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ABSTRACT. In [3] we present the construction of the semi-symmetric al-
gebra [x](E) of a module E over a commutative ring K with unit, which
generalizes the tensor algebra T'(E), the symmetric algebra S(E), and the
exterior algebra A(F), deduce some of its functorial properties, and prove
a classification theorem. In the present paper we continue the study of
the semi-symmetric algebra and discuss its graded dual, the corresponding
canonical bilinear form, its coalgebra structure, as well as left and right in-
ner products. Here we present a unified treatment of these topics whose
exposition in [2, A.ITI] is made simultaneously for the above three particular
(and, without a shadow of doubt — most important) cases.

1. Introducton. In order to make the exposition self-contained, in this

introduction we remind the main definitions and results from [3].
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Let K be a commutative ring with unit 1. Denote by U(K) the group of
units of K. Given a positive integer d, let W < §; be a permutation group, and let
x be a linear K-valued character of the group W, that is, a group homomorphism
x: W — U(K). We call a W-module any K-linear representation of W and view
it also as a left unitary module over the group ring KW. Let M be a W-
module. We denote by , M the W-submodule of M, generated by all differences
X(0)z —0oz, where 0 € W, z € M, and by M, the W-submodule of M, consisting
of all z € M such that oz = x(0)z for all o € W. Given K-modules E, F,
we denote by Multy(E?, F) the K-module consisting of all K-multilinear maps
E — F, and by T4(E) — the d-th tensor power of E. The K-modules T¢(E),
Homp (T(E), F), and Multx(E?, F) have the usual structure of W-modules,
see [1, Ch. III, Sec. 5, n® 1]. We denote the factor- module Td(E)/X_le(E) by
[X]*(E), and call it d-th semi-symmetric power of weight x of the K-module E.
By definition, [x]°(E) = K. The image of the tensor 2,® - - - ®x4 € T%(E) by the
canonical homomorphism ¢g: T4(E) — [x]%(E) is denoted by z1X ... xZ4, and is
called decomposable d — x-vector. Thus, Z,(1)X - .- XTo(q) = X(0)T1X ... X7q for
any permutation o € W.

In [3, (1.1.1)] we show that d-th semi-symmetric power [x]%(E) is a rep-
resenting object for the functor Multx (E¢, —)y- As usual, we denote by S, the
group of all permutations of the set of all positive integers, which fix all but fi-
nitely many elements. We identify the symmetric group S; with the subgroup of
Seo, consisting of all permutations fixing any n > d. Let (Wy)4>1 be a sequence of
subgroups of Sy.. This sequence is said to be admissible if Wy < Sy for all d > 1.
A sequence of K-valued characters (xq: Wy — U(K))g>1 is said to be admissible
if its sequence of domains (Wy)4>1 is admissible. We define an injective endo-
morphism w of the symmetric group Sy by the formula (w(o))(d) = o(d—1)+1,
(w(o))(1) = 1. A sequence (Wg)g>1 is called w-stable if it is admissible, and
Wy < Wy, w(Wy) < Wy, for all d > 1. A sequence of linear K-valued char-
acters (xq: Wq — U(K))g>1 is said to be w-invariant if its sequence of domains
(W4)d>1 is w-stable, and

Xd+1|wy; = Xd = Xd+1 ° W,

for all d > 1. Given a K-module E, any admissible sequence of characters xy =
(Xa)a>1 produces a graded K-module [x](E) = [[;50[X]%(E), where [x]4(E) =
[xa]*(E), and [x]°(E) = K. Denote by ¢(E) the canonical K-linear homomor-
phism [[5qa: T(E) — [X](E), where o = idx. We denote by K() a free
K-module with countable basis. The following two theorems are proved in [3]
(see [3, 1.3.1] and [3, 1.3.3]):
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Theorem 1. Let x be an admissible sequence of characters. The follow-
ing statements are then equivalent.

(i) The sequence x is w-invariant;

(73) for any K-module E the K-module [x](E) has a structure of associa-
tive graded K -algebra, such that p(E) is a homomorphism of graded K -algebras;

(i3i) the K-module [x](K(*)) has a structure of associative graded K -
algebra, such that go(K(OO)) is a homomorphism of graded K -algebras.

The K-algebra [x]|(E) is called the semi-symmetric algebra of weight x of
the K-module E, and its elements — x-vectors.

Theorem 2. Let W = (Wg)4>1 be an w-stable sequence of groups. Then
the group of all w-invariant sequences of characters on W (with componentwise
multiplication) is trivial or isomorphic to the multiplicative subgroup of K con-
sisting of all involutions.

We obtain immediately

Corollary 3. If x = (xa)d>1 s an w-stable sequence of characters, then

(i) one has x = x ', where x~! = (x;l)dzu

(ii) if the ring K is an integral domain, then the possible values of x4 in
K are £1 for any d > 1.

When Wy = {1} for all d > 1, the graded algebra [x](E) coincides with
the tensor algebra T(E). When Wy = S; and x4 is the unit character for all
d > 1, the graded algebra [x](E) coincides with the symmetric algebra S(E).
When Wy = S; and x4 is the signature for all d > 1, the graded algebra [x](E)
is the anti-symmetric algebra of FE; in particular, if 1/2 € K, then [x|(E) is
the exterior algebra A(E) of the K-module E. If E is a n-generated K-module,
k> mn, and if Wy = {1} for all d < k, Wy = Sy for all d > k, and x4 is the
signature for all d > 1, then [x|(E) is the tensor algebra truncated by its elements
of degree > k.

Let W < §; be a permutation group and let x be a linear K-valued
character of the group W. In [5, 1] we construct a basis for the d-th semi-
symmetric power [x]%(E), d > 1, starting from the standard basis for T¢(E)
in the case K is a field of characteristics 0, but the results hold when K is a
commutative ring with unit, which is an integral domain, the order of the group
W is invertible in K, and the K-module E is free, see [4] where this generalization
was announced. The counterexamples from [4] show that these conditions are
necessary for [y]?(E) to be a free K-module for all permutation groups W < Sy
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and for all characters x: W — U(K). Here we prove these general results, see
Theorem 5, its Corollary 6, and Example 10.

In this paper we continue the study of semi-symmetric algebras under
the condition that the commutative ring K is both a Q-ring and an integral
domain, and under the assumption that the K-module F is a free K-module
with a finite basis. We unite the bases for [x]%(E), d > 0, and get a basis for the
semi-symmetric algebra [x](E) of weight x, considered as a K-module. This is
done in Corollary 9.

