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Abstract. The paper is devoted to pricing options characterized by dis-
continuities in the initial conditions of the respective Black-Scholes partial
differential equation. Finite difference schemes are examined to highlight
how discontinuities can generate numerical drawbacks such as spurious os-
cillations. We analyze the drawbacks of the Crank-Nicolson scheme that
is most frequently used numerical method in Finance because of its second
order accuracy. We propose an alternative scheme that is free of spurious
oscillations and satisfy the positivity requirement, as it is demanded for the
financial solution of the Black-Scholes equation.

1. Introduction. In the market of financial derivatives the most im-
portant problem is the so called option valuation problem, i.e. to compute a
fair value for the option. The Black-Scholes analytic model for determining the
behavior of the stock price turns out to be fundamental in option pricing, [1].
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In absence of a valuation formula for non-standard options (see [3]), the
finite difference approach is a powerful tool for pricing. Usually the choice goes
toward numerical methods with high order of accuracy (e.g. Crank-Nicolson
scheme), and no attention is paid to how the financial provision of the contract
can affect the reliability of the numerical solution, see Smith in [6], Tavella and
Randall in [8], or Zvan et al. in [11]. Indeed these schemes are applied without
considering the well-known problems that can arise in presence of discontinuities
which deteriorate the numerical approximation.

In order to make our analysis concrete, we concentrate the attention on
a double barrier knock-out call option with a discrete monitoring clause, but the
presented analysis can be easily extended to many other exotic contracts (digital,
supershare, binary and truncated payoff options, callable bonds and so on). Such
option has a payoff condition equal to max(S − K, 0) but the option expires
worthless if before the maturity the asset price has fallen outside the corridor
[L,U ] at the prefixed monitoring dates.

In the intermediate periods the Black Scholes equation is applied over the
real positive domain. The discontinuity in the initial conditions will be renewed
at every monitoring date and often the Crank-Nicolson numerical solution is
affected by spurious oscillations that do not decay quickly, Tagliani et al. in
[7]. The oscillations derive from an inaccurate approximation of the very sharp
gradient produced by the knock-out clause, generating an error that is damped
out very slowly.

In Section 2 we discuss the model for discrete double barrier knock-out call
options and particularly the main drawbacks like undesired spurious oscillations,
arising from centered difference discretization of the Black-Scholes PDE.

In Section 3 we propose a suitable finite difference scheme that enables
us to solve accurately the examined PDE. An important factor for numerical
schemes is the condition of positivity of the solution that must be satisfied as a
consequence of the financial meaning of the involved PDE. We will demonstrate:

1. how an accurate scheme is not necessarily the best, as it could require
prohibitively small time steps;

2. how a less accurate scheme could work successfully and preserve all financial
requirements of the option contract such as positivity.

In Section 4 we explore examples of discrete double barrier knock-out
options that are most frequently used in literature such as Wade et al. in [9],
Zvan et al. in [11]. In the conclusion, we have pointed out the advantages of
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the proposed nonstandard finite difference scheme for the Black-Scholes partial
differential equation.

2. Mathematical model. The Black-Scholes PDE. We consider
as a model for the movement of the asset price under the risk-neutral measure a
standard geometric Brownian motion diffusion process with constant coefficients
r and σ:

(1) dS/S = rdt + σdWt

The contract to be priced is a discretely monitored double barrier knock-out call
option. If t is the time to expiry T of the contract, 0 ≤ t ≤ T , the price V (S, t)
of the option satisfies the Black-Scholes partial differential equation

(2) −∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
− rV = 0

endowed with initial and boundary conditions:

(3) V (S, 0) = max(S − K, 0) 1[L,U ](S)

(4) V (S, t) → 0 as S → 0 or S → ∞

with updating of the initial condition at the monitoring dates ti, i = 1, . . . , F :

(5) V (S, ti) = V (S, t−i )1[L,U ](S), 0 = t0 < t1 < . . . < tF = T

where 1[L,U ] (x) is the indicator function, i.e.,

1[L,U ] =

{

1 if S ∈ [L,U ]

0 if S /∈ [L,U ]

The knock-out clause at the monitoring date introduces a discontinuity
at the barriers (set at L = 90, U = 110), as it is illustrated in Fig. 1. We notice
the presence of undesired spurious oscillations near the barriers (set at L = 90

and U = 110 respectively) and near the strike (K = 100), where the Delta=
∂V

∂S
is discontinuous at t = 0.

