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ABSTRACT. Given r € (1,00), we construct a new £ separable Banach
space which is £, saturated.

1. Introduction. The Bourgain-Delbaen spaces [7] are examples of
separable £ spaces containing no isomorphic copy of c¢g. They have played
a key role in the solution of the scalar-plus-compact problem by Argyros and
Haydon [3], where a Hereditarily Indecomposable £ space is presented with the
property that every operator on the space is a compact perturbation of a scalar
multiple of the identity.

There has recently been an interest in the study £ spaces of the Bourgain-
Delbaen type. Freeman, Odell and Schlumprecht [8] showed that every Banach
space with separable dual is isomorphic to a subspace of a £> space having a
separable dual. The aim of this paper is to present a method of constructing, for
every 1 < r < oo, a new L™ space which is ¢, saturated. Our approach shares
common features with the Argyros-Haydon work. More precisely we combine,
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as in [3], the Bourgain-Delbaen method [7] yielding exotic £ spaces, with the
Tsirelson type norms that are equivalent to some ¢, norm (see [2], [4], [5], [6],
[11]). Recall that in [9], the original Bourgain-Delbaen spaces X,; with a < 1,

1
b < - and a + b > 1 where shown to be ¢, saturated for p determined by the
1 1
formulas — 4+ — =1 and a? + 07 = 1.
p q

This paper is organized as follows. In the second section, for a given
r € (1,00), we construct a Banach space X,. To do this, we first choose n €
N, n > 1, and a finite sequence b = (by,bs,...,b,) of positive real numbers

n

with by < 1, bo,bs,..., b, < % such that Zlbfl = 1 and %—&—% = 1. The
definition of X, combines the Bourgain—Delb;en method with the Tsirelson type
space T (A, b) which will be later proved to be isomorphic to £,. In particular, if
by =by=...=b, =0, T(A,,b) coincides with 7 (A,, ) and the latter is known
to be isomorphic to ¢, for some p € (1,00) (see [4]). It is worth noticing that
for n = 2 the spaces X, essentially coincide with the original Bourgain-Delbaen
spaces X, 5. Thus, our construction of £° spaces which are £, saturated spaces,
can be considered as a generalization of the Bourgain-Delbaen method. We must
point out here that when n = 2, our proof of the fact that X, is ¢, saturated,
differs from Haydon’s (see [9]) corresponding one for X,;. To be more specific,
X, has a natural FDD (M}). Given a normalized skipped block basis (uy) of
(M}) with the supports of the wuy’s lying far enough apart, then it is not hard to
check that (uy) dominates (ey), the natural basis of 7 (A, b). The same holds for
every normalized block basis of (uy). To obtain a normalized block basis of (ug)

equivalent to (e), we select a sequence I < I < ... of successive finite subsets
of N such that lim || Y w;|| = co. Such a choice is possible by the domination
i€ly,

-1

of (ex) by (ug). We set v = || > > u; and show that some subsequence

icly icly,

of (vg) is dominated by (ex). To accomplish this we adapt the method of the
analysis of the members of a finite block basis of (ex) with respect to a functional
in the natural norming set of 7(A,,b) (see [6]), to the context of the present
construction. This approach yields an alternative proof for the saturation of
Bourgain-Delbaen type spaces with copies of £,., which is closer in spirit to the
methods of estimating norms in Tsirelson and mixed Tsirelson type spaces.

The rest of the paper is devoted to the proof of the main property, namely
that X, is ¢, saturated. In Section 3, we define the tree analysis of the functionals
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{e% 1y € I'} which is a 1-norming subset of the unit ball of X. The tree analysis
is similar to the corresponding one used in the Tsirelson and mixed Tsirelson
spaces [4]. In the following two sections we establish the lower and upper norm
estimates for certain block sequences in the space X,.

In the final section we show that every block basis of (M) admits a
further normalized block basis (zj) such that every normalized block basis of
(r3) is equivalent to the natural basis of the space 7 (A,,b). Zippin’s theorem
[13] yields the desired result.

2. Preliminaries. In this section we define the space X, combining the
Bourgain-Delbaen construction [7] and the Tsirelson type constructions [2], [4].
Before proceeding, we recall some notation and terminology from [3]. Let

n
n € Nand 0 < by,bg,...,b, < 1 with > b; > 1 and there exists ' € (1,00)
i=1

such that >’ b = 1. We may also assume without loss of generality that
i=1
by > by > ... > b,. We define W[(A,,b)] to be the smallest subset W of cpo(N)

with the following properties:

1. £e; € W for all k € N,

2. whenever f; € W and maxsupp f; < minsupp f;+1 for all ¢, we have
> bifi € W, provided that a < n,

1<a

We say that an element f of W[(A,,b)] is of Type 0 if f = +e} for some k

and of Type I otherwise; an element of Type I is said to have weight b, for some
a —
a <nif f=> f; for a suitable sequence (f;) of successive elements of W[A,,, b|.
i=1

The Tsirelson space T (Ay,b) is defined to be the completion of cy with

respect to the norm

]| = sup{(f, ) : f € W[An,b]}.

