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MORE ℓr SATURATED L∞ SPACES

I. Gasparis, M. K. Papadiamantis, D. Z. Zisimopoulou

Communicated by S. Argyros

Abstract. Given r ∈ (1,∞), we construct a new L∞ separable Banach
space which is ℓr saturated.

1. Introduction. The Bourgain-Delbaen spaces [7] are examples of
separable L∞ spaces containing no isomorphic copy of c0. They have played
a key role in the solution of the scalar-plus-compact problem by Argyros and
Haydon [3], where a Hereditarily Indecomposable L∞ space is presented with the
property that every operator on the space is a compact perturbation of a scalar
multiple of the identity.

There has recently been an interest in the study L∞ spaces of the Bourgain-
Delbaen type. Freeman, Odell and Schlumprecht [8] showed that every Banach
space with separable dual is isomorphic to a subspace of a L∞ space having a
separable dual. The aim of this paper is to present a method of constructing, for
every 1 < r < ∞, a new L∞ space which is ℓr saturated. Our approach shares
common features with the Argyros-Haydon work. More precisely we combine,
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as in [3], the Bourgain-Delbaen method [7] yielding exotic L∞ spaces, with the
Tsirelson type norms that are equivalent to some ℓr norm (see [2], [4], [5], [6],
[11]). Recall that in [9], the original Bourgain-Delbaen spaces Xa,b with a < 1,

b <
1

2
and a + b > 1 where shown to be ℓp saturated for p determined by the

formulas
1

p
+

1

q
= 1 and aq + bq = 1.

This paper is organized as follows. In the second section, for a given
r ∈ (1,∞), we construct a Banach space Xr. To do this, we first choose n ∈
N, n > 1, and a finite sequence b = (b1, b2, . . . , bn) of positive real numbers

with b1 < 1, b2, b3, . . . , bn <
1

2
such that

n
∑

i=1
br′

i = 1 and
1

r
+

1

r′
= 1. The

definition of Xr combines the Bourgain-Delbaen method with the Tsirelson type
space T (An, b) which will be later proved to be isomorphic to ℓr. In particular, if
b1 = b2 = . . . = bn = θ, T (An, b) coincides with T (An, θ) and the latter is known
to be isomorphic to ℓp for some p ∈ (1,∞) (see [4]). It is worth noticing that
for n = 2 the spaces Xr essentially coincide with the original Bourgain-Delbaen
spaces Xa,b. Thus, our construction of L∞ spaces which are ℓr saturated spaces,
can be considered as a generalization of the Bourgain-Delbaen method. We must
point out here that when n = 2, our proof of the fact that Xr is ℓr saturated,
differs from Haydon’s (see [9]) corresponding one for Xa,b. To be more specific,
Xr has a natural FDD (Mk). Given a normalized skipped block basis (uk) of
(Mk) with the supports of the uk’s lying far enough apart, then it is not hard to
check that (uk) dominates (ek), the natural basis of T (An, b). The same holds for
every normalized block basis of (uk). To obtain a normalized block basis of (uk)
equivalent to (ek), we select a sequence I1 < I2 < . . . of successive finite subsets

of N such that lim
k

∥

∥

∥

∥

∥

∑

i∈Ik

ui

∥

∥

∥

∥

∥

= ∞. Such a choice is possible by the domination

of (ek) by (uk). We set vk =

∥

∥

∥

∥

∥

∑

i∈Ik

ui

∥

∥

∥

∥

∥

−1
∑

i∈Ik

ui and show that some subsequence

of (vk) is dominated by (ek). To accomplish this we adapt the method of the
analysis of the members of a finite block basis of (ek) with respect to a functional
in the natural norming set of T (An, b) (see [6]), to the context of the present
construction. This approach yields an alternative proof for the saturation of
Bourgain-Delbaen type spaces with copies of ℓr, which is closer in spirit to the
methods of estimating norms in Tsirelson and mixed Tsirelson type spaces.

The rest of the paper is devoted to the proof of the main property, namely
that Xr is ℓr saturated. In Section 3, we define the tree analysis of the functionals
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{e∗γ : γ ∈ Γ} which is a 1-norming subset of the unit ball of X
∗
r . The tree analysis

is similar to the corresponding one used in the Tsirelson and mixed Tsirelson
spaces [4]. In the following two sections we establish the lower and upper norm
estimates for certain block sequences in the space Xr.

In the final section we show that every block basis of (Mk) admits a
further normalized block basis (xk) such that every normalized block basis of
(xk) is equivalent to the natural basis of the space T (An, b). Zippin’s theorem
[13] yields the desired result.

2. Preliminaries. In this section we define the space Xr combining the
Bourgain-Delbaen construction [7] and the Tsirelson type constructions [2], [4].