These spikes which remain well localized, don’t reflect instability but
rather that the discontinuities that are periodically produced by the barriers
at monitoring dates. The spikes can not decay fast enough in the Crank-Nicolson
solution. In [4] Milev and Tagliani show that mathematically, such spurious os-
cillations stem from the combined effect of two factors, as
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Fig. 1. Option pricing V (S, t) of a discrete double barrier knock-out call option just
before the last monitoring date tF = 12. The Crank-Nicolson scheme is applied for
steps, respectively ∆S = 0.01 and ∆t = 0.001, and parameters σ = 0.2, r = 0.05,

T = 0.5, K = 100, L = 90, U = 110

1. positivity of the solution V (S, t) not preserved;

2. presence of negative/complex eigenvalues in the spectrum of the correspond-
ing matrix originating from the finite difference equation.

Then special finite difference schemes will be investigated where

1. the solution is positive;

2. the spectrum contains only positive eigenvalues.

3. Finite difference approach. As usual, in the finite difference
approximation the S-domain is truncated at the value Smax, sufficiently large such
that computed values are not appreciably affected by the upper boundary. The
computational domain [0, Smax]×[0, T ] is discretized by a uniform mesh with steps
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∆S, ∆t. Therefore we obtain the nodes Sj and tn, where (Sj = j∆S, tn = n∆t),
j = 0, . . . ,M , n = 0, . . . ,X so that Smax = M∆S, T = X∆t, X and M integer
numbers.

1. The choice of a specific numerical scheme is based on its property of con-
vergence. The requirement rests on the Lax equivalence theorem.

2. The parabolic nature of the Black-Scholes equation ensures that being the
initial condition V (S, 0) = (S−K)+1[L,U ](S) square-integrable the solution

is smooth in the sense that V (·, t) ∈ C∞(R+),∀t ∈ (ti−1, t
−
i ], i = 1, . . . , F .

Thus rough initial data give rise to smooth solutions in infinitesimal time.

In some cases, as a consequence the solution obeys the maximum principle:

(6) max
S∈[0,Smax]

| V (S, t1) | ≥ max
S∈[0,Smax]

| V (S, t2) | , t1 ≤ t2

This inequality means that the maximum value of V (S, t) should not increase
as t increases. If that condition is violated then the numerical solution may
exhibit spurious wiggles near sharp gradients. As a consequence, even though
the numerical method converges, it often yields approximate solutions that differ
qualitatively from corresponding exact solutions.

3.1. Analysis of the Crank-Nicolson scheme. The Crank-Nicolson scheme
provides the difference equation

PV n+1 = NV n

with P and N the following tridiagonal matrices

P = tridiag

{

r

4

Sj

∆S
−

(σ

2

Sj

∆S

)2
;

1

∆t
+

1

2

(σSj

∆S

)2
+

r

2
;−r

4

Sj

∆S
−

(σ

2

Sj

∆S

)2
}

N = tridiag

{

− r

4

Sj

∆S
+

(σ

2

Sj

∆S

)2
;

1

∆t
− 1

2

(σSj

∆S

)2
− r

2
;
r

4

Sj

∆S
+

(σ

2

Sj

∆S

)2
}

a) The case σ2 > r

Theorem 3.1. Under the given hypothesis, the following hold:

1. If σ2 > r, then P−1 > 0, with ‖P−1‖∞ ≤ 1
1

∆t
+ r

2
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2. If σ2 > r and ∆t <
2

r + (σM)2
, then

i) N ≥ 0 with ‖N‖∞ =
1

∆t
− r

2
> 0;

ii) both positivity and discrete maximum principle are satisfied;

3. If σ2 > r and ∆t <
2

r + 2(σM)2
, then λi(P

−1N) ∈ (0, 1) are distinct.