We may also characterize the norm of this space implicitly as being the smallest
function = — ||z|| satisfying

n
Jall = max{||:cuoo,sup2bi||mu},

=1
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where the supremum is taken over all sequences of finite subsets Fq < Fo < --- <
E,.

We shall now present the fundamental aspects related to the Bourgain-
Delbaen construction.

For the interested readers we mention that the following method can be
characterized as the “dual” construction of the construction presented in [3]. This
characterization is based on the fact that in [3] a particular kind of basis is given
to £1(I") and the Bourgain-Delbaen type space X is seen as the predual of its
dual, which is ¢;(T).

Let (I'y)4en be a strictly increasing sequence of finite sets and denote their

union by I'; '= U T',.
v qeN g

We set Ag =T'g and Ay =T\, for g =1,2,...

Assume furthermore that to each v € A,, ¢ > 1, we have assigned a linear
functional ¢ : °('y—1) — R. Next, for n < m in N, we define by induction, a
linear operator i, ., : £>°(I'y,) — £°°(I'),) as follows:

For m = n + 1, we define iy, 5,41 : £°(I'y,) — £°(I'y41) by the rule

. z(v), ifyely,
i x =
(inn+1(2))(7) {Cé(x), iy € Apyr
for every x € £>°(I',,).
Then assuming that i, ,, has been defined, we set ipm+1 = imm+1 © tnm- A
direct consequence of the above definition is that for n < [ < m it holds that
inm = Um O iny. Finally we denote by i, : ¢>°(I';) — RL the direct limit
iy = 1My o0 Tnm.

We assume that there exists a C' > 0 such that for every n < m we have
llinm| < C. This implies that [/i,|] < C and therefore i, : (*°(I';) — ¢°(T)

is a bounded linear map. In particular, setting X,, = i,[¢°°(I",,)], we have that

C
X, = ¢>°(T';,) and furthermore (X, )nen is an increasing sequence of subspaces of

>2(T). We also set Xpp = |J X, — ¢°°(T") equipped with the supremum norm.
neN
Evidently, Xpp is an £ space.

Let us denote by r, : £°(I') — ¢>°(T";) the natural restriction map, i.e.
rn(z) = x|r,. We will also abuse notation and denote by ry, : £>°(I'y,) — £>°(T',,)
the restriction function from ¢>°(T',,) to £*°(T';,) for n < m.

Notation 2.1.
(1) We denote by e the restriction of the unit vector e, € /Y(T) on the
space Xpp.
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(41) We also extend the functional ¢ : £°(I';) — R to a functional cJ :
Xpp — R by the rule ¢} (z) = (¢} org—1)(z) when v € A,.

As it is well known from [3] and [7], instead of the Schauder basis of Xpp,
it is more convenient to work with a FDD naturally defined as follows:

For each ¢ € N we set M, = i4[(>°(A)].
We briefly establish this fact in the following proposition and then continue with
the details of the construction of X,.

Proposition 2.2. The sequence (My)q4en is a FDD for Xpp.
Proof. For ¢ > 0 we define the maps Py, : Xpp — M, with

Py () = ig(rg(z)) —ig-1(rg—1(2))

It is easy to check that each P(g) is a projection onto M, and that for
q1 # g2 and x € M, we have Py, 1(z) = 0. Also we have that ||F[| <2C. We
point out that in a similar manner one can define projections on intervals of the

q
form I = (p,q] so that Pr(z) = > Pgy(x) for which we can readily verify the

i=p+1
formula

Pr(x) =ig(rq(x)) — ip(rp(x))
Note that ||Pr|| < 2C. This shows that indeed (M;), is a FDD generating
Xpp. O

For x € Xpp we denote by supp z the set suppz = {q : Py, (z) # 0} and
by ran x the minimal interval of N containing supp x.

Definition 2.3. A block sequence (x;)5°, in Xpp is called skipped (with
respect to (My)qen), if there is a subsequence (¢;)52, of N so that for all i € N,
maxsupp x; < g; < minsupp Tj41.

In the sequel, when we refer to a skipped block sequence, we consider it
to be with respect to the FDD (M;)gen.

