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FRACTIONAL TRIGONOMETRIC KOROVKIN THEORY IN

STATISTICAL SENSE

George A. Anastassiou, Oktay Duman
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Abstract. In the present paper, we improve the classical trigonomet-
ric Korovkin theory by using the concept of statistical convergence from
the summability theory and also by considering the fractional derivatives of
functions. We also show that our new results are more applicable than the
classical ones.

1. Introduction. The classical trigonometric Korovkin theory (see,
e.g., [1, 21]) has been developed by the second author (see [10]) with the help
of the concept of statistical convergence instead of the usual convergence. In
the recent paper [4], this theory has also been studied by the first author via
the techniques from the fractional calculus. In this paper, we mainly combine
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these results. More precisely, we obtain some statistical trigonometric Korovkin-
type results by using the fractional derivatives of functions. We also display an
example showing why our results are more applicable than the classical ones.

We first recall some basic definitions and notations used in the paper.
Let A := [ajn], j, n = 1, 2, . . . , be an infinite summability matrix and assume

that, for a given sequence (xn), the series
∞
∑

n=1
ajnxn converges for every j ∈ N.

Then, by the A-transform of x, we mean the sequence ((Ax)j) such that, for every

j ∈ N, (Ax)j :=
∞
∑

n=1
ajnxn. A summability matrix A is said to be regular (see

[19]) if for every (xn) for which limn xn = L we get lim
j

(Ax)j = L. For a given

non-negative regular summability matrix A, we say that a sequence (xn) is A-
statistically convergent to a number L if, for every ε > 0, lim

j→∞

∑

n : |xn−L|≥ε

anj = 0,

which is denoted by stA − lim
n

xn = L (see [17]). Observe now that if A = C1 =

[cjn], the Cesáro matrix defined to be cjn = 1/j if 1 ≤ n ≤ j, and cjn = 0
otherwise, then C1-statistical convergence coincides with the concept of statistical
convergence, which was first introduced by Fast [14] (see also [15]). In this case,
we use the notation st − lim instead of stC1 − lim (see the last section for this
situation). Notice that every convergent sequence is A-statistically convergent
to the same value for any non-negative regular matrix A, however, the converse
is not always true. Not all properties of convergent sequences hold true for A-
statistical convergence (or statistical convergence). For instance, although it is
well-known that a subsequence of a convergent sequence is convergent, this is
not always true for A-statistical convergence. Another example is that every
convergent sequence must be bounded, however it does not need to be bounded
of an A-statistically convergent sequence. With these properties, in recent years,
the statistical convergence has been used in many branches of mathematics, such
as summability theory [9, 16], measure theory [8, 22], approximation theory [6,
13, 18], fuzzy logic theory [5, 7, 20], analytic functions theory [11, 12], and etc.

Throughout the paper we focus on the closed interval [−π, π]. We now
recall the Caputo fractional derivatives. Let r be a positive real number and
m = ⌈r⌉, where ⌈·⌉ is the ceiling of the number. Let AC ([−π, π]) denote the
space of all real-valued absolutely continuous functions on [−π, π]. Consider the
space

ACm ([−π, π]) :=
{

f : [−π, π] → R : f (m−1) ∈ AC ([−π, π])
}

.

Then, the left Caputo fractional derivative of a function f belonging to
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ACm ([−π, π]) is defined by

(1.1) Dr
∗(−π)f(y) :=

1

Γ(m − r)

y
∫

−π

(y − t)m−r−1f (m)(t)dt for y ∈ [−π, π],

where Γ is the usual Gamma function. Also, the right Caputo fractional derivative
of a function f belonging to ACm ([−π, π]) is defined to be

(1.2) Dr
π−f(y) :=

(−1)m

Γ(m − r)

π
∫

y

(ζ − y)m−r−1f (m)(ζ)dζ for y ∈ [−π, π].

In (1.1) and (1.2), we set D0
∗(−π)f = f and D0

π−f = f on [−π, π]. Throughout
the paper we consider the following assumptions:

Dr
∗(−π)f(y) = 0 for every y < −π

and
Dr

π−f(y) = 0 for every y > π.

Then we know the following facts (see, e.g., [2, 3, 4]):

(1◦) If r > 0, r /∈ N, m = ⌈r⌉, f ∈ Cm−1([−π, π]) and f (m) ∈ L∞([−π, π]),
then we have Dr

∗(−π)f(−π) = 0 and Dr
π−f(π) = 0.