P r o o f. 1) P is an irreducible row diagonally dominant matrix. Then P

is an M-matrix and thus P−1 > 0 with ‖P−1‖∞ ≤ 1
1

∆t
+ r

2

, see Windisch in [10].

We will state the main result of Windisch (1989). Let P = [p ij] and

ri = |pii| −
∑

j 6=i

|pij| > 0 ∀i then the bound ‖P−1‖∞ ≤ max
i

1

ri

is strict. If ∆t → 0

then P is strongly row diagonally dominant and equality holds.

2) The matrix N has positive entries with ‖N‖∞ =
1

∆t
− r

2
> 0. Then

V n+1 = P−1NV n > 0 and the numerical solution is positive.

‖Vn+1‖∞ = ‖P−1N Vn‖∞ = ‖P−1‖∞‖N‖∞‖Vn‖∞ ≤
1

∆t
− r

2
1

∆t
+ r

2

‖Vn‖∞ ≤ ‖Vn‖∞

so that the scheme satisfies the discrete maximum principle.

3) P and N may be written as P =
1

∆t
I + C and N =

1

∆t
I − C, where

C = tridiag

{

r

4

Sj

∆S
−

(σ

2

Sj

∆S

)2
;
1

2

(σSj

∆S

)2
+

r

2
;−r

4

Sj

∆S
−

(σ

2

Sj

∆S

)2
}

Then the matrix C admits M distinct real eigenvalues λi(C) ∈
[r

2
;
r

2
+ (σM)2

]

,

being similar to a Jacobi matrix1 , and λi(P
−1N) =

1 − ∆tλi(C)

1 + ∆tλi(C)
. And from the

condition ∆t <
2

r + 2(σM)2
it follows λi(P

−1N) ∈ (0, 1). �

1The term Jacobi matrix unfortunately has more than one meaning in the literature. Here,
we mean a tridiagonal real square matrix A = tridiag{ci, ai, bi} of order n with off-diagonal
elements that have the same sign, i.e. ci bi−1 > 0, for i = 2, 3, . . . , n. For every Jacobi matrix A

there exists a nonsingular diagonal matrix D = diag(d1, . . . , dn) such that DAD−1 is a Jacobi
symmetric matrix. All eigenvalues of a Jacobi matrix are real and distinct, [5].
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If the discretization scheme does not preserve the above properties, i.e.
the financial condition σ2 > r and the ∆t restrictions, then the solution may take
negative values and oscillate. Let us explore the case σ2 < r.

Indeed, for a fixed ∆t, when M → ∞ (equivalently, ∆S → 0) we have
that the matrix N could have negative elements, and then the numerical solution
V n+1 could take negative values. This follows from the finite difference equation
V n+1 = (P−1N)nV 0, where V 0 is a vector representing the initial condition (3) in
the the Black-Scholes equation. (In fact V 0 is the payoff for the original problem
at T ). Such is the case illustrated on Fig. 1 where σ2 < r and the Crank-Nicolson
numerical solutions takes negatives values for values of the underlying asset close
to the barriers L = 90 and U = 110.

Now, we will prove that if σ2 < r, then the numerical solution could
oscillate. Let us denote the spectrum of eigenvalues of the matrix C with ρ(C) :=
max(λi(C)). Diminishing the space step ∆S, i.e. M → ∞, having in mind

that λi(C) ∈
[r

2
;
r

2
+ (σM)2

]

, then the spectrum ρ(C) → ∞ and λi(P
−1N) =

1 − ∆tλi(C)

1 + ∆tλi(C)
→ −1. We will demonstrate that if λi(P

−1N) → −1 then the

Crank-Nicolson numerical solution V n+1 may oscillate.
Further, to the M distinct eigenvalues λi(P

−1N) are associated M lin-
early independent eigenvectors vi. Such eigenvectors can be used as a basis for

the M dimensional space of the initial condition V 0 =
M
∑

j=1
cjvj, where cj are

appropriate weights. Then

V n+1 = (P−1N)nV 0 = (P−1N)n
∑

cjvj =
∑

cj(P
−1N)nvj =

∑

cjλ
n
j vj

From λj → −1 then V n+1 oscillates. The Crank-Nicolson solution is affected
by spurious oscillations that do not decay quickly as it is shown in Fig. 1. The
scheme is applied to the Black-Scholes equation (2) that has discontinuous initial
conditions (3)-(5) in case of a discrete double barrier knock-out call option with
parameters σ = 0.2 and r = 0.05, i.e. the case σ2 < r.

b) For the case σ2 < r, in [4] Milev and Tagliani have proposed a variant
of the Crank-Nicolson scheme that works successfully, i.e. the numerical solution
is positive and does not suffer from spurious oscillations.