Further, we study some duality properties of the semi-symmetric pow-
ers and algebras of weight x. In Theorem 11 we define a non-singular bilinear
form on the product [x]4(E) x [x~'%(E*), and use it to identify the K-modules
([x]4(E))* and [x~'](E*). Mimicking the case of an exterior power, we make use
of generalized Schur function (see [6]) instead of determinant. After this iden-
tification, the above bilinear form coincides with the canonical bilinear form of
the K-module [x]%(F); here M* denotes the dual of the K-module M. Thus, we
get an identification of the semi-symmetric algebra [x](E*) with the dual graded
algebra ([x](E))*9" of the semi-symmetric algebra [x](E), see Theorem 16, (7).
Moreover, we extend the sequence of the above canonical bilinear forms to the
canonical bilinear form of the graded algebras [x](E) and ([x](E))®*, by assum-
ing that the homogeneous components are orthogonal, see Theorem 16, (i7), (ii7).
Because of the above identification, the elements of the semi-symmetric algebra
[X](E™) are called x-forms. In Corollary 22 we define a structure of graded coas-
sociative and counital K-coalgebra on [x](E), and show that the structure of
graded associative algebra with unit on its dual ([x|(E))*" = [x](E*), defined by
functoriality, coincide with the usual structure of graded associative algebra with
unit on the graded K-module [x](E*). In particular, when [x](E) is the graded
K-module underlaying the symmetric algebra (or the exterior algebra, or the
tensor algebra) of the K-module E, we obtain the usual structure of K-coalgebra
on it (see [2, A III, 139-141]). In Section 5, following [1, Ch. III, Sec. 8, n°® 4],
we find out the main properties of the left and right inner products of a y-vector
and a y-form.

2. Basis of semi-symmetric algebra of a free module. Let W
be a a finite group, and let x be a linear K-valued character of the group W. Let
us assume that |W| € U(K) and set a, = [W|[™'Y .y x '(0)o. The element
ay of the group ring KW defines K-linear endomorphism a,: M — M by the
rule z — ayz. Then the W-submodule M of M is the kernel of a,, and the
W-submodule M, of M is the image of a,.
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Let M be a free K-module with basis (e;);c;. Let us suppose that the
finite group W acts on the index set I. Denote by W; the stabilizer of i € I
and by W a system of representatives of the left classes of W modulo W;. Let
(7i)ier be a family of maps W — U(K) such that v;(o7) = v7i(0)yi(7) for all
1 € I, and all 0,7 € W. In particular, the restriction of v; on W; is a K-valued
character of the group W; for any ¢ € I. The K-module M has a structure of
monomial W-module, defined by the rule

(1) Uei:’yi(a)egi, ceW, iel.

We set I(x, M) ={i € I|~ =xon W}, lo(x,M)=I\I(x,M).

Lemma 4. (i) The set I(x, M) is a W-stable subset of I;
(1) one has ay(v;) =0 fori e Io(x, M).

Proof. (i) Giveni € I, suppose 0 € W and 7 € W;. Then W; = cW;0 !
and x (070~ ') = x(7). Moreover,

701'(0—7—0—71) = 70*101'(0—7—)701’(0—71) - ’Yai(o—il)’ﬁ(o—'r) =

Yori(o ™ )i(07) = yi(0 " oT) = % (7).
(73) The complement of I(x, M) in I also is W-stable; let i € I\I(x, M).

We have
( |W| ! Z Z X UT ’Y’L UT)UUTz =
UGW('L) TeEW;
‘W‘_l Z Z X 'Yz 'Uaia
O'EW(Z) TGWl

and the equality a,(v;) = 0 holds because the product X' is not the unit
character of the group W;. O

We choose an element 4 from any W-orbit in I and denote the set of these
i’s by I*. Finally, we set J(x, M) =I"NI(x,M), and Jo(x, M) = I*"N1Iy(x, M).
Following [2, Ch. III, Sec. 5, n° 4], we get a basis of the K-module M consisting
of

(2) ejv je J(XvM)v
(3) e; — X(U)%(J)egi, 1€ I*, o c W(i), o ¢ Wi;
(4) e, 1€ J()(X,M).
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Theorem 5. Let the ring K be an integral domain and let |W| € U(K).
Then

(i) the union of the families (3) and (4) is a basis for M ;

(i) the family ay(ej), j € J(x, M), is a basis for M

(i9) the family e;j mod(, M), j € J(x, M), is a a basis for the factor-
module M /M

Proof. (i) The family (3) is in , M by definition. Lemma 4, (i), implies
that the family (4) is contained in , M. Now, set J = J(x, M) and suppose that
> jes kjay(vj) = 0 for some k; € K such that k; = 0 for all but a finite number
of indices j € J. We have

D kjay(v) = WY D kWX (0)7(0)vey,

jed JE€J geWw )

hence k; = 0 for all j € J, which proves part (i). In addition, we have proved
that the elements a,(v;), j € J(x, M), are linearly independent.

(i7) The elements ay(vj), j € J(x, M), are in M, and, moreover, each
element of M, has the form a,(z) for some z € M. Since the union of families (2)
— (4) is a basis for M and since the endomorphism a, annihilates (3) and (4),
part (ii) holds.

(731) Part (i7) implies part (zii). O

Now, let us suppose that the K-module E has basis (e;)scr. Then the
tensor power M = T?(E) has basis (e;);cz4, and if W < S, is a permutation
group, the rule ce; = ey, 0 € W, defines on M a structure of monomial W-
module.

Corollary 6. Let W < S; be a permutation group and let x be a linear
K -valued character of W. If K is an integral domain and |W| € U(K), then the
d-th semi-symmetric power [x](E) of weight x of a free K-module E with basis
(e)eer 1s a free K-module with basis

(X - - Xejd)(jl,...,jd)eJ(X,Td(E))'

Proof. Substitute M = T%(E), I = L%, v;(¢) =1 for all 0 € W, i € L,
in Theorem 5. O

Corollary 7. Let W < S; be a permutation group and let x be a linear
K -valued character of W. If K is an integral domain, |W| € U(K), and if E
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is a projective K-module (a projective K-module of finite type), then the d-th
semi-symmetric power [x](E) of weight x is a projective K-module (a projective
K -module of finite type).

Proof. Let L be a set (a finite set), and let K(X) be the free K-module
with the canonical basis indexed by L. Let

0—E— Kb

be a splitting monomorphism of K-modules. Since the functor [x]%(—) transforms
epimorphisms into epimorphisms, the sequence

0— XUE) — KUKE®D)

also is a splitting monomorphism of K-modules, and, moreover, according to
Corollary 6, [x]*(K ") is a free K-module (free module with finite basis). There-
fore [x]%(E) is a projective K-module (a projective K-module of finite type). O

Remark 8. Let usset J (x,7° (E)) = {0}, ey = 1. We unite the bases of
all semi-symmetric powers [x]?(E) (see Corollary 6), thus getting J (x,T (E)) =
UgsoJ (Xd,Td (E)) In particular, when L = [1,n], the elements of the set
J (X,T d (E)) can be chosen to be lexicographically minimal in their W-orbits,
and we can introduce following notation:

1(x.TUE)) = I(x,n,d), To (x., T (B)) = Io(x. . d),

J(Td(E)7X) = J(X?”vd)v ‘](T(E)7X) = J(Xvn)

For any i € I(x,n,d) we define ¢m(i) to be the lexicographically minimal element
in the W-orbit of ¢, and set ((i) = x4(0), where o € Wy is such that o7 = ¢m(i).
Since the restriction of the character yg4 is identically 1 on the stabilizer (Wy);,
the element ((i) € U(K) does not depend on the choice of o.

