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ABSTRACT. By using classical invariant theory approach, formulas for com-
putation of the Poincaré series of the kernel of linear locally nilpotent deriva-
tions are found.

1. Introduction. Let K be a field of characteristic 0. A derivation D of
the polynomial algebra K[Z,], Z, = {21, 22,...,2,} is called a linear derivation
if

n
D(Zz) :Zai,jzj,aiyj eK, 1=1,...,n.
j=1
A linear derivation D is called a Weitzenbock derivation if the matrix
Ap:={a;;}i;—; is nilpotent. It is clear that a Weitzenbock derivation is a lo-
cally nilpotent derivation of K|z1, 22,...,2,]. Any Weitzenbock derivation D is
completely determined by the Jordan normal form of the matrix Ap. We will
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denote by Dq, d := (dy,ds,...,ds) the Weitzenbok derivation with the Jordan

normal form of the matrix Ap,consisting of s Jordan blocks of size dy +1, do + 1,

...,ds+1, respectively. The only derivation which corresponds to a single Jordan

block of size d + 1 is called a basic Weitzenbdck derivation and denoted by Ag.
The algebra

ker Dg = {f € K[Z,] | Da(f) = 0}

is called the kernel of the derivation Dgq. It is well known that the kernel ker Dy is
a finitely generated algebra, see [20]-[19]. However, it remains an open problem
to find a minimal system of homogeneous generators (or even the cardinality of
such a system) of the algebra ker Dgq even for small tuples d.

On the other hand, the problem to describe the kernel ker Dq can be
reduced to an old problem of classical invariant theory, namely to the problem to
describe the algebra of joint covariants of several binary forms. In fact, it is well
known that there is a one-to-one correspondence between the G,-actions on an
affine algebraic variety V and the locally nilpotent K-derivations on its algebra
of polynomial functions. Let us identify the algebra K[Z,]| with the algebra
O[K"™] of polynomial functions of the algebraic variety K. Then, the kernel of
the derivation Dy coincides with the invariant ring of the induced via exp(tDq)
action:

ker Dg = K[Z,,]% = O(K™)%.

Now, let By, , Bd,, - . . B4, be the vector K-spaces of binary forms of degrees
di,do,...,ds endowed with the natural action of the group SLs. Consider the
induced action of the group SLs on the algebra of polynomial functions O[Bgq &
K?] on the vector space Bq ® K2, where

Bq :=Bq, ® By, ® -+ ® Bq,, dim(Bq)=di+da+ - +ds+s.

a-{()hed

be the maximal unipotent subgroup of the group SLs. The application of the
Grosshans principle, see [10], [14], gives

Let

O[B4 @ K% 912 =2 O[B4] V2.

Thus
O[Bg @ K*]*% = O[Bq] *-.
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Since Us = (K, +) and Kz; ® Kzo @ - - - ® Kz,, = By it follows
ker Dq = O[Bg & K?]*".

In the language of classical invariant theory the algebra Cq := O[Bgq ®
K?]*% is called the algebra of joint covariants of s binary forms, the algebra
Sa = O[Bq|" is called the algebra of joint semi-invariants of binary forms and
the algebra Tgq := O[Bq4]*" is called the algebra of invariants of the s binary
forms of degrees di, do, ..., ds. Algebras of joint covariants of binary forms were
an object of research in the invariant theory in the 19th century.

The reductivity of SLo implies that the algebras Zg, Sq = ker Dq are fi-
nitely generated N-graded algebras. The formal power series PZgq, PDq = PSq €
Z|[2]],

oo o0
PZa(z) = Y dim((Za)i)?', PSa(z) =)  dim((Sa):)7",
i=0 i=0

are called the Poincaré series of the algebras of joint invariants and semi-invariants.
The finitely generation of the algebras Zg and Sq implies that their Poincaré se-
ries are the power series expansions of certain rational functions. We consider
here the problem of computing efficiently these rational functions. It could be
the first step towards describing these algebras.

Let us recall that the Poincaré series of the algebra of covariants of a
binary d-form equals the Poincaré series of the kernel of the basic Weitzenbock
derivation Ag4. For the cases d < 10, d = 12 the Poincaré series of the algebra of
invariants and covariants for the binary d-form were calculated by Sylvester and
Franklin, see [17], [18]. For the purpose, they used the Cayley-Sylvester formula
for the dimension of graded subspaces. In [13] the Poincaré series for A; was
rediscovered. Springer [16] derived a formula for computing the Poincaré series
of the algebras of invariants of the binary d-forms. This formula has been used
by Brouwer and Cohen [4] for the Poincaré series calculations in the cases d < 17
and also by Littelmann and Procesi [12] for even d < 36. For the case d < 30 in
[3] the explicit form of the Poincare series is given.