3.2. Efficient nonstandard semi-implicit scheme. In this section we
introduce a less accurate scheme, i.e. O(∆S2,∆t), which allows us to choose a
more acceptable ∆t time step. In the meantime, the scheme prevents spurious
oscillations and guarantees a positive solution.
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First of all, we discretize the reaction term −rV in equation (2) through
a bivariate approximation which involves the values of V n+1

j , V n
j−1 and V n

j+1.
By the standard procedure we have

V (S, t) = b (V n
j−1 + V n

j+1) + (1 − 2b)V n+1
j

with discretization error O(∆S2,∆t) and b an arbitrary constant to be fixed

below. The term
∂V

∂S
is discretized through an explicit centered difference, while

∂2V

∂S2
through an implicit scheme, in order to split the contribution of

∂V

∂S
and

∂2V

∂S2
in two different matrices. The stencil of the scheme nodes is shown on Fig.

2. The scheme is then obtained in a semi-implicit form.

t

t

n+1

n

t s Vss V

. . .
S

j
S S S

j j j

. . . . .V V

. .
Fig. 2. Involved nodes in the semi-implicit scheme

The corresponding finite difference equation is PV n+1 = NV n, with

P = tridiag

{

− ∆t

2

(σSj

∆S

)2
; 1 + ∆t

[(σSj

∆S

)2
+ r(1 − 2b)

]

; −∆t

2

(σSj

∆S

)2
}

N = tridiag

{

∆t
r

2
(− Sj

∆S
− 2b) ; 1 ; ∆t

r

2
(

Sj

∆S
− 2b)

}

By choosing b = −1

2
M then

• N has non-negative entries, with ‖N‖∞ = 1 + r∆tM ;

• P is symmetric row diagonally dominant. From Gerschgorin theorem fol-
lows λi(P ) > 0. Thus, P is positive definite, so that P−1 exists.

P is an irreducible diagonally dominant matrix and then P is an M-matrix, so

that P−1 > 0. In addition ‖P−1‖∞ ≤ 1

1 + r∆t(M + 1)
, (Windisch, [10] ).



Nonstandard Finite Difference Schemes with Application to Finance . . . 83

• By combining N ≥ 0 and P−1 > 0, then the solution V n+1 = P−1NV n is
positive since V 0 ≥ 0.

• For the spectral radius ρ(P−1N) of the iteration matrix P−1N , we have

ρ(P−1N) ≤ ‖P−1N‖∞ ≤ ‖P−1‖∞‖N‖∞ ≤ 1 + r∆tM

1 + r∆t(M + 1)
< 1, ∀ ∆t

Equivalently,
• the scheme is unconditionally stable and via Lax-equivalence theorem,
• convergent being consistent with a local truncation error O(∆S2,∆t).
Moreover, we have

‖V n+1‖∞ = ‖P−1NV n‖∞ ≤ 1 + r∆tM

1 + r∆t(M + 1)
‖V n‖∞ < ‖V n‖∞

Then the numerical solution satisfies unconditionally the discrete version
of the maximum principle and the scheme is unconditionally monotone.

For the eigenvalues of the iteration matrix P−1N , the following result holds:

Theorem 3.2. Under the condition ∆t <
1

rM
, then P−1N admits M

real positive and distinct eigenvalues λi(P
−1N) ∈ (0, 1).

P r o o f. The matrix N is diagonally dominant if 1 > −∆t
r

2
4b, where

b = − 1

M
or, equivalently, ∆t <

1

rM
. Then N is similar to a symmetric positive

definite matrix N spd, (Windisch, [10], with N = D−1N spdD and D a diagonal
matrix, whose entries are obtained by the off-diagonal entries of N .