Let x = (xa)a>1 be an w-invariant sequence of characters and let W =
(W4)a>1 be the sequence of their domains.

Corollary 9. Let K be both a Q-ring and an integral domain.

(i) If £ is a K-module with basis (e¢)ecr, then the family (e;)ci(r(B) )
is a basis for the semi-symmetric algebra [x|(F) of weight x, considered as a
K-module;
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(ii) If E is a K-module with finite basis (eg)j_,, then the family (€;)jc j(xn)
is a basis for the semi-symmetric algebra [x|(E) of weight x, considered as a K-
module. If j € J(x,n,d) and k € J(x,n,e), then the multiplication table of the
K-algebra [x|(E) is given by the formulae

ejxer = { 0 if (4,k) € Io(x,n,d +e)
’ CUs K)emmewy if (4. k) € I(x,n,d + e).

Proof. (i) Straightforward use of Corollary 6.

(41) The first part is a particular case of (i). We have ejxer = e(j ),
and in case (j, k) € Io(x,n,d + e) Lemma 4, (ii), implies e(; ;) = 0. Otherwise,
em(k) € J(X,n,d + e), and we make use of Remark 8. O

Example 10. We will show that if some of the conditions of Corollary 6
fail, then the K-module [x]%(E) is not necessarily free.

(i) The ring K is not an integral domain.

We set K = Zy5, W = {(1),(12)(34), (13)(24), (14)
four group, x((12)(34)) = 4, x((13)(24)) = 4, x((14)(23)) = 1, E = Ke1 ][] Kes,
I=1[1,2]* ¢ =¢€,®...®e; for i = (i1,...,i4) € I. We have x = x~!. The
K-module T*(E),, is spanned by the elements

ax(€(1,1,1,1)) = 106(1,1,1,1)7

ax(€(2,2,2,2)) = 106(2,2,2,2)7
ay(e,1,2.2)) = 5€(1,1,2,2) + 5€2.2,1.1)
ay(en2,1,2)) = 5e(1,2,1,2) + 5€(2,1,2,1)
ay(e2,2,1)) = 8e(1,2.2,1) + 8€(2,1,1,2),
ay(eq1,1,2) =eq11,2) T e,1,21) T e21,1) +4€2,1,1,1)s
ay(e222) = €222 T €122 + €212 +4€@2221)-

Thus, the Zi5-module M, is isomorphic to the submodule
ZnseW ] Z15e® [] Z1se™ [ Z1510e™ ] 215106 ] Z155¢' [ Z155¢™

of a free Z15-module with 7 generators e ..., e, This submodule has 1533%
elements, and this number is not a power of 15, hence [y|*(E) = M/, M is not a
free Z15-module.
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(73) The order |W| of the group W is not invertible in the ring K.

We denote by ¢ a primitive 3-th root of unity and set K = Z[e], W =
{(1),(123), (132)} < S5, x(123) = ¢, E = Key [[Kea, M = T3(E), I = [1,2)3,
e = e, Qe e, for i = (il,ig,ig) € I. The K-module [X2]3(E) = M/XM is
spanned by the elements

€(1,1,1)1 €(2,2,2)» €(1,1,2)» €(1,2,2) (mod xM)-
Suppose that for some k1,..., ks € K we have
(5) kie1,1) + kae(a0,2) + kseqi,1,2) + kae(12.2) € M.
Applying the operator of x-symmetry A, = x%(c)o, we obtain
k1Aye 1) + k2Aye2.2) + ksAye1,2) + kaAye 2,2) = 0.

On the other hand, Axe(l’m) = AX€(272’2) =0, and Axe(l’m) and AX€(172’2) are
linearly independent over K, hence k3 = k4 = 0. Thus,

krew i1y + keeo0) = l1(1 —e)eq 1,1y + la(l —€)ep a0 + f,

where (1, 0y € K, and f is a K-linear combination of the tensors ey 1 2) —€€e(21,1),
€(1,1,2) —E2€(1,2,1) €(1,2,2) — €€(2,1,2), and €(1 9.9y — €201, that is, k1 € (1 —¢)K,
ks € (1 —¢)K, and f = 0. Therefore, (5) is equivalent to k1 € (1 — ¢)K,
ko € (1 —e)K, and k3 = k4 = 0. In particular, the K-module [x?]*(E) has
non-zero torsion part, hence it is not free.

3. Duality. Let the ring K be an integral domain. Let us denote by F
the category of K-modules with finite bases and, as usual, denote by Ob(F) its
set of objects. Let E be a K-module with finite basis (e;)}_; and let E* be the
dual K-module with dual basis (e;)}_,. Denote by (, ) the canonical bilinear
form £ x E* — K, (z,x2*) — z*(x). Let W < Sy be a permutation group with
|W| € U(K), and let x be a linear K-valued character of W. We set |Wy| = 1.
For any d x d-matrix A = (a;j) over K, the expression

AV (A) =" x(0)ag-1(1)1 - - Gg=1(a)a
ceW

is known as (generalized) Schur function. It was introduced by I. Schur in [6].
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Theorem 11. (i) The formulae
(6) MUE) x X UE) — K,

B(xix. .. xza,wix " ox T wh) = dY (< zaaf >)00),
for d > 1, and the formula

(7) X°(B) x [x 'Y (E) — K,
B(k, k*) = kk*,

define non-singular bilinear forms;

(i) if 5« [CIUE) = (B (resp, 10 (B = (D°(B))")
is the isomorphism of K-modules, associated with (6) (resp., with (7)), then the
family (D = (L(g))EeOb(]:) (resp., 1) is an isomorphism of functors,
LD A=) = ()

(i) after the identifications via the functor % from (ii), B is the canoni-
cal bilinear form of the K-module [X]*(E), and the bases (ej)jes and
((1/|Wj))er)jes are dual.

Proof. (i) For d = 0 we get the multiplication of the ring K. Let us
suppose d > 1. The product E¢ x (E*)d has a natural structure of W x W-module
(see [3, 2.1]), and the map

Elx (E*)Y = K,

(xlv"'vl'd?xiv" xd)'_)dw((< .’El,.T >)’Lj 1)

is semi-symmetric of weight y with respect to variables x1,...,24, and semi-
symmetric of weight x ! with respect to variables z7, . . . , 3. Hence by [3, Lemma
2.1.2] it gives rise to a bilinear form B given by formulae (6). We have J(x,n,p) =
J(x~Y,n,p) = J, and in accord with Corollary 6, (e;);jcs is a basis for [x]4(E),
and (e})jes is a basis for [x —1N4(E*). If 6(j, k) is Kronecker’s delta, then

6]76k Z X 6] 71(1>7€k‘1> <ej071(d)76;;d>
oceW
= X 1000101y K1) - - 810y Ka)s
oeW

hence

(8) B(ej, er) = [W;|0(4, k).
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In particular, (6) and (7) are non-singular forms for any d > 0.
(ii) For any K-linear map u: E — F we denote by u: F* — E* its
transpose. A direct computation shows that

9) (9 (w) 0 = 15 o (" )4(w)).
(#43) The equality (8) yields that (e;) e, <Le;‘> is a pair of dual
‘Wj‘ jeJ

bases. O
Remark 12. Throughout the end of the paper we will use notation

(x1x ... xza, zix V. ox 7)) = Blzix. .. oxxg, i . ox T ah),

and in this notation, for any x = >
has

(10) (w,2%) = [Wjlaas.