In [1], [2] we have found Cayley-Sylvester type and Springer type formulas
for the basic derivation Ay and for the derivation Dq for d = (dy,d3). Also, for
those derivations the Poincaré series was found for d,dq,dy < 30. Relatively
recently, in [7] a formula for computing the Poincaré series of the Weitzenbock
derivation Dy for arbitrary d was announced.

In this paper we prove Cayley-Sylvester type formulas for calculation of
dim(Zq);, dim(ker Dq); and Springer-type formulas for calculation of PZ4(z),
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PSa(z) = PDq(z) for arbitrary d. Also, for the cases d = (1,1,...,1), d =
(2,2,...,2) the explicit formulas for PDgq(z) are given.

2. Cayley-Sylvester type formula for the kernel. To begin,
we give a proof of a Cayley-Sylvester type formula for the dimension of graded
subspaces of the kernel of Weitzenbock derivation Dy, d := (di,da, ..., ds).

Let us consider the polynomial algebra K[Xg] in the set of variables

1 1 1 2 2 2 s s s
Xai={o0,a00,...a, 0,0, .. 2@, x a0, 0

Define on K[X4] the Weitzenbock derivation Dg, d := (di,da, ..., ds) by
Da(@™)y =iz i=0,.. dpk=1,...,s.
Also, define on K[X4] the following linear derivations D}j and &g, by

i) = (dy, — i) 2, Ea (@) = (d —20) ™ k=1, s,

% %

By direct calculation we get
043641~ 20 (23 (1)) 3 (30 (:)) = 208 =l

In the same way we get [Dq,&q] = —2Dgq and [D},Eq] = 2D};. Therefore, the
polynomial algebra K[Xq4| considered as a vector space becomes an sl,-module.

Let ups = K[X4] be the maximal unipotent subalgebra of sly. Let us
identify the following algebras

h
I
with the algebra of joint invariants Zq and the algebra of joint semi-invariant
Sq of the binary forms of the degrees d = (di,ds,...,ds), respectively. For any

element v € Sq the natural number r is called the order of the element v if r is
the smallest natural number such that

(D3)"(v) #0,(Dy)" ' (v) = 0.

K[Xq]*"* = {v € K[Xd] | Da(v) = D§(v)

0
ker Dgq = K[Xd]uz = {’U S K[Xd] ‘ Dd(U) 0

It is clear that any semi-invariant of order r is the highest weight vector for an
irreducible sl,-module of dimension r + 1 in K[X4].
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The algebra of simultaneous covariants Cq is isomorphic to the algebra of
simultaneous semi-invariants. Therefore, it is enough to compute the Poincaré
series of the algebra Sq = ker Dy.

The algebras K[Xg4], Zq, Sq are graded algebras:

K[Xq] = (K[Xq])o + (K[Xa])1 + --- + (K[Xa])m + -,
Za=Za)o+Za)r+ -+ Za)m+-,
Sa = (Sa)o +(Sa)1+ -+ (Sd)m + .

and each (K[Xq])nm is a completely reducible representation of the Lie algebra
sl,.

Let V}, be the standard irreducible sl,-module, dim V;, = k4 1. Then, the
following primary decomposition holds

(1) (K[XdD)m = m(d;0)Vo + ym(d; VI + -+ + v (dsm - d°) Vi ax,

here d* := max(dy,ds,...ds) and v, (d; k) is the multiplicity of the representa-
tion V% in the decomposition of (K[X4])m,. On the other hand, the multiplicity
Ym(d; k) is equal to the number of linearly independent homogeneous simulta-
neous semi-invariants of degree m and order k. In particular, the number of
linearly independent simultaneous invariants of degree m is equal to 7,,(d;0).
These arguments prove

Lemma 2.1.
(1)  dim(Zq)m = ym(d;0);
(13)  dim(Sq)m = Ym(d;0) + Yo (d; 1) 4+ - -+ + Y (d; m d¥).