From P−1Nu = λu ⇒ DP−1D−1N spdDu = λDu. Putting u1 = Du, it
follows that N spdu1 = λ(DPD−1)u1 and

λ =
uH

1 N spdu1

uH
1 (DPD−1)u1

where H denotes conjugate transpose.
From uH

1 N spdu1 > 0, uH
1 (DPD−1)u1 > 0, being DPD−1 similar to P ,

then λ is real and positive. From which λi(P
−1N) > 0, ∀i holds.

The eigenvalue problem P−1Nu = λu admits M eigenvalues. Now we
prove such eigenvalues are distinct. We have that N −λP is a tridiagonal matrix,
i.e:

N − λP = tridiag{bi, ai, ci}
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with bi, ci > 0, ∀i. If D = diag

{

1,
b1

c1
,
b1b2

c1c2
, . . . ,

b1 . . . bM−1

c1 . . . cM−1

}

then

N − λP = D−1 tridiag{γi, ai, γi}D

with γi =
√

bici, i = 1, . . . ,M − 1, (see Ortega, p. 113, [5]).
The matrix J = tridiag{γi, ai, γi} is a Jacobi matrix which admits M

distinct eigenvalues λ
(J)
1 (λ), . . . , λ

(J)
M (λ). Then J may be diagonalized so that

J = S−1diag{λ(J)
1 (λ), . . . , λ

(J)
M (λ)}S

where S is the eigenvectors matrix. Then

0 = det(N − λP ) = detD−1S−1 diag{λ(J)
1 (λ), . . . , λ

(J)
M (λ)}SD =

M
∏

j=1

λ
(J)
j (λ)

leads to a set of M equations

λ
(J)
j (λ) = 0, j = 1, . . . ,M

The set of equations admits M distinct solutions λ1, . . . , λM , being λ
(J)
j (λ)

distinct. So λ1, . . . , λM are the distinct eigenvalues of P−1N . �

The solution accuracy is defined by analyzing the error component in-
troduced by the bivariate approximation of the reaction term −rV . By Taylor
expansion about the time level n∆t we have

(1 − 2b) V n+1
j + b (V n

j−1 + V n
j+1) = V n

j + ∆t(1 + M)
∂V

∂t
+ O(∆S2) + O(∆t2)

Then the scheme is consistent with equation (2) with a local truncation
error O(∆t) + O(∆S2).

When M assumes large values the error term r∆t(1+M) becomes influent

and under the only constraint ∆t <
1

rM
of Theorem 3.2 the scheme provides a

poor solution. Then an accurate solution requires

(7) ∆t ≪ 1

r (1 + M)

Then, under (7), the proposed scheme guarantees an accurate solution
being positivity-preserving and free of spurious oscillations.
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4. Numerical results. We will present numerical results for some of
the most explored examples in literature for discrete barrier knock-out options
that are discretely monitored, see Wade et al. in [9] and Zvan et al. in [11].

Example 4.1. Let us price a discrete double barrier knock-out call op-
tion having a discontinuous payoff defined by conditions (3)-(5) and for which
the strike price is 100, the volatility is 25% per annum, the option has six months
remaining to maturity, the risk-free rate is 5% per annum (compounded contin-
uously), the two barriers are placed, respectively at 95 and at 110.

The numerical results and parameters are presented in Table 1 and Fig. 3.

Values of Standard Crank- Duffy Semi- Monte Carlo method

underlying implicit Nicolson implicit implicit (standard error)

asset S0 scheme scheme scheme scheme 108 – asset paths

95 0.17564 0.17561 0.17315 0.17398 0.17359 (0.00054)

95.0001 0.17904 0.17963 0.17395 0.17412 0.17486 (0.00064)

95.5 0.18322 0.18324 0.18109 0.18152 0.18291 (0.00066)

99.5 0.22818 0.22813 0.22819 0.22902 0.22923 (0.00073)

100 0.23123 0.23122 0.23137 0.23171 0.23263 (0.00036)

100.5 0.23359 0.23361 0.23386 0.23246 0.23410 (0.00073)

109.5 0.17582 0.17583 0.17323 0.17326 0.17426 (0.00063)