Let ¢ > 0. For all v € A, we set d = ey o Pg). Then the family (d7),er
consists of the biorthogonal functionals of the FDD (M,),>0. Notice that for
v € Ay,

dy(z) = Py(z)(7) = ig(rq(2))(7) = ig-1(rg-1(2))(7) =
)(7) = & (rg1(2)) = 2(y) — &5 (2) =
) —

= ry(x
= ez

The sequences (Ag)gen and () er are determined as in [3], section 4
and Theorem 3.5.
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We give some useful notation. For fixed n € N and b = (by, b, ...,b,)
with 0 < b1, bg,...,b, <1, for each v € A, we assign

(a) ranky =g¢q
(b) age of v denoted by a(y) = a such that 2 <a <n
(c) weight of v denoted by w(y) = b,

In order to proceed to the construction, we first need to fix a positive integer n
and a descending sequence of positive real numbers bq,...,b, such that b; < 1,

1
b < 3 for every i = 2,...,n and ) 1 ;b; > 1. Let r € (1,00) be such that

L 1 1
Y b =1 and - + o= 1. Now we shall define the space X, by using the
i=1

gourgain—Delbaen construction that was presented in the preceding paragraphs.
We set Ag = 0, Ay = {0} and recursively define for each ¢ > 1 the set
Ay. Assume that A, have been defined for all p < q. We set

Agr1 = {(g+Lapneef): 2<a<np<q e==1, (€l \T),
ne va ba—l = w(n)}
For v € A441 it is clear that the first coordinate is the rank of «y, while the second

is the age a(7) of 7. The functionals (c),ea,,, are defined in a way that depends
on vy € Agy1. Namely, let z € £2°(T).

(i) For v = (¢ + 1, 2,p,n,5e§) we set
& (x) = brx(n) + bagef (z — ip g (rp(x))).
(ii) For v = (¢ + 1,a,p,77,se’§‘) with a > 2 we set
cﬁ(m) =z(n) + baeez (J: — ipvq(rp(x))).

We may now define sequences (i4), (I'y), (X;) in a similar manner as

before and set X, = |J X,;. Assuming that (i) is uniformly bounded by a
qeN
constant C, we conclude that the space X, is a subspace of . (I"). The constant

C is determined as in [3] Theorem 3.4, by taking C' = T2
— 2by
m € N, ||lip,|| < C. This implies that || Pr|| < 2C for every I interval.

. Thus, for every
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Remark 2.4. In the case of n = 2, i.e. b = (b1,by), the space X,
essentially coincides with the Bourgain-Delbaen space Xy, 5,, since every v € I' is
of age 2.

Remark 2.5. As it is shown in Proposition 6.2, the choice of r, based
on the fixed n and b, yields that 7 (A,,b) = ¢,.. Moreover, the ingredients of the
“Tsirelson type spaces” theory that are used throughout this paper are essentially
the same with the corresponding ones in [3]. The basic difference in our approach
is that we use only one family 7 (A,,b) for some appropriate n and b.

3. The Tree Analysis of el for v € T'. We begin by recalling
the analysis of e in [3] section 4. The only difference is that in our case all the
functionals e, have weight depending on their age which is greater or equal to 2.

3.1. The evaluation Analysis of e: for v € T'. First we point out
that for ¢ € N every v € Ay41 admits a unique analysis as follows:

Let a(y) = a < n. Then using backwards induction we determine a sequence of
sets {pi, ¢, g€y, e, U{ni}¢_y with the following properties.

() p1<qi < <pa<da=gq
(ii) e; = £1, rank&; € (p;,q) for 1 <i < a and rankn; = ¢; + 1 for 2 <i < a.

(ili) 9o =y, m = (vankmn;, i, p;, mi-1, €:€,) for every i > 2
12 = (rank 9, 2, pg,slfl,@e&) and (p1,q1] = (1,rank & ].

Definition 3.1. Letq € N and~y € I'y. Then the sequence {p;, qi,siezi};‘:l
U {ni}¢_y satisfying all the above properties will be called the analysis of ~.

Moreover, following similar arguments as in [3] Proposition 4.6 it holds
that,

Zd* +Zbgle£ ° Plpiqi Z nop{q+1}+zbglefop(qu]

=2 =1

We set g, = Z dy. and f, = Z bicieg, © Py, q,)-

3.2. The r-Analysis of the functional eZ. Let r € N and v € Agqy.
Let a(v) = a < n and {p;, g;, gief, i1 U{ni }{—, the evaluation analysis of 7. We
define the r-analysis of €, as follows:
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(a) If r < pi1, then the r-analysis of e coincides with the evaluation analysis of
er.
gl

*

(b) If r > ga, then we assign no r-analysis to e

indecomposable.

and we say that el is r-

(c) If p1 <7 < qq, we define 4, = min{i : r < ¢;}. Note that this is well-defined.
The r-analysis of € is the following triplet

{(Pi, @il iz > (€& Yizin, {Mi Fismax{2,i,}-
where p;,. is either the same or r in the case that r > p; .

Next we introduce the tree analysis of e} which is similar to the tree
analysis of a functional in a Mixed Tsirelson space (see [4] Chapter II.1). Notice
that the evaluation analysis and the r-analysis of € form the first level of the
tree analysis that we are about to present.

