remark

4.2 satisfied. The risk process introduced earlier in Paragraph 1 is considered in

this section.

Let Zn := (Rn, Sn)n∈N. We suppose that (Wn,Xn) admits a continuous

density fn(w, x). Therefore the random vector Z2 = (W1 + W2,X1 + X2) admits

a density given by

f (2)(w, x) :=

∫ +∞

0

∫ +∞

0
f2(w − u, x − v)f1(u, v) du dv

where f (2) stands for the two-fold convolution of f2 and f1 (e.g. [15, p. 128]).

In a iterative manner the density of fn is expressed as f (n)(w, x) = f (n−1) ∗
fn(w, x), f0 = 1, f1 = f1. It follows from the Remark 3.2 that the process

ZNt :=

(
Nt∑

i=1

Wi,
Nt∑

i=1

Xi

)
admits mean measure µ with density f∗ defined by

f∗(w, x) :=
+∞∑

1

f (n)(w, x).
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We suppose that f∗ is continuous.

Consider the marginal process denoted by f0,1 := SNt. It admits a mean

measure µ1 defined by

∀B ∈ B(R+), µ1(B) :=
+∞∑

n=1

P (Sn ∈ B).

Define µ1([0, x]) := µ1(x) =

+∞∑

k=1

F ∗
k (x) where F ∗

k (x) stands for the k-convolution

of the distribution F and f(x) :=
dµ1

dx
(x). We suppose f strictly positive.

We have

Ψ(x) = E(RNt/SNt = x) =

∫ +∞

0 wf∗(w, x) dw

f(x)
.

H2 is verified. It is well-known that hypothesis H5 is satisfied.

Let us now show that f0,1 satisfies also H3 and H4.

1) For H3 we have

{f0,1([x, x + ∆x]) ≥ 2} ⊂
+∞⋃

k=1

(Sk ∈ [x, x + ∆x], Sk+1 ∈ [x, x + ∆x])

and

P (Sk ∈ [x, x + ∆x], Sk+1 ∈ [x, x + ∆x])

=

∫ x+∆x

x
P (Sk+1 ∈ [x, x + ∆x]/Sk = u) dFSk

(u)

=

∫ x+∆x

x
P (Xk+1 + u ∈ [x, x + ∆x]/Sk = u),dFSk

(u)

=

∫ x+∆x

x
P (Xk+1 + u ∈ [x, x + ∆x]) dFSk

because the variables Xk are independant.

We now express the term in the integral as

P (Xk+1 + u ∈ [x, x + ∆x]) =

∫ x+∆x−u

x−u
f̂(t) dt = ∆xf̂(ζ)
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where ζ ∈ [x − u, x + ∆x − u]. Hence

P (f0,1([x, x + ∆x]) ≥ 2) ≤
+∞∑

k=1

∆xf̂(ζ)

∫ x+x∆x

x
dFSk

(u)

≤ ∆xf̂(ζ)

∫ x+∆x

x
d

(
+∞∑

k=1

FSk
(u)

)

≤ ∆xf̂(ζ)

∫ x+∆x

x
dµ1(x) = ∆xf̂(ζ)µ1(∆x).

Since µ1 is continuous we get

P (f0,1([x, x + ∆x]) ≥ 2) = o(∆x).

2) For H4 we have on the one hand

(5.1) P (f0,1([x, x + ∆x]) = 1) =
+∞∑

n=0

P (f1,0([x, x + ∆x]) = 1, N(x) = n).

But

P (f0,1([x, x + ∆x]) = 1/N(x) = n) = P (Sn+1 − Sn ∈ [x, x + ∆x]/Sn = x)

= P (Xn+1 ∈ [x, x + ∆x]).

Thus we obtain from (5.1) the equality

(5.2) P (f0,1([x, x + ∆x]) = 1) =

∫ x+∆x

x
dF (u).