109.9999 0.16982 0.16989 0.16656 0.16719 0.16732 (0.00062)

110 0.16906 0.16912 0.16616 0.16703 0.16712 (0.00042)

Table 1. Prices of a discrete double knock-out call option monitored 5 times.
The price of the underlying asset is S0, K = 100, σ = 0.25, T = 0.5, r = 0.05,
L = 95, U = 110. The Crank-Nicolson, fully implicit and Duffy scheme are
applied with ∆S = 0.05, ∆t = 0.00001, while the semi-implicit scheme for

∆S = 0.05, ∆t = 0.001, Smax = 200

We have applied the Crank-Nicolson scheme and the proposed semi-implicit
scheme, presented, respectively in Sections 3.1 and 3.2. The results are com-
pared with those obtained by other standard numerical methods in Finance such
as standard fully implicit scheme, the Crank-Nicolson method, the exponentially
fitted finite difference scheme of Duffy in [2], and finally to the Monte Carlo
simulations. The results in Table 1 and Fig. 3 show that the proposed semi-
implicit scheme gives results that are in very good agreement with the Monte
Carlo method which could be taken as a bench mark.

The computational results are as expected, because the full implicit scheme
and the Duffy implicit schemes are first order accurate, i.e. O(∆S,∆t).
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Fig. 3. A comparison of different implicit and semi-implicit finite difference schemes
applied to the Black-Scholes equation in case of a discrete double barrier knock-out call

option monitored 5 times, K = 100, σ = 0.25, T = 0.5, r = 0.05, L = 95, U = 110

Although the Crank-Nicolson scheme is second order accurate both in
time and space, i.e. O(∆S2,∆t2), in order to be used, the scheme should be
applied with a prohibitively small time step, as it is showed in Section 3.1.

We can note the following advantages of the proposed semi-implicit scheme
over the other applied finite difference schemes in Table 1:

• The proposed semi-implicit scheme is second order accurate in space, i.e.
O(∆S2,∆t), and it is more accurate than standard first order accurate schemes
in case the schemes are applied for a fixed time step.

• The semi-implicit scheme is positivity-preserving and free of oscillations.

• Moreover, to preserve these properties, it is sufficient to be applied for

∆t <
1

rM
that is much bigger than the prohibitively small time step restriction

∆t <
2

r + 2(σM)2
for the Crank Nicolson scheme, i.e. M -times smaller, as we

have proved, respectively in Theorem 3.2 and Theorem 3.1.
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• The semi-implicit scheme works successfully both for σ2 < r and σ2 > r.
• The semi-implicit scheme is as fast as the other first order accurate

schemes, but it is much faster than the Crank-Nicolson scheme.
• We can note that the close distance of each of the barriers to the strike

price is not an obstacle for the presented semi-implicit scheme for obtaining a
smooth numerical solution. This is one of the frequently met practical problems
applying finite difference schemes in Finance because usually oscillations derive
from an inaccurate approximation of the very sharp gradient produced by the
knock-out clause, generating an error that is damped out very slowly, (Tagliani
et al., [7]), (Wade et al., [9].).

Thus, the semi-implicit scheme turns out to be very efficient because it
gives both highly accurate results, satisfies all financial requirements of the option
contract and differs with a quick computational time.

5. Discussion and conclusions. We have presented an alternative
scheme to the Crank-Nicolson one that do not suffer from spurious oscillations
originating from discontinuous boundary conditions. The proposed semi-implicit
scheme has lower accuracy, i.e. O(∆S2,∆t), but requires less restrictive condi-
tions on the time step.

We have used a non-standard discretization technique of the reaction term.
The scheme is conditionally stable but nevertheless it gives highly accurate results
and guarantees the absence of spurious oscillations close to discontinuities due
to the fact that the scheme has an iteration matrix characterized by real and
positive spectrum which allows a fast damping of errors of any order. Moreover,
in contrast to most frequently used schemes in computational Finance such as
the Crank-Nicolson method, the successful application of the proposed scheme is
independent of the financial parameters such as volatility and interest rate, i.e.
it is unaffected for low values of the volatility.
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