Let us recall some general facts about the representations of the Lie al-
gebra sl,.
Denote by Ay the set of weights of the representation W, for instance

Ay, ={—d,—d+2,...,d}.

The formal sum
Char(W) = > nw(\g,
AEAW
is called the character of the representation W, here nyy (A) denotes the multiplic-
ity of the weight A € Ayy. Since the multiplicity of any weight of the irreducible
representation Vj is equal to 1, we have

Char(Vy) = ¢ 1+ ¢ 2+ ... + ¢
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Consider the set of variables: 1:(()1), 1:51), . ,:cglll), 1:(()2), 1:52), . ,:cgé), e :c(()s), :cgs),

ceey x&i). The character Char ((K[X4]).,) of the representation (K[Xg4])nm, see [8],
equals

—d —d1+2 d —d —d2+2 d —d —ds+2 d
Hm(q 17q ! 7"'7q17q 27q 2 7"'7q27"'7q °q ,---7(]5),

where Hm(:r(()l),xgl), . ,x&ll), . ,$(()S),$§S), . ,x&i)) is the complete symmetrical
function
Hm(:r(()l),xgl), e ,x&ll), e ,x(()s),acgs), e ,xéss)) =

oD oD oy al® , (s)yal® ol
= Y @ @) @) @) @) @)

S

|a(1) |++|a(5) |:m

d;
and |o®)] .= Zal(.k).
=0

By replacing :I:Z(,k) = g2

character (K[X4]),, namely

, we obtain the specialized expression for the

Char((K[X4])m) =

(1) _ 9. (1) _ 1) (s) _ 9. (s) _ (s)
= Z (qdl)ao (qdl 2 1)“1 ...(q dl)adl. . .(qu)ao (qu 2 1)0‘1 ...(q ds)o‘ds:
|a(1>|++|a(5)|:n

_ Z qd1|a(1)|+---+ds|a(s)|72(a(11)+2a§1)+---+d1 afjl))7---72(ags)+2a§3)+---+d5 afjs)):
|a(1) |—‘,—+|a(5) |:n

md*
= > wald;i)d,

i=—md*

here wy,(d;i) is the number of non-negative integer solutions of the following
system of equations:

|+ + o) =2 (o + 2000 -+ dral)) -
(2) —---—2<ags)+2ags)+---+dsa&?>:i
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We can summarize what we have shown so far in
Theorem 2.1.
(1) dim(Za)m = wn(d;0) — wi(d;2),
(17)  dim(Sq)m = wm(d;0) + wp,(d; 1).

Proof. (i) The zero weight appears once in any representation V, for
even k, therefore

wim(d; 0) = Ym(d; 0) + Ym(d; 2) + v (d;4) + -
The weight 2 appears once in any representation Vj, for even k > 0, therefore
wim(d;2) = Ym(d; 2) + v (d; 4) + ym(d; 6) + -
Taking into account Lemma 2.1, we obtain
win(d; 0) — wi(d; 2) = Y (d; 0) = dim(Za)m.
(71) The weight 1 appears once in any representation Vj, for odd k, therefore
win(d; 1) = Ym(d; 1) + v (d; 3) + ym(d; 5) + -+
Thus,
wn(d;0) + wp(d; 1) =
= Ym(d;0) +9m(d; 1) + ym(d; 2) + - + ym(d;nd”) =
= dim(54)m. O
Simplify the system (2) to
d1oz(()1) + (dy — 2)ag1) + (dy — 4)aé1) + 4 (=dy) aéll) +o 4
+dsal) + (ds — 2)a + (dy — 4)al) + -+ (=dy) o) = 4,
o) +af’ +o ol el Fal ) =

It is well-known that the number wy,(d;7) of non-negative integer solutions of the
above system is equal to the coefficient of 2" of the generating function

fd(tv Z) =

1
(1 —tzh)(1—t2h=2). .. (1 —tz=d) oo (1 —t2%) (1 —t2d=2). .. (1 —tz=%)’
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Denote it in such a way: wy,(d;i) := [t"2"] (fa(t,2)). Observe that fa(t,z) =
fa (t, 2’71).
The following statement holds

Theorem 2.2.

(i) dim(Za)m = [t"](1 = 2*) fa(t, 2),
(i) dim(Sq)m = [t"](1 + 2) fa(t, 2).