Before proceeding, we recall some notation and terminology from [3]. Let

n ∈ N and 0 < b1, b2, . . . , bn < 1 with
n
∑

i=1
bi > 1 and there exists r′ ∈ (1,∞)

such that
n
∑

i=1
bi

r′ = 1. We may also assume without loss of generality that

b1 > b2 > . . . > bn. We define W [(An, b)] to be the smallest subset W of c00(N)
with the following properties:

1. ±e∗k ∈ W for all k ∈ N,

2. whenever fi ∈ W and max suppfi < min supp fi+1 for all i, we have
∑

i≤a

bifi ∈ W , provided that a ≤ n,

We say that an element f of W [(An, b)] is of Type 0 if f = ±e∗k for some k

and of Type I otherwise; an element of Type I is said to have weight ba for some

a ≤ n if f =
a
∑

i=1
fi for a suitable sequence (fi) of successive elements of W [An, b].

The Tsirelson space T (An, b) is defined to be the completion of c00 with
respect to the norm

‖x‖ = sup{〈f, x〉 : f ∈ W [An, b]}.

We may also characterize the norm of this space implicitly as being the smallest
function x 7→ ‖x‖ satisfying

‖x‖ = max

{

‖x‖∞, sup
n
∑

i=1

bi‖Eix‖

}

,
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where the supremum is taken over all sequences of finite subsets E1 < E2 < · · · <

En.

We shall now present the fundamental aspects related to the Bourgain-
Delbaen construction.

For the interested readers we mention that the following method can be
characterized as the “dual” construction of the construction presented in [3]. This
characterization is based on the fact that in [3] a particular kind of basis is given
to ℓ1(Γ) and the Bourgain-Delbaen type space X is seen as the predual of its
dual, which is ℓ1(Γ).

Let (Γq)q∈N be a strictly increasing sequence of finite sets and denote their
union by Γ; Γ = ∪

q∈N

Γq.

We set ∆0 = Γ0 and ∆q = Γq\Γq−1 for q = 1, 2, . . .
Assume furthermore that to each γ ∈ ∆q, q ≥ 1, we have assigned a linear
functional c∗γ : ℓ∞(Γq−1) → R. Next, for n < m in N, we define by induction, a
linear operator in,m : ℓ∞(Γn) → ℓ∞(Γm) as follows:
For m = n + 1, we define in,n+1 : ℓ∞(Γn) → ℓ∞(Γn+1) by the rule

(in,n+1(x))(γ) =

{

x(γ), if γ ∈ Γn

c∗γ(x), if γ ∈ ∆n+1

for every x ∈ ℓ∞(Γn).
Then assuming that in,m has been defined, we set in,m+1 = im,m+1 ◦ in,m. A
direct consequence of the above definition is that for n < l < m it holds that
in,m = il,m ◦ in,l. Finally we denote by in : ℓ∞(Γn) → R

Γ the direct limit
in = limm→∞ in,m.

We assume that there exists a C > 0 such that for every n < m we have
‖in,m‖ ≤ C. This implies that ‖in‖ ≤ C and therefore in : ℓ∞(Γn) → ℓ∞(Γ)
is a bounded linear map. In particular, setting Xn = in[ℓ∞(Γn)], we have that

Xn
C
≈ ℓ∞(Γn) and furthermore (Xn)n∈N is an increasing sequence of subspaces of

ℓ∞(Γ). We also set XBD =
⋃

n∈N

Xn →֒ ℓ∞(Γ) equipped with the supremum norm.

Evidently, XBD is an L∞ space.

Let us denote by rn : ℓ∞(Γ) → ℓ∞(Γn) the natural restriction map, i.e.
rn(x) = x|Γn . We will also abuse notation and denote by rn : ℓ∞(Γm) → ℓ∞(Γn)
the restriction function from ℓ∞(Γm) to ℓ∞(Γn) for n < m.

Notation 2.1.

(i) We denote by e∗γ the restriction of the unit vector eγ ∈ ℓ1(Γ) on the
space XBD.
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(ii) We also extend the functional c∗γ : ℓ∞(Γn) → R to a functional c∗γ :
XBD → R by the rule c∗γ(x) = (c∗γ ◦ rq−1)(x) when γ ∈ ∆q.

As it is well known from [3] and [7], instead of the Schauder basis of XBD,
it is more convenient to work with a FDD naturally defined as follows:

For each q ∈ N we set Mq = iq[ℓ
∞(∆q)].

We briefly establish this fact in the following proposition and then continue with
the details of the construction of Xr.

Proposition 2.2. The sequence (Mq)q∈N is a FDD for XBD.

P r o o f. For q ≥ 0 we define the maps P{q} : XBD → Mq with

P{q}(x) = iq(rq(x)) − iq−1(rq−1(x))

It is easy to check that each P{q} is a projection onto Mq and that for
q1 6= q2 and x ∈ Mq2 we have P{q1}(x) = 0. Also we have that ‖Pq‖ ≤ 2C. We
point out that in a similar manner one can define projections on intervals of the

form I = (p, q] so that PI(x) =
q
∑

i=p+1
P{i}(x) for which we can readily verify the

formula
PI(x) = iq(rq(x)) − ip(rp(x))

Note that ‖PI‖ ≤ 2C. This shows that indeed (Mq)q is a FDD generating
XBD. �

For x ∈ XBD we denote by suppx the set suppx = {q : P{q}(x) 6= 0} and
by ran x the minimal interval of N containing suppx.