We start with some notation. We denote by (7,” <”) a finite partially
ordered set which is a tree. Its elements are finite sequences of natural numbers
ordered by the initial segment partial order. For every t € 7 ,we denote by S; the
immediate successors of ¢

Assume now that (ps, q]ier is a tree of intervals of N such that ¢ < s
iff (pt,qt] O (ps,qs] and t,s are incomparable iff (p¢, ¢:] N (ps, gs] = 0. For such
a family (p;, ¢]ter and ¢, s incomparable we shall denote by ¢ < s iff (py,q] <

(ps, qs) (i-e. qr < ps).

3.3. The Tree Analysis of the functional e,";. Let v € Ay41 with
a(y) = a < n. A family of the form F, = {&, (pt, @] }te7 is called the tree
analysis of €7 if the following are satisfied:

(1) T is a finite tree with a unique root denoted as 0.

(2) We set & = 7,(pg, qo] = (1, 4] and let {p;, g;, eieg, }i—y U{mi}{—, the evalua-
tion analysis of &j. Set Sy = {(1),(2),...,(a)} and for every s = (i) € Sp,

{&s: (s, sl = {&s (piy qa]}-

(3) Assume that for at € 7 {&, (pt, ¢:]} has been defined. There are two cases:

(a) If ezt is p;-decomposable, let

{Pis @il Yizip, s {€i&iYizip, » {Ni bizmax{2,ip,}
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the p; analysis of ef,. We set S; = {(t7i) : i = i, } and

P = S, if ;,, exists
S\ {(t7ip,)}, otherwise

Then, for every s = (t7i) € S, we set {&s, (ps,qs|} = {&, (pi,ail}
where {€;&;, (i, ¢i]} is a member of the p; analysis of ef,.

(b) e¢, is p-indecomposable, then & consists a maximal node of 7.

Notation 3.2. For later use we need the following:
For everyt e T egt = fi + g+, where f; = ZSESt bsesegs ° Plp, qs] and
gt =D sesm dy, and for s = (t7i) € SY",
Ni~i) = (rank Nt~ i) i, Pa~iy M- i—1)> 5(7&"1’)62“,\0 )-
In the rest of the paper, we set fi = f¢, and g; = g;.

Lemma 3.3. Letz € X, and vy € I'. Then,

6:,(1') = H (5sbs)(ft;c +gtx)(‘r)7

P<s=<ty

where t, = max{t: ranx C (ps, q]}-
Proof. Let Fy = {&, (1, qt]}ter a tree analysis of 7.
If {t :rana C (ps, q¢]} = 0, then e () = fp(z) + gp(z) and the equality holds.
If {t:ranz C (pt,q]} # 0, we can find {t; < t2 < ... <t} € T such that
t1 € Sy and t,, = t5.
For every t € T with t < t,, gi(z) = 0. Indeed, for every s € S{', d; (z) =
ey, © Pg,+13(x) = 0 because ranx C (pr,, qt,] € (ps, gs]-
So, we have that

e(z) = folz) = Z bsesef, © Py, q() = by, er,€f, (@)

5€Sy
= byeg fr, () = by ey, by, eth ° P(ptqutg](x) = btlb@gtlgt?eztz ()
bibuenen fro(@) =...= ] (esbo)(fro + 90) ()

<5<ty
setting g = by =1. O

Corollary 3.4. If {t : ranz C (pr, @]} # 0 and (fi,, (P, ar.]) is @

mazimal node, then e (z) = 0.
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Proof. Let (fi,,(pt,,q:]) be a maximal node. Then f; (z) = 0 and
gt. () = 0 and from Lemma 3.3 we deduce that e’ (x) =0. O

4. The lower estimate.

Definition 4.1. An ¢ € W(A,,b) is said to be a proper functional if it
admits a tree analysis (¢r)ier such that for every non-mazimal node t € T the
set {¢s : s € St} has at least two non-zero elements.

We denote by W, (Ay,b) to be the subset of W(A,,b) consisting of all
proper functionals. For every ¢t € 7 it holds that ¢y = > bsps with {bs}scs, C

sESt
{bl,bg,. .. ,bn} and b@ =1.

Lemma 4.2. The set W,,.(Ay,b) 1-norms the space T (Ap,b).

Proof. We shall show that for every ¢ € W(A,,b) there exists g €
W (Ap, b) such that [¢(m)| < g(m) ¥m € N. Since the basis is 1-unconditional
the previous statement yields the result.

