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ABSTRACT. We explain why the lengths of the closed orbits in a certain
class of open billiards are asymptotically equidistributed with respect to the
number of their reflections.

1. Introduction. We consider an obstacle K = K U---U K made of
N > 3 strictly convex and pairwise disjoint compact sets with smooth boundary
in the Euclidean space R? (d > 2). The following condition was introduced by
Ikawa [1] and it is commonly denoted by (H): for every triple (Kj, Kj, K},) of
pairwise disjoint components of K, the intersection of K; with the convex hull of
K; U K is empty.

Then let us imagine that particles move within R \ K with constant
velocity 1. Their trajectories follow straight lines between obstacles. Whenever a
particle meets an obstacle, the reflection obeys Snell’s Law. We refer the reader
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to [8] for a rigorous definition of the broken geodesic flow obtained this way: the
so-called billiard flow.

We are interested in the set P of closed orbits of this flow. For every
v € P we denote by £() the least period and by r(y) the number of reflections
during such a period. Thanks to the work of Morita [2] (case d = 2) and Stoyanov
[8] (d > 3), we can use a symbolic model to study the bounded trajectories of
such a flow. Like in the case of an Axiom A flow restricted to a basic set, this
dynamical system is isomorphic to a certain suspended flow over a subshift of
finite type. Therefore it is possible to apply the techniques developed by Parry
and Pollicott [3] to obtain an analogue of the Prime Number Theorem for the
periodic trajectories of the billiard under consideration.

Theorem 1 (Morita-Stoyanov). There exists a constant h > 0 such that
Hy e P |ly) <t} ~ li(e") ast — +oo.

Note that the constant h is the topological entropy of the billiard, and
that li stands for the integral logarithm |, i.e. li(z) = [} (1/logu)du ~ x/log .

This work was motivated by the following question: what does this as-
ymptotic become if we simply count the trajectories with an even number of
reflections? The answer follows by application of techniques a la Chebotarev
inspired by [4]: li(e"*)/2. More generally, we have the following result.

Theorem 2. Let n > 2. Counting the trajectories with number of re-
flections congruent to a certain integer j € {0,1,...,n — 1} modulo n, we have
H#H{yeP|r(y)=4n], ly) <t} ~ %li(eht) as t — +oo.

The third section is devoted to the proof of this result. In the second
section, we recall the definitions and the results needed from the underlying
symbolic model. Our strategy differs slightly from that of [4] for cyclic extensions
of suspended flows by the fact that we introduce dynamical zeta functions well-
adapted to the problem. We generalize this way the functions {; et (_ used by
Petkov in [6]. Note that we recall the outline of the proof of Parry and Pollicott’s
Prime Orbit Theorem in Section 2. Our purpose is to leave to Section 3 what is
really specific in our case.

Acknowledgements. This article is an extended version of an unpub-
lished note of 2005 which is referred to in [7]. It builds upon a result which was
part of my M.S. Thesis (2000), and which also appears in an article of Xia [9]:
the case n = 2 of trajectories with an even number of reflections. I would like to
thank Frédéric Naud for fruitful conversations. I am grateful to Vesselin Petkov
for asking the question that motivated this work. Finally, let me thank the referee
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for suggesting improvements and pointing out mistakes in a previous version of
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2. Symbolic dynamics.

Bernoulli Shift. Recall that N denotes the number of obstacles in R
Then let ¥ = {z € {1,...,N}¥ : x; # zj11 Vj} be the set of infinite words in
the alphabet {1,..., N} with no equal consecutive letters. We equip {1,...,N}
with the discrete topology and ¥ with the product topology. The latter can be
metrized for any fixed 0 < 8 < 1 by the distance

do(z,y) = ginf{n=0: znzyn OF z_n#y n}

The Bernoulli shift is the homeomorphism of the compact space ¥ defined by
(02)p = Tpy1.

Suspended Flow. Let us fix a continuous function f : ¥ —]0, 4o00[. The
so-called roof function allows us to define the compact space

S ={(z,u) : 2€2,0<u< f(x)}/ ~

with the identification (z, f(z)) ~ (ox,0). The suspended flow on %/ is defined
by the formula 0{(1’, u) = (z,t+u).

Note that an element x = (..., xg,x1,...) in the symbolic model ¥ corre-
sponds to a trajectory in the billiard leaving the obstacle K, with first reflection
on K,,, etc... The function f(z) is equal to the distance, in the billiard again,

between these two initial reflection points.