Definition 2.3. A block sequence (xi)
∞
i=1 in XBD is called skipped (with

respect to (Mq)q∈N), if there is a subsequence (qi)
∞
i=1 of N so that for all i ∈ N,

maxsuppxi < qi < minsuppxi+1.

In the sequel, when we refer to a skipped block sequence, we consider it
to be with respect to the FDD (Mq)q∈N.

Let q ≥ 0. For all γ ∈ ∆q we set d∗γ = eγ ◦ P{q}. Then the family (d∗γ)γ∈Γ

consists of the biorthogonal functionals of the FDD (Mq)q≥0. Notice that for
γ ∈ ∆q,

d∗γ(x) = Pq(x)(γ) = iq(rq(x))(γ) − iq−1(rq−1(x))(γ) =

= rq(x)(γ) − c∗γ(rq−1(x)) = x(γ) − c∗γ(x) =

= e∗γ(x) − c∗γ(x).

The sequences (∆q)q∈N and (c∗γ)γ∈Γ are determined as in [3], section 4
and Theorem 3.5.
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We give some useful notation. For fixed n ∈ N and b = (b1, b2, . . . , bn)
with 0 < b1, b2, . . . , bn < 1, for each γ ∈ ∆q we assign

(a) rank γ = q

(b) age of γ denoted by a(γ) = a such that 2 ≤ a ≤ n

(c) weight of γ denoted by w(γ) = ba

In order to proceed to the construction, we first need to fix a positive integer n

and a descending sequence of positive real numbers b1, . . . , bn such that b1 < 1,

bi <
1

2
, for every i = 2, . . . , n and

∑n
i=1 bi > 1. Let r ∈ (1,∞) be such that

n
∑

i=1
br′

i = 1 and
1

r
+

1

r′
= 1. Now we shall define the space Xr by using the

Bourgain-Delbaen construction that was presented in the preceding paragraphs.

We set ∆0 = ∅, ∆1 = {0} and recursively define for each q > 1 the set
∆q. Assume that ∆p have been defined for all p ≤ q. We set

∆q+1 =
{

(q + 1, a, p, η, εe∗ξ ) : 2 ≤ a ≤ n, p ≤ q, ε = ±1, ξ ∈ Γq \ Γp,

η ∈ Γp, ba−1 = w(η)
}

For γ ∈ ∆q+1 it is clear that the first coordinate is the rank of γ, while the second
is the age a(γ) of γ. The functionals (c∗γ)γ∈∆q+1 are defined in a way that depends
on γ ∈ ∆q+1. Namely, let x ∈ ℓ∞(Γq).

(i) For γ = (q + 1, 2, p, η, εe∗ξ ) we set

c∗γ(x) = b1x(η) + b2εe
∗
ξ

(

x − ip,q(rp(x))
)

.

(ii) For γ = (q + 1, a, p, η, εe∗ξ ) with a > 2 we set

c∗γ(x) = x(η) + baεe
∗
ξ

(

x − ip,q(rp(x))
)

.

We may now define sequences (iq), (Γq), (Xq) in a similar manner as

before and set Xr =
⋃

q∈N

Xq. Assuming that (iq) is uniformly bounded by a

constant C, we conclude that the space Xr is a subspace of ℓ∞(Γ). The constant

C is determined as in [3] Theorem 3.4, by taking C =
1

1 − 2b2
. Thus, for every

m ∈ N, ‖im‖ ≤ C. This implies that ‖PI‖ ≤ 2C for every I interval.
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Remark 2.4. In the case of n = 2, i.e. b = (b1, b2), the space Xr

essentially coincides with the Bourgain-Delbaen space Xb1,b2, since every γ ∈ Γ is
of age 2.

Remark 2.5. As it is shown in Proposition 6.2, the choice of r, based
on the fixed n and b, yields that T (An, b) ∼= ℓr. Moreover, the ingredients of the
“Tsirelson type spaces” theory that are used throughout this paper are essentially
the same with the corresponding ones in [3]. The basic difference in our approach
is that we use only one family T (An, b) for some appropriate n and b.

3. The Tree Analysis of e∗

γ
for γ ∈ Γ. We begin by recalling

the analysis of e∗γ in [3] section 4. The only difference is that in our case all the
functionals e∗γ have weight depending on their age which is greater or equal to 2.

3.1. The evaluation Analysis of e∗

γ
for γ ∈ Γ. First we point out

that for q ∈ N every γ ∈ ∆q+1 admits a unique analysis as follows:
Let a(γ) = a ≤ n. Then using backwards induction we determine a sequence of
sets {pi, qi, εie

∗
ξi
}a

i=1 ∪ {ηi}
a
i=2 with the following properties.

(i) p1 < q1 < · · · < pa < qa = q.

(ii) εi = ±1, rank ξi ∈ (pi, qi] for 1 ≤ i ≤ a and rank ηi = qi + 1 for 2 ≤ i ≤ a.