To this end, let ¢ € W (A,,b). Then using a tree analysis {¢; }+c7 of ¢ we
easily see that for every m € supp f, there exists a maximal node t,, € 7 with

¢t,, = Emer, and ¢(m) = e, [] by
t<tm,
For every m € supp ¢ we set K,,, = {t € T : t < t,,, and #S; > 1}. Then

it is easy to see that the functional ¢ = > [T o | ek, is a functional
mesupp ¢ \tEKm,

belonging to W, (Ay,b). Moreover, since by < 1 for every ¢t € 7 we get that
lp(m)| < g(m) YmeN. O

Lemma 4.3. Let ¢ € Wy, (An,b) and I € N. If maxsupp¢ = [, then
hMTy) <1
Proof. Let 0, be the amount of nodes at the n level of T4. Since ¢ is

proper, it holds that 6,,.1 > 6, for every n € N. Assume to the contrary that
hTy) > 1, ie. h(Ty) =1+ k for some k € N. Then,

91:17 92227 R 9l+k2l+k

Since, the [ 4 k level of 74 consists of functionals of the form e}, we deduce that
maxsupp ¢ > [ + k > [, which leads to a contradiction. O

Proposition 4.4. Let (xp)reny be a normalized skipped block sequence
in X, and (qr)ken a strictly increasing sequence of integers such that supp xy C
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(qk + k,qi+1). Then, for every sequence of positive scalars (ar)ren and for every
l € N, it holds that

l

D axer

k=1

<C
7 (An.b)

(1)

I
PR
k=1

[e.o]

where (ex)reny € T (An,b) and C is an upper bound for the norms of the operators
im N X,

Proof. Let ¢ € W(A,,b). From Lemma 4.2 we may assume that ¢ is
proper. We will use induction on the height of the tree 7 4.

If h(Ty) = 0 (i.e. f is maximal), then ¢ is of the form ¢ = epej with

!
e = =1. We observe that, |¢ (Z akek> = |ax| = ag. From [3] Proposition
k=1
4.8, we can choose v € I'y, ., —1\I'q, +& such that |zy(y)| > 6||xk|| =& Then,
l l
}qb (Z @en)| = o< Clarllo)l = Cles )l < € |63 (£ )|
k=1 k=1

We assume that for every ¢ € W (Ay,b) with h(T,) = h > 0 and
maxsupp ¢ = lg, there exists v € I, such that:

(1) Ve F410+1+h\F(H0+1

(2) MTy) =hFy) <lo

<C for every [ > I

o ()

Zl: arzi(7)
k=1

Observe that assumption (1) yields x;, < rank~y < xj,41, while assumption (2)
gives us that minsupp x;,41 — maxsupp x;, > h(7 ). Indeed,

xyy < Qo1 < ranky < g1 +h < @1 +lo < @1+ (lo+1) < 2y

and minsupp x;,41 — maxsuppz;, > lo + 1 > lo > h(F,).

Let ¢ € W(Ay,b) with h(T ) = h+ 1, lp = maxsupp ¢ and let (¢)ie7 the tree

analysis of ¢. Then, ¢ is of the form ¢ = > bsos, #Sp < n. We observe
SGS@

that for every s € Sy, h(T4,) = h. We set p1 = 1, for every s € Sp\{1}
ps = min{qx + k : k € supp¢s} and for every s € Sy, s = q.+1 + h where
ls = maxsupp ¢s.



160 I. Gasparis, M. K. Papadiamantis, D. Z. Zisimopoulou

We next apply the inductive hypothesis to obtain s € I'; \I', 11 with h(7y,) =
h(F¢,) such that

o (e

k=1

= ¢s Z ar€r < Ceg Z akxk(gs)

k€Esupp ¢s kEsupp ¢s

l
= Csse’gs Z apx | = Cese’gs o Py, ] (Z akxk) ,

kesupp ¢s k=1

> apwi(€s)

kesupp ¢s

with €5 such that eseg, Yo agxy | =
kesupp ¢

Let v € T have analysis {psv Ts, 53623 }SGS@ U{nS}SGS@\{l} where 75 € Ars+1'
Observe that rank & € (g, +1,7s] C (ps,rs). It is clear that for every s € Sy \ {1},

l
dy, (Z akmk) = 0. Indeed,

k=1
supp i, < qi+1 < @1+ (h+1) =rs +1 < @1 + (I + 1) < suppay41.

Therefore,

A

I
'¢ (Zakek)| < > s | DD anen
k=1 SESy kesupp ¢s

l
C Z bsssezs o Pl ] (Z akﬂck> <C
k=1

s€Sy

IN

z
> arzi()
k=1

It is clear that h(7 ) = h(F,) <lp and z;, < rank~y < xjy41. O

Corollary 4.5. For every block sequence in X, there exists a further
block sequence satisfying inequality (1).