Jj€J

. * * %
jesTj€j, and for any a* = 3., x7e}, one

Remark 13. In accord with Theorem 11, (i7), (iii), for any d > 1, and
for any K-module E with finite basis we identify ([x]¢(E))* with [x~!]%(E*) as
K-modules via the functor +(¥), and call the elements of [y~ !%(E*) d — x-forms
on E.

Corollary 14. For any K-linear map u: E — F one has {([x]%u) =
D1 ().

Proof. This the equality (9) after the identifications via the functor
LD O

Let A = (ars) be an m x n matrix over K and let d > 1. For any
jeJ(x,m,d), k€ J(x,n,d), we set ajj, = Hle @y, and

A0 = D XM (Tark,

TeW @)

and call the expression A;);(x) the (j, k)-th row minor of weight x of A.

Let A = (a,¢) and A" = (al,;,) be two nxd matrices over K. Using notation
from the beginning of Section 3, we set zy = Y| apeey, 5 = > .o 4 al,es, where
t,h =1,...,d. Then (xy,2}) = > I, anal, is the th-entry of the matrix ‘AA’,
and hence

(11) (T1X - xxa, i ox ) = dy (FAA).
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On the other hand,

(12)  wix..ox@ma= Y Ay (e, aix T = Al (el
jed jed

where A;)(x) = Agr(x), and A’(j)(xfl) = A’(j)k(x’l) with £ = (1,....,d).
Therefore (10) and (11) yield

VAAT) =) I AG )AL ().
jed

In particular, when A = A’ we obtain generalized Lagrange identity

WAA) =) W5 AG 00 AG (x ).
JjeJ

Lemma 15. Let A = (aw,) be a d x d matriz over K. Then, in the
previous notations, one has:

(z) dX(tA) = dxfl(A);

(i1) dy(A) = (m1x ... x twa,elx ... Xe);

(i13) The generalized Schur function d(A) is semi-symmetric of weight
X~ (resp., of weight x) with respect to the columns (resp., the rows) of the
matriz A.

Proof. (i) Direct checking.

(i4) Using (¢) and (11) with d = n and A’ = I (the unit d x d matrix),
we obtain the equality.

(747) This is an immediate consequence of (iz) and (7). O

Throughout the end of the paper we fix the following notation:

K is both a Q-ring and an integral domain;

(Xa: Wq — K)g>1 is an w-invariant sequence of characters;

FE is a K-module with finite basis;

[X](E) is the semi-symmetric algebra of weight x of E.

We remind that the dual graded K-module ([x](E))*9" is, by definition,
the direct sum [[;50([x]4(E))*, where we identify a linear form on [x]¢(E) with
its extension by 0 to [x](E). Let us set ¢ = [[;~¢ NOR

Since the K-module E has a finite basis, then it is a projective module of
finite type, and using Corollary 7, [2, A II, p. 80, Cor. 1], and Theorem 11, we
obtain
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Theorem 16. (i) ¢: [x](—*) — ([x](—))*" is an isomorphism of func-

tors;

(i) After the identification via the functor v from (i), the restriction of
the canonical bilinear form of the K-module [x](E) on [x](E) x [x|(E*) is given
by the formulae
(13) (5 XE) x X(ET) — K,

0 if T#s

(@Ix - x@r 2IX- - xT) = (@, 25))] ) if r=s2>1

1 if r=s5=0;

(7i1) for any k > 2 the restriction of the canonical bilinear form of the
K-module ([x](E))®* on ([X](E))®* x [x](E*))®* is given by the formulae

(14) (0 (DAEN®F x (E*)®* — K,

(TIX o XTr QXTI e XTpr @ v XX e XTa QTN - X Ty @ -0 ) =

{ 0 if (ryr!, ) # (s,8,..0)
(@1X- - XTr, TEX - XTI (TN X T, XXXy i () = (5,8, ..0),

Remark 17. Let d, e.. ., h, be non-negative integers with d+e+---+h =
n. We set
J(X;n;d7e7"'7h) =
{(G,ky...ur) € J(x,n,d)xJ(x,n,e)x---xJ(x,n,h) | bm(j, k,...,r)=(1,...,n)}.

Let M(x;n;d,e,...,h) be the set of lexicographically minimal representatives of
left classes of W,, modulo Wy x w(W,) x - -- x wiet(W},). We identify the set
M(x;n;d,e,...,h) with the set J(x;n;d,e,...,h) via the canonical bijection

M(x;n;d,e, ... h) — J(x;n;d,e, ..., h),
C—((C(1),...,¢(d),(C(d+1),....¢(d+e€),....(C(d+e+---+1),...,{(n))).

We fix (A, u,...,v) € J(x;n;d,e,...,h), and let 0 € W,, be a permu-
tation, such that A = (o(1),...,0(d)), p = (c(d + 1),...,0(d + €)), ..., and
=(oc(d+e+---+1),...,0 ()) Wehav C(A\ py...,v) = x(o). Let us write

dy(A) for dy, (A).
Proposition 18. Let A be an n X n matriz over K. Then

dx(A) -
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C .., v) > CGoky ) A GO A (0 - - Ay ().
(7,k,..,m)EJ(x;n;d,€,...,h)

(Laplace expansion of d,(A) with respect to A, p, ..., v).
Proof. Indeed, using Lemma 15, (i7), Corollary 3, (i), the expan-
sions (12), and Corollary 9, (ii), we obtain

dy(A) = (xix ' x el xel) = (@) Xan, el xel) =

COA By oo s VBN X+ XTAGX T X -+ XT e XTog X - - X Ty €1X -+ - XEpy) =

CON pty - 0) > C(jr k..o ym)

(J,k,...,m)ET (x,m,d) X J (x,m,e) X -+ X T (Xy;m, )
A0 Ay (X) - - Ay D €em(k,or)s E1X - - - XE) =
C()\»Ma-'-’/) Z C(]vka 7T)A(j))\(X)A(k)/J(X) A(T‘)Z/(X) U

(j7k7"'7T)EJ(X;n;d7e7"'7h)

Proposition 19. For any non-negative integers d, e,..., h with d + e +
-+ 4+ h = n one has the following expansions of the bilinear form (13) (Laplace
expansions):
(TIX - Xy TIX- - XTS,) =

> XO{@eyX - - XTe(ay, TEX - - - XTh)
CeEM (xsnid,e,....h)
<~T§(d+1)X o XT¢(d+e)s $Z+1X e X$Z+e>

T <l‘§(d+e+---+1)X - XT¢(n)s l‘:z+e+~--+1X e XTg) =

Z X(C)<131X---X$d»l‘z(1)X---X$Z(d)>
CeEM (xsnid,e,....h)

(Tdt1X - - XTdte, To(ap1)X - - - XTE(dpe))

X gretot1X - - - X, xZ(d+e+---+1)X . sz(n)).