(iii) ηa = γ, ηi = (rank ηi, i, pi, ηi−1, εie
∗
ξi

) for every i > 2
η2 = (rank η2, 2, p2, ε1ξ1, ε2e

∗
ξ2

) and (p1, q1] = (1, rank ξ1].

Definition 3.1. Let q ∈ N and γ ∈ Γq. Then the sequence {pi, qi, εie
∗
ξi
}a

i=1

∪ {ηi}
a
i=2 satisfying all the above properties will be called the analysis of γ.

Moreover, following similar arguments as in [3] Proposition 4.6 it holds
that,

e∗γ =
a
∑

i=2

d∗ηi
+

a
∑

i=1

biεie
∗
ξi
◦ P(pi,qi] =

a
∑

i=2

e∗ηi
◦ P{qi+1} +

a
∑

i=1

biεie
∗
ξi
◦ P(pi,qi].

We set gγ =
a
∑

i=2
d∗ηi

and fγ =
a
∑

i=1
biεie

∗
ξi
◦ P(pi,qi].

3.2. The r-Analysis of the functional e∗

γ
. Let r ∈ N and γ ∈ ∆q+1.

Let a(γ) = a ≤ n and {pi, qi, εie
∗
ξi
}a

i=1

⋃

{ηi}
a
i=2 the evaluation analysis of γ. We

define the r-analysis of e∗γ as follows:
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(a) If r ≤ p1, then the r-analysis of e∗γ coincides with the evaluation analysis of
e∗γ .

(b) If r ≥ qa, then we assign no r-analysis to e∗γ and we say that e∗γ is r-
indecomposable.

(c) If p1 < r < qa, we define ir = min{i : r < qi}. Note that this is well-defined.
The r-analysis of e∗γ is the following triplet

{(pi, qi]}i≥ir , {εiξi}i≥ir , {ηi}i≥max{2,ir}.

where pir is either the same or r in the case that r > pir .

Next we introduce the tree analysis of e∗γ which is similar to the tree
analysis of a functional in a Mixed Tsirelson space (see [4] Chapter II.1). Notice
that the evaluation analysis and the r-analysis of e∗γ form the first level of the
tree analysis that we are about to present.

We start with some notation. We denote by (T , ” � ”) a finite partially
ordered set which is a tree. Its elements are finite sequences of natural numbers
ordered by the initial segment partial order. For every t ∈ T ,we denote by St the
immediate successors of t

Assume now that (pt, qt]t∈T is a tree of intervals of N such that t � s

iff (pt, qt] ⊃ (ps, qs] and t, s are incomparable iff (pt, qt] ∩ (ps, qs] = ∅. For such
a family (pt, qt]t∈T and t, s incomparable we shall denote by t < s iff (pt, qt] <

(ps, qs] (i.e. qt < ps).

3.3. The Tree Analysis of the functional e∗

γ
. Let γ ∈ ∆q+1 with

a(γ) = a ≤ n. A family of the form Fγ = {ξt, (pt, qt]}t∈T is called the tree
analysis of e∗γ if the following are satisfied:

(1) T is a finite tree with a unique root denoted as ∅.

(2) We set ξ∅ = γ,(p∅, q∅] = (1, q] and let {pi, qi, εie
∗
ξi
}a

i=1

⋃

{ηi}
a
i=2 the evalua-

tion analysis of ξ∅. Set S∅ = {(1), (2), . . . , (a)} and for every s = (i) ∈ S∅,
{ξs, (ps, qs]} = {ξi, (pi, qi]}.

(3) Assume that for a t ∈ T {ξt, (pt, qt]} has been defined. There are two cases:

(a) If e∗ξt
is pt-decomposable, let

{(pi, qi]}i≥ipt
, {εiξi}i≥ipt

, {ηi}i≥max{2,ipt}
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the pt analysis of e∗ξt
. We set St = {(tai) : i ≥ ipt} and

S
pt

t =

{

St, if ηipt
exists

St \ {(t
aipt)}, otherwise

Then, for every s = (tai) ∈ St, we set {ξs, (ps, qs]} = {ξi, (pi, qi]}
where {εiξi, (pi, qi]} is a member of the pt analysis of e∗ξt

.

(b) e∗ξt
is pt-indecomposable, then ξt consists a maximal node of Fγ .

Notation 3.2. For later use we need the following:
For every t ∈ T e∗ξt

= ft + gt, where ft =
∑

s∈St
bsεse

∗
ξs
◦ P(ps,qs] and

gt =
∑

s∈S
pt
t

d∗ηs
and for s = (tai) ∈ S

pt

t ,

η(ta i) = (rank η(ta i), i, p(ta i), η(ta i−1), ε(ta i)e
∗
ξ
(ta i)

).

In the rest of the paper, we set ft = fξt
and gt = gt.

Lemma 3.3. Let x ∈ Xr and γ ∈ Γ. Then,

e∗γ(x) =
∏

∅�s�tx

(εsbs)(ftx + gtx)(x),

where tx = max{t : ran x ⊆ (pt, qt]}.