5. The upper estimate. Let (y;);eny be a normalized skipped block
sequence in X,. From Corollary 4.5, we can find a further block sequence of (y;);,
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still denoted by (y;);, satisfying inequality (1).
Therefore, we have that

m

Zyl

=1

=1 ll7T(A,,b)

(o)
For every j € N, set M; = {1,2,...,n}/. It is easily checked, after identifying M;

4 j

with {1,...,n7} for every j, that the functional f; = > (H b&.) eX belongs
SGMJ‘ =1

to W(A,,b) where s; is the i-th coordinate of s, for each i = 1,2,...,n and

J n J .
> 110bs, = (Z bl-) . Using the fact that #M; = n?, we obtain that
seM; i=1 i=1

Zel = Z es > fj Zel = (sz) :
=1 =1 i—1

T(Anp) WM 7, )

Also, for every m € N large enough we may find j € N such that n/*! >
m > n’. From the above and the unconditionality of the basis of the space
7T (Ay,b), it follows that

T(An,b) =1 T(AnB) i=1

m
> e
=1

[e.o]

n
We conclude that T 0 as b > 1.

0 i=1

m
DR
=1

We next choose a further block sequence (zx)gen of (y;)ien with some

additional properties. Let ¢ > 0 and choose a descending sequence (gj)x of
o0

positive reals such that (Z sk) < e. We can also find an increasing sequence
k=1

(nk)g of positive integers and a sequence (Fy ) of successive subsets of N such

that the following are satisfied:

1
(1) For every k € N, — < ¢p.
ng

(2) For every k € N,

DR

LEFY,

> ng. This is possible, due to the above notation.
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We have thus constructed a normalized skipped block sequence (x)ren of the

Notice that |\;| < g for every [ € F.

form xp = > Ny, where \; =
leF}y, }

> yzH

IEF,

Let v € I' with tree analysis F., = {&, (pt, ¢¢) }teT-

For every k € N, we set t;, = max{t :ranxg C (pt, q)}. Notice that if for
a given xy, t; is non-maximal, then there exist at least two immediate successors
of ty, say s1, sa such that the corresponding intervals (ps, , ¢s; ], (Pss, ¢s, ] intersect
ran zg. For later use we shall denote by (ps,, ¢s,] the first interval in the natural
order of disjoint segments of the natural numbers that intersects x;. Notice that
sp is not necessarily the first element of S;.
For the pair =, (zg)ren and for every ¢ € 7 we define the following sets:
Dy = U{k :s =t}, Ky = Dt\séJStDs ={k:t=ty}and B, = {s € S} :

st
D, # 0}

We now set x, = x), + ) + «} where,
; "o A/
T = Tk Lpag gl Tk = T WUy, g (o) A0 2K = 2 — ) — .

Remark 5.1.

(1) The sets Dy, Ky, Ey are determined by the chosen pair 7, (). For a different
pair, these sets may differ as well. For example, let k& € K;, for the pair
v, (z%)k. Then t = tj, for xj. By the construction of z}, there exists s, € S;
such that zj, = zy ’(PSM%]' Thus, taking the pair v, (z}); the same k
belongs to K, .

(2) For every k € N, |gs, ()| < 2Cney,.
Indeed, from the definition of (zj)reny we have that

9o, (xR)l < D0 dr @Rl < >0 ek o Py | D0 A | | <

sESf]:k sesftk LeF),
< 30 e Py lIXlyil < D 2Ce, <
ptk: ptk:
s€S, s€S,

< QCsk(ﬂStk) < 2Cney,.

(3) Tt is obvious that gs, (xx) = g1, (z}), fi,(x}) = 0 and for every ¢t < ty,
gi(alf) = 0.
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Lemma 5.2. For the pairs 7y, (z}. )ken and 7, (z})ken it holds that #K;+
#E: <n.

Proof. Let t € 7 and let k € K;.

We set s, = max{s € S¢ : (ps,¢s| Nranz), # 0}. From the definition of ¢,
notice that #S; > 2. It holds that sy & F;.

Indeed, from the definition of ¢, si we have that (py,, ¢, |Nran zj = ran
and (ps,,, qs, | Nran ), = (ps,., ¢s;,]- Since si € Sty , (Dsyr dsi) € (Pt Gt )- 1t follows
that (ps,., ¢s,] C ranaj.

Therefore, we can define a one-to-one map G : K; — S;\E;, hence
#Ki + #E < #5: < n.

The proof for the pair v, (2] )ren is similar. O

Proposition 5.3. Let (zx)ken be as above.Then for every v € T' there
exist ¢1,p2 € W (A,,b) such that for every sequence (ay)ren of positive scalars,
for every l € N it holds that,

1

(2) bi (f1 + ¢2) (Z akek> 4+ 2Cne (Z ak>

Proof. Let v € Agpwitha(y) = a < n. Let F.y = {&, (pt, @) }rer, where
l

&y = 7, be the tree analysis of 7v. We may assume that |J ranzy C (py, ggl-
k=1

Claim.  For the pairs v, (z))ren and vy, (2] )ken there exist ¢1,¢2 €
W (A,,b) such that for every sequence of positive scalars (ax)gen and for every
l € N, it holds that