(2◦) Let y ∈ [−π, π] be fixed. For r > 0, m = ⌈r⌉, f ∈ Cm−1([−π, π])
with f (m) ∈ L∞ ([−π, π]), consider the following Caputo fractional derivatives:

(1.3) Uf (x, y) := Dr
∗xf(y) =

1

Γ(m − r)

y
∫

x

(y − t)m−r−1f (m)(t)dt for y ∈ [x, π]

and
(1.4)

Vf (x, y) := Dr
x−f(y) =

(−1)m

Γ(m − r)

x
∫

y

(ζ − y)m−r−1f (m)(ζ)dζ for y ∈ [−π, x].

Then, by [2, 4], for each fixed x ∈ [−π, π], Uf (x, ·) is continuous on the interval
[x, π], and also Vf (x, ·) is continuous on [−π, x]. In addition, if f ∈ Cm([−π, π]),
then, Uf (·, ·) and Vf (·, ·) are continuous on the set [−π, π] × [−π, π].
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(3◦) Let ω(f, δ), δ > 0, denote the usual modulus of continuity of a
function f on [−π, π]. If g ∈ C ([−π, π] × [−π, π]), then, for any δ > 0, both the
functions s(x) := ω (g (x, ·) , δ)[−π,x] and t(x) := ω (g (x, ·) , δ)[x,π] are continuous
at the point x ∈ [−π, π]].

(4◦) If f ∈ Cm−1([−π, π]) with f (m) ∈ L∞ ([−π, π]), then we get from [4]
that, for any δ > 0,

(1.5) sup
x∈[−π,π]

ω (Uf (x, ·) , δ)[x,π] < ∞

and

(1.6) sup
x∈[−π,π]

ω (Vf (x, ·) , δ)[−π,x] < ∞.

(5◦) Now let Ψ(y) := Ψx(y) = y − x, Ω(y) := Ωx(y) = sin

( |y − x|
4

)

and

e0(y) := 1 on the interval [−π, π]. Following the paper by Anastassiou (see [4])
if Ln : C ([−π, π]) → C ([−π, π]) is a sequence of positive linear operators and if
r > 0, r /∈ N, m = ⌈r⌉, f ∈ ACm([−π, π]) with f (m) ∈ L∞ ([−π, π]), then we
obtain that (‖ · ‖ is the supremum norm)

‖Ln(f) − f‖ ≤ ‖f‖ ‖Ln(e0) − e0‖ +

m−1
∑

k=1

∥

∥f (k)
∥

∥

k!

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥

+

(

(2π)r

Γ (r + 1)
‖Ln (e0) − e0‖

1
r+1 +

(2π)r (r + 1 + 2π)

Γ (r + 2)

)

×
∥

∥Ln

(

Ωr+1
)∥

∥

r
r+1

{

sup
x∈[−π,π]

ω
(

Uf (x, ·) ,
∥

∥Ln

(

Ωr+1
)∥

∥

1
r+1

)

[x,π]

+ sup
x∈[−π,π]

ω
(

Vf (x, ·) ,
∥

∥Ln

(

Ωr+1
)∥

∥

1
r+1

)

[−π,x]

}

.

Then setting

(1.7) ρn,r :=
∥

∥Ln

(

Ωr+1
)∥

∥

1
r+1

,
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and also using (1.5), (1.6) we may write that
(1.8)

‖Ln(f) − f‖ ≤Km,r

{

‖Ln(e0) − e0‖ +
m−1
∑

k=1

∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥

+ρr
n,r

(

sup
x∈[−π,π]

ω (Uf (x, ·) , ρn,r)[x,π]

)

+ρr
n,r

(

sup
x∈[−π,π]

ω (Vf (x, ·) , ρn,r)[−π,x]

)

+ρr
n,r ‖Ln (e0) − e0‖

1
r+1

(

sup
x∈[−π,π]

ω (Uf (x, ·) , ρn,r)[x,π]

)

+ρr
n,r ‖Ln (e0) − e0‖

1
r+1

(

sup
x∈[−π,π]

ω (Vf (x, ·) , ρn,r)[−π,x]

)}

,

where

(1.9) Kr,m := max

{

(2π)r

Γ (r + 1)
,
(2π)r (r + 1 + 2π)

Γ (r + 2)
, ‖f‖ ,

∥

∥f ′
∥

∥ ,

‖f ′′‖
2!