P r o o f. Let Fγ = {ξt, (pt, qt]}t∈T a tree analysis of γ.
If {t : ran x ⊆ (pt, qt]} = ∅, then e∗γ(x) = f∅(x) + g∅(x) and the equality holds.
If {t : ranx ⊆ (pt, qt]} 6= ∅, we can find {t1 ≺ t2 ≺ . . . ≺ tm} ∈ T such that
t1 ∈ S∅ and tm = tx.
For every t ∈ T with t ≺ tx, gt(x) = 0. Indeed, for every s ∈ S

pt

t , d∗ηs
(x) =

e∗ηs
◦ P{qs+1}(x) = 0 because ran x ⊆ (ptx , qtx ] ⊆ (ps, qs].

So, we have that

e∗γ(x) = f∅(x) =
∑

s∈S∅

bsεse
∗
ξs
◦ P(ps,qs](x) = bt1εt1e

∗
ξt1

(x)

= bt1εt1ft1(x) = bt1εt1bt2εt2e
∗
ξt2

◦ P(pt2 ,qt2 ](x) = bt1bt2εt1εt2e
∗
ξt2

(x)

= bt1bt2εt1εt2ft2(x) = . . . =
∏

∅�s�tx

(εsbs)(ftx + gtx)(x)

setting ε∅ = b∅ = 1. �

Corollary 3.4. If {t : ranx ⊆ (pt, qt]} 6= ∅ and (ftx , (ptx , qtx ]) is a
maximal node, then e∗γ(x) = 0.
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P r o o f. Let (ftx , (ptx , qtx ]) be a maximal node. Then ftx(x) = 0 and
gtx(x) = 0 and from Lemma 3.3 we deduce that e∗γ(x) = 0. �

4. The lower estimate.

Definition 4.1. An φ ∈ W (An, b) is said to be a proper functional if it
admits a tree analysis (φt)t∈T such that for every non-maximal node t ∈ T the
set {φs : s ∈ St} has at least two non-zero elements.

We denote by Wpr(An, b) to be the subset of W (An, b) consisting of all
proper functionals. For every t ∈ T it holds that φt =

∑

s∈St

bsφs with {bs}s∈St ⊆

{b1, b2, . . . , bn} and b∅ = 1.

Lemma 4.2. The set Wpr(An, b) 1-norms the space T (An, b).

P r o o f. We shall show that for every φ ∈ W (An, b) there exists g ∈
Wpr(An, b) such that |φ(m)| ≤ g(m) ∀m ∈ N. Since the basis is 1-unconditional
the previous statement yields the result.

To this end, let φ ∈ W (An, b). Then using a tree analysis {φt}t∈T of φ we
easily see that for every m ∈ supp f , there exists a maximal node tm ∈ T with
φtm = εme∗m and φ(m) = εm

∏

t<tm

bt.

For every m ∈ suppφ we set Km = {t ∈ T : t < tm and #St > 1}. Then

it is easy to see that the functional g =
∑

m∈supp φ

(

∏

t∈Km

bt

)

e∗m is a functional

belonging to Wpr(An, b). Moreover, since bt < 1 for every t ∈ T we get that
|φ(m)| ≤ g(m) ∀m ∈ N. �

Lemma 4.3. Let φ ∈ Wpr(An, b) and l ∈ N. If maxsuppφ = l, then
h(T φ) ≤ l.

P r o o f. Let θn be the amount of nodes at the n level of T φ. Since φ is
proper, it holds that θn+1 > θn for every n ∈ N. Assume to the contrary that
h(T φ) > l, i.e. h(T φ) = l + k for some k ∈ N. Then,

θ1 = 1, θ2 ≥ 2, . . . , θl+k ≥ l + k

Since, the l + k level of T φ consists of functionals of the form e∗i , we deduce that
maxsuppφ ≥ l + k > l, which leads to a contradiction. �

Proposition 4.4. Let (xk)k∈N be a normalized skipped block sequence
in Xr and (qk)k∈N a strictly increasing sequence of integers such that suppxk ⊂
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(qk + k, qk+1). Then, for every sequence of positive scalars (ak)k∈N and for every
l ∈ N, it holds that

(1)

∥

∥

∥

∥

∥

l
∑

k=1

akek

∥

∥

∥

∥

∥

T (An,b)

≤ C

∥

∥

∥

∥

∥

l
∑

k=1

akxk

∥

∥

∥

∥

∥

∞

where (ek)k∈N ⊆ T (An, b) and C is an upper bound for the norms of the operators
im in Xr.

P r o o f. Let φ ∈ W (An, b). From Lemma 4.2 we may assume that φ is
proper. We will use induction on the height of the tree T φ.

If h(T φ) = 0 (i.e. f is maximal), then φ is of the form φ = εke
∗
k with

εk = ±1. We observe that,

∣

∣

∣

∣

φ

(

l
∑

k=1

akek

)∣

∣

∣

∣

= |ak| = ak. From [3] Proposition

4.8, we can choose γ ∈ Γqk+1−1\Γqk+k such that |xk(γ)| ≥
1

C
‖xk‖ =

1

C
. Then,

∣

∣

∣

∣

φ

(

l
∑

k=1

akek

)∣

∣

∣

∣

= ak ≤ C|ak||xk(γ)| = C|e∗γ(akxk)| ≤ C

∣

∣

∣

∣

e∗γ

(

l
∑

k=1

akxk

)∣

∣

∣

∣

.