Proof. We have
(TIX - X, TIX- - XT) =

Z X (zeray, 21) - (@eray ) (e @r1) Tiagr) - (Ter(dre)s Tie))
CEWn
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(B (det 1) Tagedt1) 7 (B¢ () Tn)) =

> > X(Ox(@)x(r) ... x(n)
CeM(x;snidie,...h) (0,7 ...n" ) EWgxwd(We) X - xwdtet (W)
((Teor 1)), 1) - (Te(or(a))> Ta) ) (T (r(d1))s Tign) -+ (Te( (de))s Tatge))

c (T (dretet 1)) Tagetrot1) 0 AT (n))> Tn)) =

> XD x(@ ) ey @5) -+ (Te(or @y 7))

CeEM(x;nid,e,...,h) o' €Wy

(> X agary @) @ are): Tive))
T ewd(We)

- ( Z X @ ey (dtett1))s Tiedos1) = (Tl (n))s Tn)) =
o cwt et (Wy)

S x(O@eayX - Xy TX X))
CeM (xsnidse,....h)

(Te(@r1)X -+ XTe(dge)s Taa1 X - - XTgae) -
(T¢(dtet+1)X - - - XTC(n) Tggetop1X - XTp)-
For the second equality, we can write

(TIX - X, TIX- - XT) =

Z X(C/)(<131»332/—1(1)> -+ (T, xZ/—l(d)>)(<$d+1vxZ/—l(dH)) o (Tdpe 332/—1(51+e)>)
¢'eEWn

ce (<$d+5+...+1, $2'_1(d+6+---+1)> s <l‘n7 $2’—1(n)>) =

Z X(C/)(<$1v$21(1)> T <f'3d»$Z~/(d)>)(<$d+1v$2/(d+1)> T <xd+€7$2’(d+e)>)
C'EWn

. (<l‘d+5+...+1, szl(d-i-@-i-‘--—&-l)) . <l‘nv l'z/(n)>),
and then we proceed by analogy. O

According to Lemma 31, for any n we obtain a K-linear map
D™M(E) = @atetthmnX]U(E)S [ (E) ... ©[\]"(B),

T1IX .- XTn — Z Z x(p)

d+e+--+h=n peM(X;n§d7€7'“7h)
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(Tp)X -+ - XTp(a)) B (T p(ds1)X - - - XTp(dte)) @ -+ B(Tp(dpett1)X -+ - XTp(n))-

Therefore, for any k£ > 2 we get a homomorphism of graded K-modules
(15) cr(B): (B) — (X(E)®F,
cr(E)@ix. .. xan) = > > X
d+e+--+h=n pe M (x;n;d,e,...,h)
(Tp1)X -+ - XTp(d)) D (T p(d1)X - - - XTp(dte)) D -+ D (T p(det-t1)X - - - XTp(n))-
Corollary 20. For any k in number non-negative integers d, e,..., h

withd+e+---+h =n one has

(TIX e X T, TIX -+ XT) =

(ck(E)(@1X - XTn)s TIX -+ - XTg@T g1 X -+ - XTgy e @+ Ty p1X - - XTpy) =
(TIX - XTABTA+1X - - - XTl4e® ** * O et t1X - - - XTns Ck(ET)(TTX - - xT7,))-

Proof. Using (14), and Proposition 19, we have
(TIX - X T, TIX - - XT) =
Z X(C)(%(l)x e Xxg(d)affx e XTy)
CeEM(x;nid.e,....h)
<l‘g(d+1)X o XT¢(dre)s 1/‘§+1X e X$Z+e>

(et )X X Ty g1 X - XTR) =

> x(©

CeM(x;midse,....h)
(Te)X -+ - XTe(@) BT 1)X - - - XT((dte)® ** BT (dbet-+1)X - - XT((n)s
TIX - XTROTG X - XT e @+ OTgyeqp1X - XTp) =
(u(BE)(@1X - XTn), T1X - - XTGRTGL1X -+ XT e @ " BTy opg1X - - - XTp)-

Similarly, using the second identity of Proposition 19, we obtain the sec-
ond identity of this corollary. O

4. Coalgebra properties. Let us set ¢, = cx(E), and cp = c2(E),
where ¢, (E), k > 2, is the homomorphism of graded K-modules from (15).
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Proposition 21. One has
Cl — (Ck71®1) OCE = (1®Ck,1) ocCg,

where 1 is the identity map of [x|(E).
Proof. We have

cplex.xaz)= Y Y x(p)

pth=n pe M (x;n;p,h)
(@p(1)X - - XTp(p)) O (T p(p+1)X - - - XTp())-
First, we apply the K-linear map c;_1®1 and get

(ck-1®1)(cp(rix. .. xTn)) = > > xlp)

pt+h=n peM (x;n;p,h)

k-1 (Tp1)X -+ X p(p)) @ (Tp(p+-1)X - - - XTp(n)) =

> > > Yo X0 (@ pp(1)X -+ XTp(o(a))

p+h=n peM (x;n;p,h) d+e+-=p o€ M (x;p;d,e,...)

B p(o(d+1)X - + - XTp(p(d+e))) & -+ - O(Lp(pa1)X - -+ XEp(n)) =

Z Z Z Z X(PO) (T p(o(1))X - - - XTp(o(d)))

p+h=n peM (x;n;p,h) d+e+---=p o€ M (x;p;d,e,...)

(T p(o(d+1))X - - - XTp(o(d+€)))® - - - B (Tp(o(p+1))X - - - XTp(o(n))) =

> > X(PO)(Tp(o(1)X - - - XTp(o(d)))

dted-+h=n (p,0)€M (x;n;p,h)x M (x;pid.e,...)

(T p(o(d+1)X - - - XTp(o(d+¢))) @ - - - (T p(o(p+1))X - - - XTp(o(n)))-

In terms of Notation 29, we set poo’r’...n" = 1- (po), where o/ € Wy, 7' €
wd(W6)7"'7 77/ € wp(Wh)v o = o, 0 € Wy, T = wd(T)7 T € We, ., T]/ = Wp(ﬁ)»
1 € Wi Then x(po)x(o)x(7) ... x(n) = x(1 - (po)), and we have

(ck—1@D)(cp(x1x ... xTR)) =

> > X(L- (P2)(Zp(o(a(1)))X -  XTp(o(a(d))))
dte+-+h=n (p,0)€ M (x;n;p,h)x M (x;p;dse;...)

(T p(o(r(d+1))X - - - XTp(o(r(d+€)))© - - - B (Tp(o(n(p+1)))X - - - XTp(o(n))) =
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> > X(L+ (p0) (@ (1o)X - - - XT(1-(pe)) ()

d+e+-+h=n (p,0)EM (x;n;p,h) x M (x;p;d.e,...)