,
‖f ′′′‖

3!
, . . . ,

∥

∥f (m−1)
∥

∥

(m − 1)!

}

.

We should note that the sum in the right hand-side of (1.8) collapses when r ∈
(0, 1).

Therefore, the next theorem is a fractional Korovkin-type approximation
result for a sequence of positive linear operators.

Theorem A (see [4]). Let Ln : C ([−π, π]) → C ([−π, π]) be a se-

quence of positive linear operators, and let r > 0, r /∈ N, m = ⌈r⌉. If the

sequence {ρn,r}n∈N given by (1.7) is convergent to zero as n tends to infin-

ity and {Ln(e0)}n∈N converges uniformly to e0 on [−π, π], then, for every f ∈
ACm([−π, π]) with f (m) ∈ L∞ ([−π, π]), the sequence {Ln(f)}n∈N converges uni-

formly to f on the interval [−π, π]. Furthermore, this uniform convergence is

still valid on [−π, π] when f ∈ Cm ([−π, π]).
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2. Fractional Korovkin results based on statistical conver-

gence. In this section, we mainly obtain the statistical version of Theorem A.
We first need the following lemma.

Lemma 2.1. Let A := [ajn] be a non-negative regular summability ma-

trix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([−π, π]) → C ([−π, π])
is a sequence of positive linear operators. If

(2.1) stA − lim
n

‖Ln(e0) − e0‖ = 0

and

(2.2) stA − lim
n

ρn,r = 0,

where ρn,r is the same as in (1.7), then we have, for every k = 1, 2, . . . ,m − 1,

stA − lim
n

∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
= 0.

P r o o f. Let k ∈ {1, 2, . . . ,m−1} be fixed. Then, using Hölder’s inequality

for positive linear operators with p =
r + 1

k
, q =

r + 1

r + 1 − k

(

1

p
+

1

q
= 1

)

, we

obtain that

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥ = 2k

∥

∥

∥

∥

∥

Ln

(

( |Ψ|
2

)k
)∥

∥

∥

∥

∥

≤ 2k

∥

∥

∥

∥

∥

Ln

(

( |Ψ|
2

)r+1
)∥

∥

∥

∥

∥

k
r+1

‖Ln (e0)‖
r+1−k

r+1 ,

which gives

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥ ≤ 2k

∥

∥

∥

∥

∥

Ln

(

( |Ψ|
2

)r+1
)∥

∥

∥

∥

∥

k
r+1
{

‖Ln (e0) − e0‖
r+1−k

r+1 + 1
}

.

Now using the fact that |u| ≤ π sin (|u| /2) for u ∈ [−π, π], we have

∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
≤ (2π)k

∥

∥

∥

∥

Ln

(

sinr+1

( |Ψ|
4

))∥

∥

∥

∥

k
r+1 {

‖Ln (e0) − e0‖
r+1−k

r+1 + 1
}

.
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Hence, for each k = 1, 2, . . . ,m − 1, we get the following inequality:

(2.3)
∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
≤ (2π)k

(

ρk
n,r ‖Ln (e0) − e0‖

r+1−k
r+1 + ρk

n,r

)

.

Then, for a given ε > 0, define the following sets:

A : =
{

n ∈ N :
∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
≥ ε
}

,

A1 : =

{

n ∈ N : ρk
n,r ‖Ln (e0) − e0‖

r+1−k
r+1 ≥ ε

2 (2π)k

}

A2 : =

{

n ∈ N : ρn,r ≥
1

2π

(ε

2

) 1
k

}

.

Then, it follows from (2.3) that A ⊆ A1 ∪ A2. Also, defining

A′
1 : =

{

n ∈ N : ρn,r ≥ 1√
2π

(ε

2

) 1
2k

}

,

A′′
1 : =







n ∈ N : ‖Ln (e0) − e0‖ ≥
(

ε

2 (2π)k

)
r+1

2(r+1−k)







,

we observe that A1 ⊆ A′
1 ∪ A′′

2 , which implies that

A ⊆ A′
1 ∪ A′′

1 ∪ A2.

Hence, for every j ∈ N, we get

∑

n∈A

ajn ≤
∑

n∈A′

1

ajn +
∑

n∈A′′

1

ajn +
∑

n∈A2

ajn.

Letting j → ∞ in the last inequality and also using the hypotheses (2.1) and
(2.2) we immediately see that

lim
j

∑

n∈A

ajn = 0.