Proof. Taking into account the formal property [2' %] f(z) = [27](z* f(z)),
we get

dimn(a)m = w(d; 0) — win(di2) = [ fa(t, 2) — [t 2] falt,2) =
= [tm]fd(tvz) - [tm]Z_Qfd(tvz) = [tm]fd(t72) - [tm]ZQfd(tvz_l) =
= [t"](1 = 2%) fa(t, 2).

In the same way

dim(Sq)m = wm(d; 0) + wp(d; 1) = [t™] fa(t, 2) + [t 2] fa(t, z) =
= [t™]fa(t, ) + [t™]z" fa(t, 2) = [t™](1 + 2) fa(t, 2). =

It is easy to see that the dimensions dim(Iq)y,, and dim(Sq)., allow the
following representations:

dim([d)m = [tm]% % |:1(1 - Z2)fd(t72)d§7

dim(Sa)n = ") § (14 2)falt )T

j2]=1

3. Springer type formulas for the Poincaré series. Let us prove
Springer type formulas for the Poincaré series PZ4(2), PSq(z) = PDq(2).

Consider the C-algebra C[t, z]] of a formal power series. For an arbitrary
m,n € Z* define C-linear function

U, n: Cl[E, 2] — Cl[2]],

)
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in the following way:
o0 o0
\Ijm,n E ai,j tZZJ = E aim’mzz.
i,§=0 i=0

Denote by ¢, the restriction of ¥, , to C[[z]], namely

00 00
Pn § a; 2| = E ainzz .
=0 i=0

There is an effective algorithm of calculation for the function ¢y, see [1]. In some
cases calculation of the functions ¥ can be reduced to calculation of the functions
. The following statements hold:

Lemma 3.1. For R(z) € C[[2]] and for m,n,k € N we have:

(1 "N e k(R(2)
(m —1)! dzw(/j—l - ,if n>k
R(z) _
vy, <m> - ﬂ7 i ek
(L—2)m
R(0), if k>n.

Proof. Let R(2) = >_72, rjz7. Observe, that

1 _ 1 dm—l 1 _ i S + m — ]. xs
(1—z)™ (m—1dam 1 \1—-u —~\ m-1 '
Then for n > k we have

o (k) = (5, () ) -

J»s20

= \I/Ln(z (S —T‘rnri; 1) Ts(n—k) (tz”)s):z <S —:nTiI 1) Ts(n—k)zs.

s>0
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On other hand

1 dm_l m—1 1 - m+s—1 (m_l)
(m — 1)l dzm—t (" on-k(1(2)) = (m —1)! ZTS(n*k)Z =
s=0 2

1

= s+m—1(s+m—2) - (s+Drgm_p2’ =
s+m—1 s

:Z m—1 rs(n_k)z.

s>0

This proves the case n > k.
Taking into account the formal property

Uy, (F(tz")H(t, 2) = F(2)V1n(H(t,2)), F(z),H(t,n) e C[[t,z]],

for the case n = k we have

R(0)
1—z)m

Vi (g = o (9D -

To prove the case n < k observe that, the equation ks + j = ns for n < k and
7,8 > 0 has only one trivial solution j = s = 0. We have

R(z ; ;
\I’l,n (1 —(t,ik> = \Ifl,n Z Tij (tZk)s :\1’1777, Z Tjtszk3+_7 =79 = R(O)
J,s20 J,>0

O

The main idea of the calculations of the paper is that the Poincaré series
PZLa(z), PS4(z) can be expressed in terms of functions ¥. The following simple
but important statement holds:

Lemma 3.2. Let d* := max(d). Then
(i)  PZa(z) = Via ((1—2%)fa(tz?,2)),

(ii) PSa(z) = ¥y ((1+2)faltz?,2)).
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Proof. Theorem 2.2 states that dim(Zq), = [t"](1 — 22)fa(t, z). Then

PIq(z Zdlm Iq)n2" Z([tn](l _ ZZ)fd(t,Z))Zn:

n=0
= Z [(t29)") (1 — 22) fa (L2 z))z”:\IlLd* ((1 — 22)fd(tzd,z)) .

Similarly, we prove the statement (7).
We replaced t with tz%" to avoid negative powers of z in the denominator
of the function fq(t,z). O

Write the function fq(t, z) in the following way

1

[Tiei (tz= 9, 22) 4, 417

here (a,q), = (1 —a)(1 —aq)--- (1 —ag™ 1) denotes the g-shifted factorial.
The above lemma implies the following presentations of the Poincaré series
via contour integrals:

fa(t,z) =

Lemma 3.3.