R(Z(1-(po))(d+1) X - - - XT(1-(po))(d+€)) © - - - B(T(1-(p0)) (p+1) X - - - XT(1-(pe))(m))-

According to Lemma 32 we obtain
(ck1@D)(cp(x1x ... xTR)) =
> > X()(Te)X - - - XTe(a))
d+e+---+h=nce M (x;n;d,e,...,h)
®($§(d+1)x ce Xl‘g(d—&-e))@ s ®($§(p+1)x s X'Tg(n)) =
ek (T1X - XTn)-
Similarly, we apply the K-linear map 1®ci_1 and obtain

(1@ck-1)(ep(@x. .. xm) = > >, xl(p)

d+q=n pec M (x;n;d,q)

(Tp(1)X - - X () ) O k-1 (T p(a+1)X - - XL p(n)) =

> > > > X(PO)(Tp(1)X - - - XTp(a))

d+q=n pc M (x;n;d,q) e+-+h=q gcw? (M (x;gse,....h))

(T p(o(d+1)X - - - XTp(p(d+)))® - - - B(Tp(o(p+1)X - - - XTp(o(n))) =

> > > > X(PO) (T p(o(1))X - - - XTp(o(d)))

d+q=n pe M (x;n;d,q) e+ +h=q gew? (M (x;g;e,...,h))

(T p(o(d+1)X - - - XTp(p(d+)))® - - - B (Tp(o(p+1)X - - - XTp(o(n))) =

> > X(PQ) (T p(o(1))X - - - XTp(o(a)))

dtet-+h=n (p,0)e M (x;n;d,q) xw (M (x;gse;-..,h))

(T p(o(d+1))X - - - XTp(o(d+e))) @ - - (T p(o(p+1)X - - - XTp(o(n))) =
> > X(L- (P2 (Z(1-(p)) W)X - - XE(1-(pe))(d))

dte+-+h=n(p,0)eM (x;n;d,q) Xw (M (x;qse,...,h))
RA(Z(1(pg)) (d+1)X - - - XT(1-(po))(d+€)) © - - - B(T(1.(p)) (p+1)X - - - XT(1-(pe))(n)) =
> X() ()X - - - XTo(a))

dtetth=nceM(x;n;dye,...,h)

RTo(d41)X - - - XTs(dte))® - - B(Te(pr1)X - - - XTo(n)) =
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ck(T1X -+ XTn)- O

Let us denote by mg the multiplication of the algebra [x](E):
mp: X|(E)®X(E) — XI(E),

TIX - XTABYLIX - - - XYe F> TIX - - - XTAXYLX - - - XYes
and by eg: K — [x](E), eg(a) = al, the unit of the algebra [x](E).

Corollary 22. (i) The K-linear map cg: [x](E) — [X](E)[x|(E) defines
a structure of graded coassociative K -coalgebra on the graded K-module [x](E),
which is, moreover, counital, with counit, the linear form eg defined by the rule

ee: X(E) — K,

en(2) :{ z ifz€ X]°(B)
0 if 2 (W(E);

(73) The structure ([x](E), cg,€r) of graded coassociative K -coalgebra with counit
on the graded K-module [x]|(E) defines by functoriality a structure of graded as-
sociative algebra with unit on its dual ([x](E))*" = [x|(E*), and the last one
coincide with the canonical structure ([x|(E*), mpg=,eg+) of graded associative al-
gebra with unit on the graded K-module [x](E*);

Proof. (i) The case k = 3 of Proposition 21 yields coassociativity of
[X](E). We have
(ee®@1)(c(z1x - - X2n)) =

(ee®1)( Z Z X(P)(Zp1)X -+ XTp(p)) @ (T o )X - - - XTp(n))) =
p+h=n peM (x;n;p,h)

> > XEeE(@pmX - XTp)) D (T ppa1) X - - - XTp(n)) =

p+h=n pe M (x;n;p,h)
> XM @)X - XTpm) =
PEM (x;m;0,n)
1®x1X ... XTn = T1X .. XTn-
Similarly,

(I®ep)(cg(T1X .- XTn)) =

(1®ep)( Y > X @)X - XTp(@) D (T pas1)X - - XTp(m))) =
d+q=n pe M (x;n;d,q)
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Z Z X(P)(Zp1)X -+ - XTp(a)) REE((Tp(pr1)X - - - XTp(n))) =
d+q=n pe M (x;n;d,q)

Z X(p)(xp(l)x---Xxp(n))®€E(1) =
pEM (x;n;m,0)

T1X - - XTn®l =21X ... XTh.

Therefore
(6E®1) oCEp = (1®6E) ocg = 1.

(71) Corollary 20 yields that the multiplication mpg- in the graded alge-
bra ([x](E*), mg=,eg+) is the transpose of the comultiplication cg of the graded
coassociative K-coalgebra with counit ([x](E),cg,€r). Moreover, the counit eg
is an element of ([x]|(F))*9", such that if z € [x](E), 2 =20+ 21 + 22 + - - -, then
(z,€eg) = z9 = zol. The transpose of €g is the K-linear map K* — ([x](F))*",
{+— foer. We compose it with the canonical isomorphism K — K*, and, after
the identification of ([x](E))*9" with [x](£*) via the isomorphism from Theo-
rem 16, (), we get the K-linear map K — [x|(E*), k — k1, and this is the unit
1 of the algebra [x](E*). O

5. Inner products of a x-vector and a x-form. The semi-
symmetric algebra [x](E) becomes a Z-graded K-module by setting [x]4(E) = 0
for negative integers d.

Let d and g > 0 be integers with d+ ¢ = n. Let a = a1x ... xa, be a fixed
decomposable ¢ — x-vector. The right multiplication by a in the algebra [x](E),

TIX -+ XTd > T1IX - - XTgXA1X - - - XOqg,

defines an endomorphism €’(a) of degree g of the Z-graded K-module [x|(E). The
transpose of €'(a) is an endomorphism i'(a) of degree —q of the dual Z-graded
K-module [x](E*). We define €/(a) and #'(a) for a € [x](F) by linearity.

For any x-vector a € [x](E) and for any x-form a* € [x](E*) denote the
x-form i'(a)(a*) by a]a* and call it left inner product of a and a*. Thus,

(xxa,a”) = (x,a]a™)
for x € [x](E).

Proposition 23. Let d and q > 0 be integers with non-negative sum
n = d+ q. Then for any decomposable q — x-vector a = aix...xaq, and for
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any decomposable n — x-form a* = aix ... xa},, the left inner product a|a* is the
d — x-linear form

Z x(p){aix ... xaq, a:‘)(d+1)x . Xa;(n)>a:;(1)x . Xa;(d)
pPEM (x;n3d,q)

in case n > q, and 0 in case n < q.