We assume that for every φ ∈ W (An, b) with h(T φ) = h > 0 and
maxsuppφ = l0, there exists γ ∈ Γ, such that:

(1) γ ∈ Γql0+1+h\Γql0+1

(2) h(T φ) = h(Fγ) ≤ l0

(3)

∣

∣

∣

∣

φ

(

l
∑

k=1

akek

)∣

∣

∣

∣

≤ C

∣

∣

∣

∣

l
∑

k=1

akxk(γ)

∣

∣

∣

∣

for every l ≥ l0

Observe that assumption (1) yields xl0 < rankγ < xl0+1, while assumption (2)
gives us that minsuppxl0+1 − maxsuppxl0 > h(T φ). Indeed,

xl0 < ql0+1 < rank γ ≤ ql0+1 + h ≤ ql0+1 + l0 < ql0+1 + (l0 + 1) < xl0+1

and minsuppxl0+1 − maxsuppxl0 > l0 + 1 > l0 ≥ h(Fγ).

Let φ ∈ W (An, b) with h(T φ) = h + 1, l0 = maxsuppφ and let (φt)t∈T the tree
analysis of φ. Then, φ is of the form φ =

∑

s∈S∅

bsφs, #S∅ ≤ n. We observe

that for every s ∈ S∅, h(T φs
) = h. We set p1 = 1, for every s ∈ S∅\{1}

ps = min{qk + k : k ∈ suppφs} and for every s ∈ S∅, rs = qls+1 + h where
ls = maxsuppφs.
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We next apply the inductive hypothesis to obtain ξs ∈ Γrs\Γqls+1 with h(T φs
) =

h(F ξs
) such that

∣

∣

∣

∣

∣

φs

(

l
∑

k=1

akek

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

φs





∑

k∈supp φs

akek





∣

∣

∣

∣

∣

∣

≤ Cεs

∑

k∈supp φs

akxk(ξs)

= Cεse
∗
ξs





∑

k∈supp φs

akxk



 = Cεse
∗
ξs
◦ P(ps,rs]

(

l
∑

k=1

akxk

)

,

with εs such that εse
∗
ξs

(

∑

k∈suppφs

akxk

)

=

∣

∣

∣

∣

∣

∑

k∈suppφs

akxk(ξs)

∣

∣

∣

∣

∣

.

Let γ ∈ Γ have analysis {ps, rs, εse
∗
ξs
}s∈S∅

⋃

{ηs}s∈S∅\{1} where ηs ∈ ∆rs+1.
Observe that rank ξs ∈ (qls+1, rs] ⊂ (ps, rs]. It is clear that for every s ∈ S∅ \{1},

d∗ηs

(

l
∑

k=1

akxk

)

= 0. Indeed,

suppxls < qls+1 < qls+1 + (h + 1) = rs + 1 ≤ qls+1 + (ls + 1) < suppxls+1.

Therefore,

∣

∣

∣

∣

∣

φ

(

l
∑

k=1

akek

)∣

∣

∣

∣

∣

≤
∑

s∈S∅

∣

∣

∣

∣

∣

∣

bsφs





∑

k∈supp φs

akek





∣

∣

∣

∣

∣

∣

≤ C
∑

s∈S∅

bsεse
∗
ξs
◦ P(ps,rs]

(

l
∑

k=1

akxk

)

≤ C

∣

∣

∣

∣

∣

l
∑

k=1

akxk(γ)

∣

∣

∣

∣

∣

It is clear that h(T φ) = h(Fγ) ≤ l0 and xl0 < rank γ < xl0+1. �

Corollary 4.5. For every block sequence in Xr there exists a further
block sequence satisfying inequality (1).

5. The upper estimate. Let (yl)l∈N be a normalized skipped block
sequence in Xr. From Corollary 4.5, we can find a further block sequence of (yl)l,
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still denoted by (yl)l, satisfying inequality (1).
Therefore, we have that

∥

∥

∥

∥

∥

m
∑

l=1

yl

∥

∥

∥

∥

∥

∞

≥
1

C

∥

∥

∥

∥

∥

m
∑

l=1

el

∥

∥

∥

∥

∥

T (An,b)

For every j ∈ N, set Mj = {1, 2, . . . , n}j . It is easily checked, after identifying Mj

with {1, . . . , nj} for every j, that the functional fj =
∑

s∈Mj

(

j
∏

i=1
bsi

)

e∗s belongs

to W (An, b) where si is the i-th coordinate of s, for each i = 1, 2, . . . , n and
∑

s∈Mj

j
∏

i=1
bsi

=

(

n
∑

i=1
bi

)j

. Using the fact that #Mj = nj , we obtain that

∥

∥

∥

∥

∥

∥

nj
∑

l=1

el

∥

∥

∥

∥

∥

∥

T (An,b)

=

∥

∥

∥

∥

∥

∥

∑

s∈Mj

es

∥

∥

∥

∥

∥

∥

T (An,b)

≥ fj





nj
∑

l=1

el



 =

(

n
∑

i=1

bi

)j

.