1 1— 22 dz
7: 731— t = —f S )
© 40 =5m =1 oy (B27 %, 2%) g 41 2

.. 1 1+2 dz
1) PSq(t) = —% < —.
(i) Q 2mi Jzj=1 [Limy (B2 9%, 2%) g, 11 2

Proof. We have

o0

PSalt Zdlm Ia)nt™ =Y ("1 + 2) fa(t, 2))t"=

n=0

3 dz n__ 1 dz
Z( o jlilzl(l +2)falt;2)— >t o |Z|:1(1 +2) falt,2)—

Similarly we get the Poincaré series PZq4(t). O
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Note that the Molien-Weyl integral formula for the Poincaré series Py(t)
of the algebra of invariants of binary d-form can be reduced to the following
formula

Palt) = L% 12 dz _
P70 Jlam @ —t2d)(1 = £292) (1 —t=d) 2

1 1—22 dz

211 |z|=1 (tz*d,zQ)dH z

see [5], p. 183. An ingenious way to calculate such integrals was proposed in [6].
After simplification we can write fq(tz%, z) in the following way

Ja(t="2) = (1= 01— 12 (1122 (1 20y )

for some integer 3y, ... 4. For example

1
(1—1) (1 —t22)%(1 — t23) (1 — t2%)%(1 — t25) (1 — ¢26)%(1 — t28)

fa,2.4) (tz* 2) =

It implies the following partial fraction decomposition of fg(tz?,z2) :

2d* Bi

ZZ l—tz’

zOkl

for some polynomials A; 1 ().
By direct calculations we obtain

(_1)@'*16 oBi—k

G R g (=20 - 1))

Aik(z) =

Now we can present Springer type formulas for the Poincaré series PZq4(2)
and PSq4(z).

Theorem 3.1.

d 1 dF (g i ((1 = 22) A k(2
Pat) = Z k (k—1)! ( - dz("f_1 Rt ))) ’
=1

¢ s 7 (o i1+ 2) Au(2))

PSalz) = 22 k—1)! dzh1
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Proof. Taking into account Lemma 3.1 and the linearity of the map ¥
we get

2d7 B (1+2)A
PSa(z) = Uy g ((1+z)fd(tzd» ) Uy ar (ZZ tzz )Z

=0 k=1

d* i _
:Zi 1 a1 (o (14 2) Air(2)))
; (k—1)! dzk=1 '
1=0 k=1

The case PZq4(z) can be considered similarly. O

Note that the Poincaré series PZ4(z) and PCq4(z) of the algebras of in-
variants and covariants of binary d-form equal

(— 1)k k(1) (1 — 22)

I
PLy(z Z Pd— 2k< (2, 2% (2, D)ar ),

0<k<d/2
D REE( 4
Pcd Z Pd— 2k<( 2)22) (2( ) ) )
0<k<d/2 ) k ) d—k

see [16] and [1] for details.

4. Explicit formulas for small d. The formulas of Theorem 3.1
allow the simplification for some small tuples d.

Theorem 4.1. Let s =nanddy = dy = ... =d, = 1, i.e. d =
(1,1,...,1). Then

n n k 2n—k:—1
PLa(z :Z ldzk1< 1_22 )7

n
PSal(z :Z |dzk 1( 22 Ik )’
=1

where (N)y :=n(n+1)---(n+m—1), (n)g:= 1 denotes the shifted factorial.
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Proof. Ford=(1,1,...,1) € Z™ we have d* =1 and

: 1
falt",2) = (1=t —t22))"
_ Aloi(j) I (fiof(;’)l + R(2), 11 (R(2))

where

_ (_l)nfk ) anfk 1
Aoge = (n—k)! %Eq otk \ (1 —tz2)n )~

By induction we get

Thus,

Now, using Theorem 3.1 and the property ¢1(F(z)) =
F(z) € Z[|z]] we have

S

PSd(Z) = \Ill,l (
k=1 k=1

n

k—1
ﬁ% (2“1901((1 +2) AO,k)) =

T
I

n 1 dkfl

(m — )ldzF1 (12 o) =

T
I

n (_1)n7k (n)nfk dk—l (1—}—2)2257’{71
(k—1)! (n— k)l dzk-1 ( (1 — z2)2n—k ) '