Closed Orbits. The periodic orbits of the Bernoulli shift are clearly
related to the closed orbits of the suspended flow. We denote

Fiz, ={z : o"x =z}

the set of words with period n under the action of o. Let P denote the set
of periodic orbits. For each v € P, observe that v = {z,0z,...,0" 'z} has
a minimal period k& which we denote r(vy). To each such orbit corresponds a
closed orbit of the suspended flow and conversely. The length of the latter will
be denoted by ¢(7). Note that the iterated function

fH@) = f(@)+ flox) + -+ f(o"'a)
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satisfies f¥(x) = £(vy). Also note that the length spectrum {{(y) : v € P} is
bounded away from 0. Indeed, by continuity of f on the compact ¥, we have

{(7) = inf f(w)= min f(z)>0

for every v € P.

Ruelle Transfer Operators. Thanks to Sinai’s lemma (see e.g. [5,
Proposition 1.2]), we can assume that the roof function f depends only on the
future coordinates (xq,x1,...). So we introduce now the set

Z+:{x€{1,...,N}N : 1‘j7él'j_|_1Vj}

which can easily be embedded in .

The new roof function has the same length spectrum, so there is no loss
of generality for the problem under study. One great advantage of this is that we
can use the Ruelle transfer operator.

Let us fix a function ¢ continuous on ¥*. The Banach space of Lispschitz
functions on X7 is denoted by .7-"9+ . It is the space of continuous functions w on
YT such that

wllg := sup Lt
H H TAY d@(livy)

Then the formula

Lyw(r) = Z W (y)

oy=t

defines an operator from ]—'; to itself. The key technical aspect of the theory is
to estimate the norms of the iterates of such operators. This is related to the
following notion.

Topological Pressure. For a continuous function ¢, the topological
pressure is defined by

P(¢) = sup {h(u) + / ¢dv : v is a o — invariant probability measure}

where h(v) denotes the entropy of the shift o with respect to the measure v. The
Basic Inequality in [5] says essentially that there exists a constant Cy > 0 such
that the iterates of the Ruelle operator obey the norm inequalities:

I£E  pl

- TSy 7 k
reik g < Coltmls)llwlle + 0wl
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forall £ > 0 and all w in J”-";r . It follows in particular that the spectral radius of the
operator £’jsfw is not greater than e”’(—Fe(s) /) Actually, e (=1¢() f) is known
to be a simple positive eigenvalue, and the rest of the spectrum is contained in a
disk of radius strictly smaller.

Dynamical Zeta Function. Let h > 0 denote the topological entropy
of the flow, which is characterized by P(—hf) = 0. The formula

) =exp [ S0 3 @

n>1 x€EFixy

defines the Dynamical Zeta Function. It is convenient to introduce the notation

Zn(s) = Z €7Shfn(x)

reFixy

and to observe that

> Z,(s N(~) 5k
Y Al sy NOIE

n=1 EP k>1

if we put N(v) = ). Tt follows that

1
¢9)=1] =N

yEP

The convergence of the sum, or the product, defining the Dynamical Zeta Func-
tion at sqg is related to the spectrum of the Ruelle operator

LSO = »C—sohf-

By introduction of the topological entropy h and the corresponding nor-
malization of the zeta function, the series Y. Z,(s)/n is absolutely convergent
on every closed half-plane {Re s > o¢ > 1}. Hence the dynamical zeta function
is analytic without zeros on the open half-plane {Re s > 1}.

The behavior on the axis is settled by the following alternative. According
to [5, Theorem 5.5], two cases can occur depending on the spectral radius of Ls,:

(1) If p(Ls,) < 1, the series 3% Z,,(s)/n is absolutely convergent in a certain
neighborhood of sg.
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(2) If p(Ls,) = 1, then we have an analytic function \(s) giving the eigenvalue
of maximal modulus of Ly in a certain neighborhood of sy where moreover
the series > 42 (Zk(s) — A(s)¥)/k is absolutely convergent.

Since the billiard flow is weakly mixing (cf. [8, Lemma 5.2]), so is the
underlying symbolic flow. Consequently the dynamical zeta function is analytic
in a neighborhood of the closed half-plane {Re s > 1}, except for a simple pole
at s = 1 (see [3, Proposition 9]). It follows that A(sp) can never be equal to 1,
except for sp = 1 where A\(1) =1 and X (1) # 0. Thus the logarithmic derivative
C?/(s) is analytic in a neighborhood of the open half-plane {Re s > 1}, except for
a simple pole with residue 1 at s = 1.

Prime Orbit Theorem. The celebrated Prime Orbit Theorem of Parry
and Pollicott [3] asserts that the counting function

m(u) =#{y€P : N(y) <u}

admits the asymptotic equivalent li(u) as u — +oo.
By definition of the dynamical zeta function, the logarithmic derivative
of ((s) is equal to the derivative of

= Zn(s N(y)~sF
> Aoy M

n=1 YEP k>1

namely
) = Y0 SN Flog N,
C yEP k>1

The strategy consists in studying the essential part of the latter by intro-
ducing the function
n(s) =Y N(y)*log N(v)
yeP
which is related to the zeta function by the formula:
¢ _
—2(s) =n(s)+ > Y N(7) *log N(y).