Also, for every m ∈ N large enough we may find j ∈ N such that nj+1 >

m ≥ nj. From the above and the unconditionality of the basis of the space
T (An, b), it follows that

∥

∥

∥

∥

∥

m
∑

l=1

yl

∥

∥

∥

∥

∥

∞

≥
1

C

∥

∥

∥

∥

∥

m
∑

l=1

el

∥

∥

∥

∥

∥

T (An,b)

≥
1

C

∥

∥

∥

∥

∥

∥

nj
∑

l=1

el

∥

∥

∥

∥

∥

∥

T (An,b)

=

(

n
∑

i=1

bi

)j

We conclude that

∥

∥

∥

∥

m
∑

l=1

yl

∥

∥

∥

∥

∞

m→∞
−→ ∞ as

n
∑

i=1
bi > 1.

We next choose a further block sequence (xk)k∈N of (yl)l∈N with some
additional properties. Let ε > 0 and choose a descending sequence (εk)k of

positive reals such that

(

∞
∑

k=1

εk

)

< ε. We can also find an increasing sequence

(nk)k of positive integers and a sequence (Fk)k of successive subsets of N such
that the following are satisfied:

(1) For every k ∈ N,
1

nk
< εk.

(2) For every k ∈ N,

∥

∥

∥

∥

∥

∑

l∈Fk

yl

∥

∥

∥

∥

∥

> nk. This is possible, due to the above notation.
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We have thus constructed a normalized skipped block sequence (xk)k∈N of the

form xk =
∑

l∈Fk

λlyl, where λl =
1

∥

∥

∥

∑

l∈Fk

yl

∥

∥

∥

. Notice that |λl| < εk for every l ∈ Fk.

Let γ ∈ Γ with tree analysis Fγ = {ξt, (pt, qt]}t∈T .

For every k ∈ N, we set tk = max{t : ran xk ⊂ (pt, qt]}. Notice that if for
a given xk, tk is non-maximal, then there exist at least two immediate successors
of tk, say s1, s2 such that the corresponding intervals (ps1 , qs1], (ps2, qs2 ] intersect
ran xk. For later use we shall denote by (ps0 , qs0] the first interval in the natural
order of disjoint segments of the natural numbers that intersects xk. Notice that
s0 is not necessarily the first element of St.
For the pair γ, (xk)k∈N and for every t ∈ T we define the following sets:
Dt =

⋃

s�t

{k : s = tk}, Kt = Dt\ ∪
s∈St

Ds = {k : t = tk} and Et = {s ∈ St :

Ds 6= ∅}.
We now set xk = x′

k + x′′
k + x′′′

k where,

x′
k = xk |(ps0 ,qs0 ], x′′

k = xk |S
s∈Stk

,s6=s0
(ps,qs] and x′′′

k = xk − x′
k − x′′

k.

Remark 5.1.

(1) The sets Dt,Kt,Et are determined by the chosen pair γ, (xk)k. For a different
pair, these sets may differ as well. For example, let k ∈ Kt, for the pair
γ, (xk)k. Then t = tk for xk. By the construction of x′

k, there exists sk ∈ St

such that x′
k = xk |(psk

,qsk
]. Thus, taking the pair γ, (x′

k)k the same k

belongs to Ksk
.

(2) For every k ∈ N, |gtk(xk)| ≤ 2Cnεk.
Indeed, from the definition of (xk)k∈N we have that

|gtk(xk)| ≤
∑

s∈S
ptk
tk

|d∗ηs
(xk)| ≤

∑

s∈S
ptk
tk

|e∗ηs
◦ P{qs+1}





∑

l∈Fk

λlyl



 | ≤

≤
∑

s∈S
ptk
tk

‖e∗ηs
‖‖P{qs+1}‖|λ

s
l |‖y

s
l ‖ ≤

∑

s∈S
ptk
tk

2Cεk ≤

≤ 2Cεk(♯Stk ) ≤ 2Cnεk.

(3) It is obvious that gtk(xk) = gtk(x′′′
k ), ftk(x′′′

k ) = 0 and for every t ≺ tk,
gt(x

′′′
k ) = 0.
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Lemma 5.2. For the pairs γ, (x′
k)k∈N and γ, (x′′

k)k∈N it holds that #Kt +
#Et ≤ n.

P r o o f. Let t ∈ T and let k ∈ Kt.
We set sk = max{s ∈ St : (ps, qs]∩ ran x′

k 6= ∅}. From the definition of tk,
notice that #St ≥ 2. It holds that sk 6∈ Et.

Indeed, from the definition of tk, sk we have that (ptk , qtk ]∩ranx′
k = ranx′

k

and (psk
, qsk

]∩ ranx′
k = (psk

, qsk
]. Since sk ∈ Stk , (psk

, qsk
] ⊆ (ptk , qtk ]. It follows

that (psk
, qsk

] ⊆ ran x′
k.