On the other hand, the renewal equation

µ1(t) = F (t) +

∫ t

0
µ1(t − u) dF (u)

gives

µ1([x, x + ∆x]) =

∫ x+∆x

x
dF (u) +

∫ x+∆x

x
(µ1(x + ∆x − u) − µ1(x − u)) dF (u)

=

∫ x+∆x

x
dF (u) + µ1(∆x)

∫ x+∆x

x
dF (u).(5.3)
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Thus equalities (5.2) and (5.3) complete the proof. �

It remains to establish that the hypotheses a) and b) in GH2 are satis-

fied. For this aim we need the following hypothesis:

H6) : There exists an integrable function g such that

E(Wi/Si−1 = xi−1, Si = xi) =

∫ xi

xi−1

g(u) du.

The points xi, i ≥ 1 stand for the jumps points of the process.

Theorem 5.1. Suppose that the hypothesis H6 is satisfied and the con-

ditions GH1 in the general hypotheses are verified. If Nt = r, then

1) E(Rk/S1 = x1, S2 = x2, . . . , Sk = xk, . . . , Sr = xr) = E(Rk/Sk = xk),

k = 1, . . . , r,

2) E(Rk/Sk = xk) is independant of r and k, 1 ≤ k ≤ r. Moreover, Ψ is

differentiable with Ψ′(x) = g(x) for almost all x ∈ [0, t] .

P r o o f. We have for i = 1, . . . , r and all r, using the independance of the

variables

(5.4)

E(Wi/S1 = x1, . . . , Si = xi, . . . , Sr = xr)

=

+∞∫

0

wf(Wi,X1,X2,...,Xi,...,Xr)(w, x1, x2−x1, . . . , xi−xi−1, . . . , xr−xr−1)

f(X1,X2,...,Xi,...,Xr)(x1, x2−x1, . . . , xi−xi−1, . . . , xr−xr−1)
dw

=

+∞∫

0

wf(Xi,Wi)(xi − xi−1, w)

fXi
(xi − xi−1)

dw = E(Wi/Xi = xi − xi−1).

But we have also

(5.5) E(Wi/Si−1 = xi−1, Si = xi) = E(Wi/Xi = xi − xi−1).

Because of H6) we have:

(5.6) E(Wi/Si−1 = xi−1, Si = xi) =

∫ xi

xi−1

g(u) du.
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Hence for 1 ≤ k ≤ r we get:

E(Rk/S1 = x1, S2 = x2, . . . , Sk = xk, . . . , Sr = xr) =

k∑

i=1

∫ xi

xi−1

g(u) du

=

∫ xk

0
g(u) du.(5.7)

By integrating this equality with respect to the distribution of (S1, . . . , Sk−1,

Sk+1, . . . , Sr) we obtain

(5.8) E(Rk/Sk = xk) =

∫ xk

0
g(u) du.

By Theorem 2.1 we have Ψ(x) =

∫ x

0
g(u) du. Theorem 18.17 [11, p. 286] leads

to the completion of the proof. �

Remark 5.1.

1. If E(Wi/Xi = x) = λx for all i then hypothesis H6) is verified because

of equalities (5,4) and (5.5) by summing the terms for i = 1 to i = k.

Therefore the theorem is coarsely verified with g = λ.

2. Consider the following function

E(Wi/Xi = u − xi−1) = (eλu − eλxi−1)χ[xi−1,xi](u).

H6) is also verified. Moreover for all k ≥ 1 we have on [0, xk]:

g(u) = λeλu.

g satisfies H6).

Equation (5.8) gives

(5.9) E(Rk/Sk = xk) = eλxk − 1.

Remark 5.2. Suppose now the conditions of the theorem fulfilled.
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• We then have E(Wi/Xi = u − xi−1) = (Ψ(u) − Ψ(xi−1))χ[xi−1,xi](u) and

Ψ(x) =
∫ xk

0 g(u) du.

• Define Λ by Λ([xi−1, xi]) :=

∫ xi

xi−1

g(u) du. This function can be thought of

as the mean inter-arrival claim intensity measure and g the mean

intensity of the claim process.

• Suppose that Ψ admits an asymptotic line with λ > 0 as slope. Then for

any arbitrarily small ǫ > 0, if x is large enough we have E(W1/X1 = x) =

Ψ(x) > (λ − ǫ)x. Hence E(W1) > (λ − ǫ)E(X1). Consequently, any line

having a slope c such that c <
E(W1)

E(X1)
will intersect the regression curve.