!
(3) fo (Z akﬂﬁ%)

k=1

!
2C
< aﬁbl (; akek)

l
(4) fo (Z akx'é>

k=1

!
2C
< E% (; ak%)

Proof of the Claim. We only prove inequality (3). The proof
of inequality (4) requires the same arguments. We recall that



164 I. Gasparis, M. K. Papadiamantis, D. Z. Zisimopoulou

fo = 22 bses(fs + gs) © Py, g, for every t € 7 non maximal. From the defi-
SESt
nition of (2} )ken, we have that gs o P(pS’qS](acjk) = 0 for every s € S;.Therefore,

fi ( > akm";c) = (Z bsesfs 0 P(ps’qs]> ( > akacz,). We will use backwards

keDy SES keDy
induction on the levels of the tree 7, i.e we shall show that for every t € 7 there
exists ¢} € W (A, b) with supp ¢} C D; such that

2C
fol D aray, Sb—cf)’i > arex

keDy keDy

The first inductive step is similar to the general one and therefore we omit it.
Let 0 < h < max{|t| : t € T} and assume that the proposition has been proved
for all ¢ with |t| = h.

Let t € T with [t| = h — 1.Then we have the following cases:

(1) If f; is a maximal node, f; ( > akm";c) = 0, so there is nothing to prove.
keD;

Indeed, Ky = Dy, therefore for every k € Dy, from Corollary 3.4 fi(z},) =0
since t = t;..

(2) If f; is a non-maximal node, then

i Z ak’li?c = (Z bsesfs o P(p37(Zs]) Z akq:?c =

keDy SESE keDy

= Z bses fs Z akl';g + Z (Z bs£sfs> (ak'xgﬂ)

SES: k€D keK: \seS;

From the fact that, for every k € Ky, gi(x}) = 0 we get that

[fe(zh)] = |23,(&)] < [l ]l < 2C = 2C¢j (ex).

Moreover, for s € E; it holds that |s| = h — 1. For every k € Dy, from the
inductive hypothesis we obtain

> bsfs(h)

SESt

= [bu )] < b2 6 (en)
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with ¢5 € W (A,,b) and supp ¢; C D,. We set ¢! = ( D bsty + > bke’é).

selby keK;
From Lemma 5.2, it is easily checked that ¢} € W (A,,b) and it holds that,
2C
fol D5 ary || < b—¢ﬁ > arex | - .
keDy n keDy

Recall that

! ! !
ey (Z ak$k> = gp (Z akxk> + fo (Z akxk> .
k=1 k=1 k=1
The fact that

l l
90 (Z ak:fﬂ%) = 90 (Z aw’é)
k=1

k=1

=qy Z akx’k” = fo Z akx’k” =0

ke{m:t,, #0} ke{m:tm=0}

!
o (Z aiﬂ%)
k=1

+ | /o > way!
ke{m:tm#0}

implies the following:

I
e (Zakl‘k>| < o > aa ||+

k=1 ke{m:tm=0}

l
+ | fo (Z alﬂ’k’)

k=1

From Remark 5.1 we get that,

9 Yoo aal | < > aklg@ <200 > ke

ke{m:t,, =0} ke{m:tm=0} ke{m:tm=0}

From Lemma 3.3 and Remark 5.1 we have that,
fo S || < > an(J] o)lga ()] <
ke{m:t,m#0} ke{m:t,m#0} 1<ty

1
< 20571 Z arElL < 2Cn Z AkEl.
ke{m:tm#0} ke{m:tm#0}
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Finally, we conclude that

l
< 2Cn Z aeR + —¢1 (Z ak€k>

ke{m:t, =0} k=1
!
2C
+ (Z ak€k> +2Cn Z arer
" k=1 ke {mitm#£0)
2C L !
< b —(¢1 + ¢2) (Z ak€k> + QCnZ akEL
n k=1 k=1
2C L !
< — (1 + ¢P2) (Z akek> +2Cnmax{ay, : k € N} (Z 5k)
" k=1 k=1

00 ! Lo ;
< a(% + ¢2) (Z ak€k> +2Cne (Z ak) :

k=1 k=1

where in the last inequality we used the fact that the ¢, norm dominates the cgy
norm. [J

Remark 5.4. From [4] Theorem L4, we know that ||} arerll7 (4, 5 =
M ai)%. This result and the previous Proposition, yield that

I I
> apzi(y ¢>1 + ¢2) (Z ak%) 2%6 > agey
k=1

k=1 T (An,b)
For e = ﬁ,
nby,
60
<SS )
k=1 T (An,b)
Therefore,
l l
(5) Z apTE|| < 5— Z ek
k=1 o0 k=1 T(An,b)

Corollary 5.5. For every block sequence in X, there exists a further
block sequence satisfying inequality (5).
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6. The main result.