Hence, we conclude that, for each k = 1, 2, . . . ,m − 1,

stA − lim
n

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥ = 0,

whence the result. �
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Now we are ready to give our first fractional approximation result based
on statistical convergence.

Theorem 2.2. Let A := [ajn] be a non-negative regular summability

matrix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([−π, π]) →
C ([−π, π]) is a sequence of positive linear operators. If (2.1) and (2.2) hold,

then, for every f ∈ ACm([−π, π]) with f (m) ∈ L∞ ([−π, π]), we have

(2.4) stA − lim
n

‖Ln(f) − f‖ = 0.

P r o o f. Let f ∈ ACm([−π, π]) with f (m) ∈ L∞ ([−π, π]). Then, using
(1.5), (1.6) and (1.8), we get

(2.5)

‖Ln(f) − f‖ ≤ Mm,r

{

‖Ln(e0) − e0‖ + 2ρr
n,r

+2ρr
n,r ‖Ln (e0) − e0‖

1
r+1 +

m−1
∑

k=1

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥

}

,

where

Mm,r := max

{

Km,r, sup
x∈[−π,π]

ω (Uf (x, ·) , ρn,r)[x,π] ,

sup
x∈[−π,π]

ω
(

Vf (x, ·) , ρn,r

)

[−π,x]

}

and Km,r is given by (1.9). Now, for a given ε > 0,define the following sets:

B := {n ∈ N : ‖Ln(f) − f‖ ≥ ε} ,

Bk :=

{

n ∈ N :
∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥
≥ ε

(m + 2)Mm,r

}

, k = 1, 2, . . . ,m − 1.

Bm :=

{

n ∈ N : ‖Ln(e0) − e0‖ ≥ ε

(m + 2) Mm,r

}

Bm+1 :=

{

n ∈ N : δn,r ≥
(

ε

2(m + 2)Mm,r

)
1
r

}

,

Bm+2 :=

{

n ∈ N : δr
n,r ‖Ln(e0) − e0‖

1
r+1 ≥ ε

2(m + 2)Mm,r

}

.
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Then, it follows from (2.5) that B ⊆
m+2
⋃

i=1
Bi. Also defining

Bm+3 :=

{

n ∈ N : ‖Ln(e0) − e0‖ ≥
(

ε

2(m + 2)Mm,r

)
r+1
2

}

and

Bm+4 :=

{

n ∈ N : δn,r ≥
(

ε

2(m + 2)Mm,r

) 1
2r

}

we see that
Bm+2 ⊆ Bm+3 ∪ Bm+4,

which implies

B ⊆
m+4
⋃

i=1

Bi.

Hence, for every j ∈ N, we have

(2.6)
∑

n∈B

ajn ≤
m+4
∑

i=1

∑

n∈Bi

ajn.

Taking limit as n → ∞ in the both sides of (2.6) and also using (2.1), (2.2), and
also considering Lemma 2.1 we conclude that

lim
j

∑

n∈B

ajn = 0,

which gives (2.4). �

If we use the space Cm([−π, π]) instead of ACm([−π, π]), then we can get
a slight modification of Theorem 2.2. To see this we need the next lemma.

Lemma 2.3. Let A := [ajn] be a non-negative regular summability

matrix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([−π, π]) →
C ([−π, π])is a sequence of positive linear operators. If (2.2) holds, then, for

every f ∈ Cm([−π, π]), we have:

(i) stA − lim
n

(

sup
x∈[−π,π]

ω (Uf (x, ·) , ρn,r)[x,π]

)

= 0,

(ii) stA − lim
n

(

sup
x∈[−π,π]

ω (Vf (x, ·) , ρn,r)[−π,x]

)

= 0,
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where ρn,r is the same as in (1.7); Uf (·, ·) and Vf (·, ·) are given respectively by

(1.3) and (1.4).

P r o o f. We know from (2◦) that if f ∈ Cm ([−π, π]), then both Uf (·, ·)
and Vf (·, ·) belong to C ([−π, π] × [−π, π]). Then, by (3◦), the functions
ω (Uf (x, ·) , δn,r)[x,π] and ω (Vf (x, ·) , δn,r)[−π,x] are continuous at the point x ∈
[−π, π]. Hence, there exist the points x0, x1 ∈ [−π, π] such that

sup
x∈[−π,π]

ω (Uf (x, ·) , ρn,r)[x,π] = ω (Uf (x0, ·) , ρn,r)[x0,π] =: g (ρn,r)

and

sup
x∈[−π,π]

ω (Vf (x, ·) , ρn,r)[−π,x] = ω (Vf (x1, ·) , ρn,r)[−π,x1]
=: h (ρn,r) .