• By analogous reasoning, the same conclusion is evidently valid if

lim
x→+∞

Ψ(x)

x
= +∞ by considering

Ψ(x)

x
> c if x is large enough.

• If lim inf
x→+∞

g(x) > 0, then lim
x→+∞

Ψ(x)

x
= 0 is impossible because Ψ(x)−xg(x)

must be positive for all x.

• If X is exponentially distributed with density ρe−ρx, then Nt is a Poisson

process. Consequently, under the conditions of the preceding remarks, the

intersection of the line y = R0 + cx in the classical ruin problem and the

curve Ψ(x) will necessarily occur if c < mρ whatever be the initial value R0

( here E(Wi) = m, i = 1, . . . ,) (see [17, Corollary 7.1.4, p. 160] for another

result). Therefore the ruin time in the futur can be predicted.

Note. The limit here is thought of as t → +∞ with Nt.

Remark 5.3.

• The ruin problem is predicted by this model for any deterministic prenium

function.

• It remains to investigate the case of the stochastic premium function. This

case was studied by V. Kalashnikov [13]. The solution of the ruin problem

ceases then to be analytic. The risk model takes the form:
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(5.10) B(t) = R0 + C(t) − R(t)

with B(0) = R0 the initial capital. The directions of further research are

the following.

Suppose we can write BN(t) = UN(t)−RN(t) where UN(t) = R0+CN(t). Then

E(BN(t)/SN(t) = x) = E(UN(t)/SN(t) = x)−E(RN(t)/SN(t) = x). Defining

Φ(x) = E(UN(t)/SN(t) = x), the problem to solve is whether stochastic

dominance holds or not between Φ and Ψ (see e.g. [1, 16]).

Recall that, under some conditions (see [7]), we have for all y ∈ R and all

b > 0,

lim
n→+∞

P

(

sup
x∈[0,b]

(v(x))−1/2((n/k)f(x))1/2 (Ψn,k(x) − Ψ(x))

< (2Log k − Log Log k + y)1/2

)

(5.11) = exp

(
−e−y/2

2
√

π

)

where v(x) = Var (Y1/X1 = x), the right-hand side of (5.11) being the

Gumbel’s distribution.

Suppose we have at our disposal Φn,k, the regression estimation of Φ by

the same method as in paragraph I. Let σn,k(x) be a convergent estimation

of w(x) :=
Var (B1/X1 = x)

f(x)
. The statistical testing hypothesis dominance

we are going to resolve is then

H0 : Ψ(x) ≤ Φ(x) for all x ∈ [0, b] ,

H0 : Ψ(x) > Φ(x) for some x ∈ [0, b] .

Consider any constant c0. The test statistic

Tn,k = sup
x∈[0,b]

(σn,k(x))−1/2((n/k))1/2(Ψn,k(x) − Φn,k(x))
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which rejects H0 if Tn,k > (2Log k − Log Log k + c0)
1/2 satisfies:

A) if H0 is true.

lim
n→+∞

P (reject H0) ≤ 1 − exp

(

−e−c0/2

2
√

π

)

.

This inequality results from the equality Ψn,k − Φn,k =
(
(Ψn,k − Φn,k) −

(Ψ − Φ)
)

+ (Ψ − Φ).

B) If H0 is false.

Then there exists δ > 0 and x0 such that Ψ(x0)− Φ(x0) = δ > 0. We have

Tn,k ≥ σn,k(x0))
−1/2((n/k))1/2(Ψn,k(x0) − Φn,k(x0)).

Hence

P (reject H0) ≥ P (σn,k(x0))
−1/2((n/k))1/2(Ψn,k(x0) − Φn,k(x0))

> (2Log k − Log Log k + c0)
1/2).

Since k = o

(
n

Log n

)
, the conditions

i) inf
x∈[0,b]

w(x) = d > 0,

ii) lim
n→+∞

sup
x∈[0,b]

(
(σn,k(x))1/2(Ψn,k(x)−Φn,k(x))−(w(x))1/2(Ψ(x)−Φ(x))

)
=

0 a.s imply

lim
n→+∞

P (reject H0) = 1.

These previous lines are the framework of ideas which we can make more

precise later in an another paper.
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