Proof. In case n < ¢ we have a|a* = 0 by the definition of the endo-
morphism ¢’ (a). Otherwise, i'(a1x ... xaq)(aix ... xa}) is the linear form

*

TIX .- XTd = (TIX - XTIXALX - - - XAqs GTX - - - XAny)

on [x|(E). Proposition 19 yields
(TIX - XTAXALX - - - XAq, G1X - - - XCpy) =

Z x(p){(x1x .. XTdy a;(l)x e XQZ(d)MalX . XAg, az(dJrl)X e XaZ(n)> =
pEM (x;n;d,q)

(x1X ... XTd, Z X(P)<a1X---X‘lqva:(d+1)X---Xa:;(n)>a;(1)X---Xa:;(d)>-
PEM (x;n;d,q)
After the identification of [x]%(E))*9" with [x](E*), we obtain the result. [

Given non-negative integers d, ¢ with d + ¢ = n, a integer m > 1, and

My, j(x;n;d,q) = {p € M(x;n5d,q) | j1 = Kpariys---Jq = Kpm) b
Mlﬁ;,i,.(X?”? d,q) ={p € M(x;n;d,q) | kpy =1, .-, kp@ay = ia}-

Corollary 24. Let (eg)), be a basis for the K-module E and let (e})},
be its dual basis in the dual K-module E*. Let (ej)jcity,m) and (€f)kes(y,m) be
the corresponding bases of [x|(E) and [x|(E*), respectively. If j € J(x,m,q),
k€ J(x,m,n), and if d 4+ q = n, then the left inner product ej]e; is the d — x-
linear form

Y. X)X Xxepu)
PEMy ;i (x;msd,q)
in case n > q, and 0 in case n < q.

Proof. In accord with Proposition 23, in case n < g we have e;|e; = 0,
and in case n > ¢, we have

ejley =
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* * * * _
D XONEX e X ) X X))o X X ) =

pEM (x;n;d,q)

p(n)

* *
. . O
> X(P)€k 1y X -+ X€k 0
PEMy 5 (x;msd,q)

Proposition 25. The addition and the external composition law (a,a*) +—
ala* on [x](E*) define on this set a structure of left unital [x](E)-module.

Proof. The external composition law is bilinear and the associativity of
the the graded algebra [x]|(F) is equivalent to the equality €’(axb) = €’(b) o €'(a)
for a,b € [x](E). Then (axb) = #'(a) o i'(b), and hence (axd)|a* = a](b|a*).
Moreover, 1|a* =a*. O

Let p > 0 and h be integers with p + h = n. Let a* = ajx...xa, be
a fixed decomposable p — y-form. The left multiplication by a* in the algebra

XICE™),
TIX -+ XTh = A1X - XApXTIX - - - X T,

defines an endomorphism e(a*) of degree p of the Z-graded K-module [x](E*).
The transpose of e(a*) is an endomorphism i(a*) of degree —p of the Z-graded
K-module [x](E). We define e(a*) and i(a*) for a* € [x]|(F) by linearity.

For any x-form a* € [x|(E*), and for any yx-vector a € [x](E) denote the
x-vector i(a*)(a) by ala* and call it right inner product of a and a*. Thus,

(ala®,2") = (a,a”xa")
for x* € [x|(E*).

Proposition 26. Let h and p > 0 be integers with non-negative sum
n = p+ h. Then for any decomposable n — x-vector a = aix...Xan, and for
any decomposable p — x-form a* = ajx ... xa,, the right inner product a|a* is the
h — x-vector

> X apa)X - Xy TTX - - XO) A 1)X - - - X ()
pEM (x;n;p,h)

in case n > p, and 0 in case n < p.

Proof. In case n < p we have ala* = 0 by the definition of the endo-
morphism i(a*). Otherwise, according to Proposition 19 we have

(ala®, 21X .. xxp) = (@1X -+ XAny Q1X - - - XAXTIX - - - XTh) =
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Z X(P@p1)X - - - Xp(p)s A1X - - - XAp)(@p(p1)X - - - XAp(n)s TIX -+ - - XT) =
pPEM (x;nsp,h)

< Z X(p) <ap(1)X < X@p(p)s GTX s Xa;>ap(p+1)x < XQp(n)s xTX s X‘T;kz>7
pEM (x;n;p;h)

and we get the result. O

Corollary 27. Let (e;);, be a basis for the K-module E and let (e]);"
be its dual basis in the dual K-module E*. Let (ej)jcity,m) and (€})kes(y,m) be
the corresponding bases of [x|(E) and [x](E*), respectively. If j € J(x,m,p),
k€ J(x,m,n), and if p+h = n, then the right inner product ex|€j is the h — x-
vector

Z X(P)Chyy) X -+ X
PEMy 5, (x;n;p,h)

in case n > p, and 0 in case n < p.

Proof. In accord with Proposition 23, in case n < p we have e Le;f =0,
and in case n > p, we have
* —
exlej =
Z X(P) (1) X -+ Xy s €5, X -+ - X1, )Ch ) X -+ Xy =
PEM (x;n;p,h)

Z X(P)Chy 1y X -+ Xy =
pEMy ;. (x;n;p,h)

Proposition 28. The addition and the external composition law (a,a™) —
ala® on [x|(E) define on this set a structure of right unital [x|(E*)-module.

Proof. The external composition law is bilinear and the associativity of
the the graded algebra [x|(E*) is equivalent to the equality e(a*xb*) = e(a*) o
e(b*) for a*,b* € [x](E*). Then i(a*xb*) = i(b*) o i(a*), and hence a|(a*xb*) =
(a|a*)|[b*. Moreover, a|l =a. O
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A. Appendix.

Notation 29. Let d, e,..., h be k in number nonnegative integers with
d+e+---+h=n. Weassume k <n. Let a: [1,d] — [1,n], B: [1,e] — [1,n],...,
v: [1,h] — [1,n], be strictly increasing maps with disjoint images. Let 0, € Sy, be
a permutation with 0, (1) = a(1),..., 0.(d) = a(d), let O3 € S, be a permutation
with Og(1) = B(1),..., Og(e) = B(e),..., let 0, € Sy, be a permutation with 6,(1) =
¥(1),..., 04(h) = v(h). For any permutation § € S, we denote by cy: S, — Sy,
the conjugation co(¢) = 0CO~L. We have

oo (Sd) = Stma, co;(Se) = Stmp, ---,¢0,(Sh) = Stmy-

Let K be a commutative ring with unit 1. Let U < Sq, V < Se,... ,W < S}, be
permutation groups, and lete: U — U(K), §: V - U(K),...,w: W — U(K), be
linear K -valued characters. We embed the Cartesian product UXV x---xW in S,
as X = ¢, (U)cg,(V)...co, (W) and for any ¢ € X, ¢ = cg,(0)ca,(7) ... ca,(n),
ceU,7teV,.,neW, we set

X(¢) = e(a)d(7) ... w(n).