Ed

=1

The case PZq4(z) can be considered similarly. O

(1+2) Ao\ < (1+2) A
ﬁ)-Z‘I’M ((1_715)15

0,

k):
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Theorem 4.2. Letdy =do=...=d, =2,d=(2,2,...,2), then

- 1)k nok 2n—k—i—1
n—k i(n)p—k—i(l —2)z
I : E
Pd TL— _1ldzk 1( < > 1_Z)n+z(1_22)2nk1 )

=

n 1)n—k n—k ()i
PSal(z :Zn— _1|dzk1 ;( i )1_Z)n+z(1_22)2nkz :
Proof. It is easy to check that in this case we have

1
(1 —)(1 —t22)(1 — ta)"™

fa(tz?,2) =
The decomposition fq(t22,2) into partial fractions yields
— [ An(2) By(2) Ci(2)
t2?, 2) =
falt=?2) = 3 <(1 —OF T At T teh)r )
for some rational functions Ag(z), Bx(z),Ci(z). Then

PSa(z) = V12 (1 +2)fa(tz?,2)) =

() (20 o (255

Lemma 3.1 implies that

(1+2Ci2)
na (i) -0
and
(1425 _ Bl0)
na ()~ b
But

z) = im .
g (n — k)I(22)"F 122 0tk \ (1 — t)7(1 — t24)"
It is easy to see that this partial derivative has the following form

gk < 1 ) B By(t, 2)

otk \ (L —t)n(1—t2Y)n ) (1 —t)(1 — tzt))2n—h’
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for some polynomial By(t,z). Moreover, {(B(t,z)) = n — k. Then

!

Be) = i I [ - ey

_ (1) k22"B(1/2%, 2)
(n—E)((22 = 1)(1 — tz4))2n—k"

It follows that By(z) has the factor 22* and then By(0) = 0. Thus

s ((1 + 2) By (2)

= =1,...,n.

Therefore

Let us to calculate Ai(z). We have

(_1)n—k’ n—k

Az) = G P g

(fa(tz®,2)(1 = 1)") =

(_l)nfk i dnfk 1
11m =
(n — k) t=1dtn=k \ (1 — t22)"(1 — tz*)»

- FmE () (=) (),

7=

2% 4(n—k—i)

(=R -k z z
RGO Z; < i >(”)i<”)"—’“—" (1 — t22)nti (1 — tedyznh—i

7=

(22)2(7171@)71'

C(—nR K <n —k

 (n—k)! par

i )(n)’i(n)n—k—i (1 — 22)n+i(1 _ Z4)2n7k71"



1. Poincaré series 115

Taking into account that oo(F(22)) = F(z), and @2(2F(2%)) = 0 we
obtain

pa((1+2)Ar(2)) = pa(Ar(2)) =

B (_1)nfk n—k n—k (2)2(n7k)7i
= wi ( . >(n)i(n)n—k—i = i = 2

1=0

k=1
B n (_1)n—k dk—1 n—k n—k (n)i(n)n_k_iZQn_k_i_l
a ; (n—k)l(k — 1)l dzk-1 (; ( i ) (1— z)n+i(l — 22)2nki> :

By replacing the factor 1+ 2 with 1—22 in PS4(z) and taking into account
that

p2((1 = 2%) Ax(2)) = (1 = 2)p2(AR(2)),
we get the Poincaré series PZq4(z). O

5. Examples. For direct computations of the function ¢, we use the
following technical lemma, see [1]:

Lemma 5.1. Let R(z) be polynomial of z. Then

. ( R(2) > _ on(R(2)Qn(2")Qn(2"2)Qn ("))
" = k) (1 = 2R2) (1 — 2Rm) (1 —2F)(1 — zhk2) .- (1 — 2hm) 7

here Qu(z) =142+ 224+ 21 and k; are natural numbers.
As example, let us calculate the Poincaré series PD(q o 3). We have d* = 3
and

1
(1—tz)2 (1 —t22)2 (1 —25) (1 — t23) (1 — tz) (1 — £26) (1 — t)

fa2s)(t2) =
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The decomposition f(; 2 3)(t,2) into partial fractions yields:

A071(2) n ALl(z) AQJ(Z) AQVQ(Z) A371(2) A471(2)
1—t L—tz  1—t22  (1—¢22)2 1—t23 1—t24

faes(t z) =

A4’2(2’) A571(2’) Aﬁ’l(z)
(1— tz4)2 1—t2> 1 —tz6"

By using Lemma 3.1 we have

PD(12,3)(2) = W13 ((1+2)f123(t2) =

1-—-t¢ 1 -tz
(1 —|—Z)A21 (1 +Z)A2 2(2) (1 —‘rZ)Ag 1(2)
\Il ’ \II ? \Ij ) —
i ( 1tz T (1 —t22)? %3 1—tz3

=3 ((1 +2)A0,1(2)) + w2 (1 +2)A1,1(2)) + o1 (1 + 2)A2,1(2)) +

+ (201 (1 4 2)A22(2)))’, + A3.1(0).