Since Uf (x0, ·) and Vf (x1, ·) are continuous on [−π, π], the functions g and h are
right continuous at the origin. By (2.2), we get, for any δ > 0, that

(2.7) lim
j

∑

n:ρn,r≥δ

ajn = 0.

Now, by the right continuity of g and h at zero, for a given ε > 0, there exist
δ1, δ2 > 0 such that g(δn,r) < ε whenever δn,r < δ1 and that h(δn,r) < ε whenever
δn,r < δ2. Then, we may write that g(δn,r) ≥ ε implies δn,r ≥ δ1, and also that
h(δn,r) ≥ ε implies δn,r ≥ δ2. Hence, we see that

(2.8) {n ∈ N : g(ρn,r) ≥ ε} ⊆ {n ∈ N : ρn,r ≥ δ1}

and

(2.9) {n ∈ N : h(ρn,r) ≥ ε} ⊆ {n ∈ N : ρn,r ≥ δ2}

So, it follows from (2.8) and (2.9) that, for each j ∈ N,

(2.10)
∑

n:g(ρn,r)≥ε

ajn ≤
∑

n:ρn,r≥δ1

ajn

and

(2.11)
∑

n:h(ρn,r)≥ε

ajn ≤
∑

n:ρn,r≥δ2

ajn
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Then, taking limit as j → ∞ on the both sides of the inequalities (2.10), (2.11);
and also using (2.7) we immediately get, for every ε > 0,

lim
j

∑

n:g(ρn,r)≥ε

ajn = lim
j

∑

n:h(ρn,r)≥ε

ajn = 0,

which means that

stA − lim
n

(

sup
x∈[−π,π]

ω (Uf (x, ·) , ρn,r)[x,π]

)

= 0

and

stA − lim
n

(

sup
x∈[−π,π]

ω (Vf (x, ·) , ρn,r)[−π,x]

)

= 0.

Therefore, the proof of Lemma is completed. �

Then, we get the following result.

Theorem 2.4. Let A := [ajn] be a non-negative regular summability

matrix, and let r > 0, r /∈ N, m = ⌈r⌉. Assume that Ln : C ([−π, π]) →
C ([−π, π]) is a sequence of positive linear operators. If (2.1) and (2.2) hold,

then, for every f ∈ Cm([−π, π]), we have (2.4).

P r o o f. By (1.8), we get

(2.12)

‖Ln(f) − f‖ ≤ Km,r

{

‖Ln(e0) − e0‖ +
m−1
∑

k=1

∥

∥

∥
Ln

(

|Ψ|k
)∥

∥

∥

+ρr
n,rg (ρn,r) + ρr

n,rh (ρn,r)

+ρr
n,rg (ρn,r) ‖Ln (e0) − e0‖

1
r+1

+ρr
n,rh (ρn,r) ‖Ln (e0) − e0‖

1
r+1

}

,

where g(ρn,r) and h(ρn,r) are the same as in the proof of Lemma 2.3. Now, for a
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given ε > 0, consider the following sets

C := {n ∈ N : ‖Ln(f) − f‖ ≥ ε} ,

Ck :=

{

n ∈ N :
∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥ ≥ ε

(m + 4)Km,r

}

, k = 1, 2, . . . ,m − 1.

Cm :=

{

n ∈ N : ‖Ln(e0) − e0‖ ≥ ε

(m + 4) Km,r

}

Cm+1 :=

{

n ∈ N : ρr
n,rg (ρn,r) ≥

ε

(m + 4) Km,r

}

,

Cm+2 :=

{

n ∈ N : ρr
n,rh (ρn,r) ≥

ε

(m + 4) Km,r

}

,

Cm+3 :=

{

n ∈ N : ρr
n,rg (ρn,r) ‖Ln (e0) − e0‖

1
r+1 ≥ ε

(m + 4) Km,r

}

Cm+4 :=

{

n ∈ N : ρr
n,rh (ρn,r) ‖Ln (e0) − e0‖

1
r+1 ≥ ε

(m + 4) Km,r

}

.

Then, by (2.12), we have

C ⊆
m+4
⋃

i=1

Ci.

So, for every j ∈ N, we get

(2.13)
∑

n∈C

ajn ≤
m+4
∑

i=1





∑

n∈Ci

ajn



 .