The map x: X — U(K) is a K-linear character of the group X. Let E be a
K-module and let (x1,...,2q) € E%, (y1,...,9e) € E°,..., (21,...,2,) € E" be
generic elements. We set

To-1) i 1 € Ima
Y5-1(%:) if i € Imp
§i = : :
zy-1y  if 1 € Imy

Let Y < S, be a permutation group with X <Y, and let M&"ﬂ/”.‘.‘.‘”gv(Y)
be the set of all lexicographically minimal representatives of the left classes of Y
modulo X. For any (' €Y, (€ M&’a’.’.':”gv(Y), we denote by ¢'- ¢ the lexicograph-
ically minimal representative of ('C modulo X, and set (' - ¢ = ('Cuere, where
vere € X, vere = e, (0)cgy (7)o, (n), witho €U, T€V,...,neW.

In case an w-invariant sequence of characters x = (xa)a>1 s given, if the
opposite is not stated, we specialize the maps o, 3, ... ,, the groups U, V, ..., W,
and the characters €,0,...,w, on them, as follows: «(l) = 1,..., a(d) = d,
B(l)=d+1,..., B(e) =d+e,...,v(1)=d+e+---+1,...,v(h) =d+e+---+h,
UZWd, V:We, ooy W:Wh, YZWn, € = Xd; 6:Xe;---; w = Xh- Then

o, (U) = Wa, cg,(V) =w"(We), ... co, (W) =w™ " (W),

@



Semi-symmetric algebras 63

and, using notation from Remark 17,

Mgvﬁav"/yv(y) — ]\4’()(7 n; d7 €y ,h)

avz'“:

Lemma 30. The rule ((',¢) — (' - ( defines a left action of the group Y
on the set M(Y;a,fB,...,7).

Proof. Let (" € Y. The three elements (¢"¢")-¢, ¢"(¢'-¢), and ¢ (¢'-()
are in the class ("¢ X, so we get (¢"(')-¢=¢"-(¢"-¢). Finally, 1y - ( =¢. O

Lemma 31. Let 7 be a linear K-valued character of Y, and mx = x.
Lete? =1y, 8% = 1y,..., @? = 1y, and 7 = 1y. The formula

"E) - [T EHUE)BE)... ok"E),
d+e+--+h=n

am...mEy Z Z ™o
dt-e+-+h=n CGM{;’@;[:’&AY)

(Ec(a())E - - - E8¢(a(d))) @ (Ec(8(1))0 - - - 0&¢(5(e)))® - - - B(Ec(1(1)) T - - - TEc(y(h)) )
defines a K -linear map.

Proof. The map

FE = I EHUE)SEF(E)... ok]"(E),
d+e+---+h=n

f&, &)= > > Q)

.....

(&c(a())E - - - €€¢(a(d))) ®(Ec(31))0 - - - 6€c(8(e)))® - - - B (Ec(v(1))T - - - TE¢((h)) )

is multilinear and semi-symmetric of weight 7. Indeed, let (' € Y. We have

f(§C’(1)7 s 75('(’%)) = Z Z 7r(C)

dtet-th=n ccpf&f-v)

(Ecr(ca)E - - - €8¢ (c(a@)))) B (Ecrc(B)) 0 - - - 08¢ (¢ (B(e)))® - - -
A& ()T - - - TE (¢ (v(h))) =
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7(¢) Z Z 7(¢'¢)

.....

(e (cta)E - - €8¢ (¢(a(d))) @ (fcf 810 - 08cr(c(B(e))) @ - -
®(§C’(C(v(1)))w - @E (v (R))))-
Since
7(¢" - ¢) = 7 (¢"Cvere) = w((Ox(vere) = w(C'Qe(0)d(T) ... w(n),
using Lemma 30, we have

FEerays - Eomy) = m(C) Z Z (e

(Eer(ca))E - - - €8¢ (c(al@)) @ Ecrc(B)) 8 - - - 08¢ (¢ (B(e)))) ©
®(§C’(C(v(1)))w - TEC (¢ (y(r))) =

©(¢) Z Z 7r<<’ -¢)

,,,,,

(o) (e (c(a(r)) 6§<'<<<a<d)))®5( )(fcf B0 - - 8¢ (B(e)® - -
&z (1) (€ (¢ (1)) chf(c(v(h)))):

m(¢) Z Z (c’ -¢)

(€ (calo())E - - - €8¢ (¢(alo(d))) @ (€<f B0 - - 6 (¢ (B(r(e))))) ®
&z (1) (S (¢c(vn()) @ - - - TE (¢ (v(m(h)))) =

m(¢) Z Z <c’ -C)

,,,,,

(Cer(c(varcta)® EEer(¢(ver tat@)))® <f<l<< ))))6"'6€<’(<(“¢'¢(ﬂ(e)))))®'"
A (¢ (vge ) @ 'wfc(c(vww»))) =

O oo ow(d-¢

d+e+-+h=n CGMa’ﬁ’: :::: My)

(E(cr-0) @))€ - - E(cr-0) (a(d))) B (E(cr-0)(8(1))0 - - - 08(¢r-0) (B(e)) ) © - - -
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& )NP -+ T Q) () =
(¢ f(&ry s 6n)-
Therefore, according to [3, (1.1.1)], f gives rise to the desired K-linear map. O

Let x = (Xd)d>1 be an w-invariant sequence of characters. Using Nota-
tion 29, we have

Lemma 32. The maps
M (x;n;p,h) x M (x;p;d,e,...) — M (x;n;d,e,..., h),
M (x;n;d,q) xde(X;q;e,...,h) — M (x;n;d,e,..., h),

(p0) = 1-(po),
are bijections.

Proof. If W, /W, x wP(W},) is a set of representatives of the left classes
of W,, modulo W), x wP(Wp,), if W, x wP(W},)/Wa x wl(We) x -+ x wP(Wy) is a
set of representatives of the left classes of W, x wP(W},) modulo Wy x w?(W,) x
-+ X wP(Wy), then the family

{po | (p,0) € (W /Wy x WP (W) x (W x P (Wi)/Wa x W (We) x -+ x P (Wp))}

of elements of W, is a set of representatives of the left classes of W,, modulo Wy x
wH (W) x - - - xwP(W},). Thus, the first map is a bijection because M (x;p;d,e,...)
is a set of representatives of the left classes of W), x wP(W},) modulo Wy x wd(W,) x
- X wP(Wy). Similarly, if W, /Wy x w?(W,) is a set of representatives of the left
classes of W,, modulo Wy x w?(W,), if Wy x w?(W,)/Waxwd(We) x - - - x wP(W},) is
a set of representatives of the left classes of Wy x w®(W,) modulo Wy x w?(W,) x
-+ X wP(Wy), then the family

{pe | (p,0) € (Wa/Waxw(Wy)) x (Wa x (W) /Wax w(We) x -+ x P (Wp))}

of elements of W, is a set of representatives of the left classes of W,, modulo
Wy x wd(W,) x -+ x wP(Wy). The second map is a bijection, too, because
wiM (x;q;e, ..., h) is a set of representatives of the left classes of Wy x wd(Wq)
modulo Wy x w*(W,) x -+ x wP(W}). O
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