Proposition 6.1. Let (zy)ken be a skipped block sequence in X, satisfying
minsupp g1 > maxsuppzy + k and the conditions of Proposition 5.3. Then
(1)ren is equivalent to the basis of the Tsirelson space T(Ap,b) for n and b
determined as before.

Proof. It is an immediate consequence of Propositions 4.4, 5.3 and
Remark 5.4. O

Proposition 6.2. The space T (An,b) is isomorphic to £, for some p €
(1,00).

Proof. In a similar manner as in [4] Theorem 1.4, one can see that for
every normalized block sequence (zj), of the basis (ej); and for every scalar

2
sequence (ag) it holds that, ||> arxg| < b—H > ager||. Zippin’s Theorem [13]
— n
yields that 7 (A, b) is isomorphic to some ¢, for some p € (1,00). O

Remark 6.3. An alternative proof could also be derived using the
Results in Sections 4 and 5. Indeed, let (y;);en be a skipped block sequence in
X,. Then, there exists a further block sequence (xj)ren satisfying simultane-
ously the assumptions of Corollaries 4.5 and 5.5. Therefore, (z1)ren satisfies the
assumptions of Proposition 6.1.

Let’s observe that every further block sequence (zy)r of (xy)r is also
skipped block and satisfies Proposition 6.1, thus it is equivalent to the basis
of the space 7 (Ap,b). Hence, every block sequence (z,), of (zx)x is equivalent
to (zg)g. Zippin’s theorem [13] yields that the space < (zx)x > is isomorphic to
some £,,. Therefore, T (A, b) = ¢, for some p € (1,00).

In order to determine the exact value of p, we need the following Propo-

sition.
eps . . o101
Proposition 6.4. The space T (Ap,b) is isomorphic to £, with —+— =1
ror
n
and 3 b5 = 1.
i=1

Proof. Let us observe that for every x € cq, ||z|| < ||z||,. To see this, use
induction on the cardinality of suppz. If | supp x| = 1, it is trivial. Assume that
it holds for every y € cog with |suppy| < n and let = € ¢op with |suppz| =n+1.

n

Then either ||z|| = |[z]|e or ||z]] = > bi||E;z| for some appropriate subsets
i=1
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Ey < FEy < ... < E,. In the first case, there is nothing to prove as for every
p € [r,00) [|z]loo < ||2||p- Therefore we only need to deal with the second case.

It suffices to observe that for every ¢ = 1,2,...,n, the cardinality of
supp F;x is less than supp x and thus, using the inductive hypothesis along with
Holder's inequality, we get that

1
T

1
n n Y n
) <> bill Bzl < (E bZ) (E IIEz'rcHl) =[],
i=1 =1 =1

By combining the preceding argument with Proposition 6.2, we conclude that
T (Ap,b) is isomorphic to ¢, for some p € [r, 00).
For every | € N set M; = {1,2,...,n}.. We have already mentioned that

! -
for every [ € N the functional f; = > <H bsi> e belongs to W (A,,b) where
SGMZ =1

l
s; is the i-th coordinate of s, for each i = 1,2,...,nand Y. []bs, = (b))
SEMZ =1

/

l il
We set as = [[ bs; and 27 = ) aJ es. It is easily seen that for every | € N,
=1 seM;
|z1]] = 1. Indeed,

L

n T
el < llzelle = | D0t | = (Z b?) = 1= fiz) < =]l
=1

seM;

S |=

We claim that for p’ > r and every € > 0 there exists [ € N such that
|lz1||,y < e. If the claim holds we are done as p coincides with r.

- n

Proof of the Claim. Notice that for p’ > r, Zbi%p = Zb:l(Hé)

=1 =1
for some 0 < 6 < 1. But for every 1 = 1,2,...,n b; < 1, and therefore

Zn: b ) < Zn: b =1.
=1 =1

)

n , l ,
Thus, there exists [ € N such that <Z b, (1+5)> < &P, Then for this [,
i=1

L
p

7 7 -
L// p n p/
el = | 2 o™ | = { 2 ol :<Zb§’(”‘”> <e O

seM; seEM; =1

L 1
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Theorem 6.5. For every r € (1,00) the space X, is ¢, saturated.

Proof. As it was mentioned in the above Remark, for every skipped
block sequence in X, we can find a further block sequence (xj); such that the
space ((zk)g) is isomorphic to £,. O

Remark 6.6. From the previous Theorem, we deduce that the space
X, is a separable £ space which does not contain ¢;. Therefore, the results
of D.Lewis-C.Stegall [10] and A. Pelczyniski [12] yields that X} is isomorphic to
£y. Alternatively, one can use the corresponding argument of D. Alspach [1] and
show directly that (M,) is a shrinking FDD for X,. It then follows that (e ),er
is a basis for X7, equivalent to the usual ¢;-basis.
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