On the other hand, by (2.1), (2.2) and Lemmas 2.1, 2.3, we see that

stA − lim
n

∥

∥

∥Ln

(

|Ψ|k
)∥

∥

∥ = 0, (k = 1, . . . ,m − 1),

stA − lim
n

ρr
n,rg (ρn,r) = 0,

stA − lim
n

ρr
n,rh (ρn,r) = 0,

stA − lim
n

ρr
n,rg (ρn,r) ‖Ln (e0) − e0‖

1
r+1 = 0,

stA − lim
n

ρr
n,rh (ρn,r) ‖Ln (e0) − e0‖

1
r+1 = 0.
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Hence, we observe that, for every i = 1, 2, . . . ,m + 4,

(2.14) lim
j

∑

n∈Ci

ajn = 0.

Now, taking limit as j → ∞ in the both sides of (2.13) and using (2.14) we obtain
that

lim
j

∑

n∈C

ajn = 0.

The last equality implies that

stA − lim
n

‖Ln(f) − f‖ = 0,

which completes the proof. �

3. Concluding remarks. In this section we introduce a sequence of
positive linear operators which satisfies all conditions of Theorem 2.2 but not
Theorem A.

Now take A = C1 = [cjn], the Cesáro matrix, and define the sequences
(un) and (vn) by

un :=

{ √
n, if n = m2 (m ∈ N),

0, otherwise.

and

vn :=

{

1/2, if n = m2 (m ∈ N),
1, otherwise.

Then observe that

(3.1) st − lim
n

un = 0 and st − lim
n

vn = 1.

Let r =
1

2
. Then we get m =

⌈

1

2

⌉

= 1. Now consider the following Bernstein-like

positive linear operators:

(3.2) Ln(f ;x) := (1 + un)
n
∑

k=0

f

(

2πk

n
− π

)(

n

k

)(

π + vnx

2π

)k (π − vnx

2π

)n−k

,

x ∈ [−π, π], n ∈ N,
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where f ∈ AC ([−π, π]) with f ′ ∈ L∞ ([−π, π]). Since

Ln(e0) = 1 + un,

we easily get,
st − lim

n
‖Ln(e0) − e0‖ = st − lim

n
un = 0,

which gives (2.1). Also, by Hölder’s inequality with p =
4

3
and q = 4, since, for

every x ∈ [−π, π],

Ln

(

|Ψ|
3
2 ;x

)

= (1 + un)
n
∑

k=0

∣

∣

∣

∣

x + π − 2πk

n

∣

∣

∣

∣

3/2(n

k

)(

π + vnx

2π

)k (π − vnx

2π

)n−k

≤ (1 + un)

(

n
∑

k=0

(

x + π − 2πk

n

)2(n

k

)(

π + vnx

2π

)k (π − vnx

2π

)n−k
)3/4

= (1 + un)

(

x2(1 − vn)2 +
π2 − v2

nx2

n

)3/4

,

we have

(3.3)
∥

∥

∥Ln

(

|Ψ|
3
2

)∥

∥

∥ ≤ π3/2 (1 + un)

(

(1 − vn)2 +
1

n

)3/4

.

Since |sinu| ≤ |u|, it follows from (3.3) that
(3.4)

ρ
3/2

n, 1
2

=
∥

∥

∥Ln

(

Ω
3
2

)∥

∥

∥ ≤ 1

8

∥

∥

∥Ln

(

|Ψ|
3
2

)∥

∥

∥ ≤ π3/2 (1 + un)

8

(

(1 − vn)2 +
1

n

)3/4

.

Now using (3.1), we get

st − lim
n

π3/2 (1 + un)

8

(

(1 − vn)2 +
1

n

)3/4

= 0.

Hence, we obtain from (3.4) that

st − lim
n

ρn, 1
2

= 0,

which verifies (2.2). Therefore, by Theorem 2.2, for every f ∈ AC([−π, π]) with
f ′ ∈ L∞ ([−π, π]), we have

stA − lim
n

‖Ln(f) − f‖ = 0.
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However, since neither (un) nor (vn) converges to zero (in the usual sense), it is
impossible to approximate f by the sequence {Ln(f)} for every f ∈ AC([−π, π])
with f ′ ∈ L∞ ([−π, π]). This example clearly gives us that our statistical result
in Theorem 2.2 is more applicable than Theorem A.
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