C YEP k>2

Lemma 2.1. Let o9 > 1/2. There exists a constant C > 0 such that

for every orbit v € P and for every compler number s in the closed half-plane
{Re s > oy}, we have:

D IN(@) T < ON ().
k>2
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Proof. Recall that the length spectrum is bounded away from 0 so that
there exists a > 0 such that £(y) > a for every v € P. With C := (1 —e~90M)~1,
we have the following estimates:

STINE) T < Y N (y) ok

k>2 k>2
N () 270
1—N(y)—
< ON(y)7>.

It follows that

>N ’N(v)’s’“ log N(v)’ < CY  N(y) " log N(v) = Cn(200).
YEP k>2 yEP

Recall that ((s) is analytic and nonzero on the open half-plane { Re s > 1}. Note
that by definition, the absolute convergence of —C—/(s) implies that of n(s), which
is merely a sum of fewer terms. In particular 7(20¢) is finite for every og > 1/2.
So the difference between 7(s) and —%/(s) is analytic in the open half-plane

{Re s > 1/2}. Hence there is a function ¢(s) analytic in a certain neighborhood
of the open half-plane {Re s > 1} where

1(s) = — + 6().

By Stieltjes integration, we have the formula

+oo
n(s) = /1 u ®logu dmr(u).

It only remains to apply Wiener-Tkehara Tauberian Theorem to conclude that
m(u) ~ li(u) as u — +oo.

3. Proof of Theorem 2. This proof follows closely the one for the
Prime Orbit Theorem. All the difference lies in the change of zeta function, which
essentially results in a change of residue when the Tauberian argument comes.
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Thanks to the work of Stoyanov [8, Theorem 1.3] (see also Morita |2,
Theorem 1]), the length spectrum {¢(7) | v € P} of the billiard is the same as
the one of a certain suspended flow o/ over a subshift o of the type introduced
above. To each periodic billiard trajectory  corresponds a closed orbit of o/ of
minimal length ¢(y), whose discrete orbit under o has r(7y) elements. So we start
by recasting this way the problem in the symbolic model studied in the previous
section.

Let P, :={y € P | r(y) = j [n]} denote the subset of orbits P under
consideration in the statement of the theorem. Let also

m(u) == #{7 € Pnj [ N(v) < u}

denote the corresponding counting function, where N () = (7).
The asymptotic behavior of w depends on the singularities of the complex
function

+oo
n(s) ::/1 u ¥ logudr(u) = Z N(~) *log N(v).

YEPn,j

By Wiener-lkehara Tauberian Theorem, it suffices to show that 7 is analytic in
a certain neighborhood of the closed half-plane {Re s > 1}, except for a simple
pole with residue 1/n at s = 1.

Let us introduce now a zeta function well-adapted to our situation:

+00 s
Cn,j(s) == exp (Z 7Z;T2(n)> :

k=0

For Re s > 1, we see that, like in the previous section, ¢, ; is analytic without
zeros and that

— (i Gni) (s +Z > N(y) Flog N(v).

k=2r(v)k=j [n]

In the sum above, the right-hand term defines a Dirichlet series whose
absolute value is bounded above by C'- 3 p N(y )~2Re(5) Jog N(v) by Lemma
2.1 Tt follows that 7 has exactly the same singularities as —((}, ;/Cn,j) in a certain
neighborhood of the half-plane {s € C | Re(s) > 1}.

To study the latter at so = 1+it, we need to consider the Ruelle operator
Ls,.
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(1) If p(Ls,) < 1, then the series S/ | Zx(s)|/k is absolutely convergent in a
certain neighborhood of sg. A fortiori, ¢, ; is analytic without zeros in the
same neighborhood.So 7 admits an analytic continuation at sg.

(2) If p(Ls,) = 1, then we have an analytic function A\(s) giving the eigenvalue
of maximal modulus of L in a certain neighborhood of sg where moreover
the series > 1% | Zx(s) — A(s)¥|/k is absolutely convergent. Thus for s close
enough to sg and for Re s > 1, the function

+oo 7.

Z ]-‘rkn(s)

— Jt kn
has the same singularities as

+o0 )\(S)j+kn

Z Jj+kn

k=0

So the logarithmic derivative —(wa /Cn.j)(s) has the same singularities as

o= a1 N()A(s)i
—kZOA(s)A(s)M 1:m.

Since the flow is weakly mixing (cf. [8, Lemma 5.2]), A(sp) can never
be a root of unity except for s = 1, where A\(1) = 1 and N (1) # 0 (see [3,
Proposition 7]). Thus 7 can always be continued analytically at each point of the
axis {s € C | Re(s) = 1}}, except for the simple pole with residue
(s = DN (A N (D)

1
1' = = —
ol A(s)m —1 nA(1) n

at s = 1.
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