Now

Ao}l(Z) = %Eg (f(1,2,3) (t72)(1 - t)) =

B 1

A=) (=22 (1) (128 (1—2) (1 25)
and

e3((1+2)A0,1(2)) =

221 4+ 72104 1429429284 3427 4 4220+ 4225+ 3320 + 2123 4+ 14224 42 41
(1-25)(1—2)° (1—24)* (1 - 22)° '

As above we obtain

A1q(2) = tEEL (fazs(t 2)(1 = tz2) =

T -2 (11— (1-2)(1-D)(-1)
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2(4413224624+6204+2"4+1324+925+1223
p2((1+2)A11(2)) = — ( 5 1 )-
(1-22)1-251-23)"(1-2)

Ao1(2) = = Tim (fa)(t 2)(1 — £2)%)) =

22 122

23 (526+5Z5—|—6Z4+223 —22—22—2)
1—2)7(1-2)(1- B (122

23 (526+5Z5+624+223—22—22—2)
(1=242(1—2)*(1—2%)%(1—22)°

P1((1+2)A21(2)) = —

23

Aga(z) = tEgQQ (Fa23)(t.2)(1 —t2)?) = (1= (1= 2P (1= (127

(21 (1 + 2)A22(2)))), = (2(1 + 2) A22(2)), =

28 (1020 41325 4202 +162° + 1422 + 72 + 4)
(1-22)° (1= 29" (1-2)° (1 - 24)°

At last

27

(1-23)"(1—2)"(1~2%)

Az1(z) = tggli” (fa2mt2) (1 —t2%) =
Thus A31(0) = 0.

After summation and simplification we obtain the explicit expression for
the Poincaré series

P(1,2,3)(Z)
(1-292(1-2)21—-22)(1-23)%(1—-25)

PD(1,2,3)(2) =

where

p123(2) = 21 + 213 4+ 6212 + 12211 + 20210 4 2929 + 3528 + 3927 + 3520+

+292° +202% + 1223 + 622 + 2 + 1.

The following Poincaré series are obtained using the explicit formulas of
Theorem 3.2 and Theorem 3.3

1 1—23

1— 221 22) PPuay(z) = 1-2)%1— 22>

PD 1)(2) =

)
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244223 4422 +22 411
(1—2)*(1—22)°
20 4+325 492449234922 4+32+1
(1-2)*(1—2%)"
28 4427 41620 + 2425 + 362 + 2423 + 1622 + 42 + 1
(1-2)*(1-22)°

pr(2)
(1-2)(1-22)"

pr(2) = 210 + 52° 4+ 2528 4+ 5027 4 10025 + 10025 + 1002* + 502% 4+ 2522 4 52 + 1.

PD(1,1,1,1)(Z) =

)

)

737)(1,1,1,1,1)(73) =

PD(1,1,1,1,1,1)(Z) =

PD(1,1,1,1,1,1,1)(2) =

14422+ 24 _1+922+924+26

PD 2) = , PD z) =
(2,2,2)( ) (1 _ 2)3 (1 _ 22)5 (2’2:2’2)( ) (1 o 2)4 (1 o 22)7
141622 + 362% + 1625 + 28
PD zZ) = )
(2,2,2,2,2)( ) (1 _ 2)5 (1 B 22)9
D (2) = 210 4+ 2528 4+ 10028 + 1002* + 2522 + 1
(2,2,2,2,2,2) (1 _ 2)6 (1 o 22)11 )
212 4 36210 4+ 22528 + 40026 + 2252% + 3622 + 1
PD222,2222)(2) = :

(z=1)7(1—22)"

By using Maple we computed the Poincaré series up to n = 30. The cases
n = 2,3 agree with the results of the papers [2], [7].
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