Therefore, we can define a one-to-one map G : Kt → St\Et, hence
#Kt + #Et ≤ #St ≤ n.

The proof for the pair γ, (x′′
k)k∈N is similar. �

Proposition 5.3. Let (xk)k∈N be as above.Then for every γ ∈ Γ there
exist φ1, φ2 ∈ W (An, b) such that for every sequence (ak)k∈N of positive scalars,
for every l ∈ N it holds that,

(2)

∣

∣

∣

∣

∣

l
∑

k=1

akxk(γ)

∣

∣

∣

∣

∣

≤
1

bn
(φ1 + φ2)

(

l
∑

k=1

akek

)

+ 2Cnε

(

l
∑

k=1

ar
k

)

1

r

P r o o f. Let γ ∈ ∆q+1witha(γ) = a ≤ n. Let Fγ = {ξt, (pt, qt]}t∈T , where

ξ∅ = γ, be the tree analysis of γ. We may assume that
l
⋃

k=1

ran xk ⊂ (p∅, q∅].

Claim. For the pairs γ, (x′
k)k∈N and γ, (x′′

k)k∈N there exist φ1, φ2 ∈
W (An, b) such that for every sequence of positive scalars (ak)k∈N and for every
l ∈ N, it holds that

(3)

∣

∣

∣

∣

∣

f∅

(

l
∑

k=1

akx
′
k

)∣

∣

∣

∣

∣

≤
2C

bn
φ1

(

l
∑

k=1

akek

)

(4)

∣

∣

∣

∣

∣

f∅

(

l
∑

k=1

akx
′′
k

)∣

∣

∣

∣

∣

≤
2C

bn
φ2

(

l
∑

k=1

akek

)

P r o o f o f t h e C l a im. We only prove inequality (3). The proof
of inequality (4) requires the same arguments. We recall that



164 I. Gasparis, M. K. Papadiamantis, D. Z. Zisimopoulou

ft =
∑

s∈St

bsεs(fs + gs) ◦ P(ps,qs] for every t ∈ T non maximal. From the defi-

nition of (x′
k)k∈N, we have that gs ◦ P(ps,qs](x

′
k) = 0 for every s ∈ St.Therefore,

ft

(

∑

k∈Dt

akx
′
k

)

=

(

∑

s∈St

bsεsfs ◦ P(ps,qs]

)(

∑

k∈Dt

akx
′
k

)

. We will use backwards

induction on the levels of the tree T , i.e we shall show that for every t ∈ T there
exists φt

1 ∈ W (An, b) with suppφt
1 ⊆ Dt such that

∣

∣

∣

∣

∣

∣

ft





∑

k∈Dt

akx
′
k





∣

∣

∣

∣

∣

∣

≤
2C

bn
φt

1





∑

k∈Dt

akek



 .

The first inductive step is similar to the general one and therefore we omit it.
Let 0 < h ≤ max{|t| : t ∈ T } and assume that the proposition has been proved
for all t with |t| = h.

Let t ∈ T with |t| = h − 1.Then we have the following cases:

(1) If ft is a maximal node, ft

(

∑

k∈Dt

akx
′
k

)

= 0, so there is nothing to prove.

Indeed, Kt = Dt, therefore for every k ∈ Dt, from Corollary 3.4 ft(x
′
k) = 0

since t = tk.

(2) If ft is a non-maximal node, then

ft





∑

k∈Dt

akx
′
k



 =

(

∑

s∈St

bsεsfs ◦ P(ps,qs]

)





∑

k∈Dt

akx
′
k



 =

=
∑

s∈St

bsεsfs





∑

k∈Ds

akx
′
k



+
∑

k∈Kt

(

∑

s∈St

bsεsfs

)

(akx
′
k).

From the fact that, for every k ∈ Kt, gt(x
′
k) = 0 we get that

|ft(x
′
k)| = |x′

k(ξt)| ≤ ‖x′
k‖ ≤ 2C = 2Ce∗k(ek).

Moreover, for s ∈ Et it holds that |s| = h − 1. For every k ∈ Ds, from the
inductive hypothesis we obtain

∣

∣

∣

∣

∣

∑

s∈St

bsfs(x
′
k)

∣

∣

∣

∣

∣

= |bsfs(x
′
k)| ≤ bs

2C

bn
φs

1(ek).
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with φs
1 ∈ W (An, b) and suppφs

1 ⊆ Ds. We set φt
1 =

(

∑

s∈Et

bsφ
s
1 +

∑

k∈Kt

bke
∗
k

)

.

From Lemma 5.2, it is easily checked that φt
1 ∈ W (An, b) and it holds that,

∣

∣

∣

∣

∣

∣

ft





∑

k∈Dt

akx
′
k





∣

∣

∣

∣

∣

∣

≤
2C

bn
φt

1





∑

k∈Dt

akek



 . 2

Recall that

e∗γ

(

l
∑

k=1

akxk

)

= g∅

(

l
∑

k=1

akxk

)

+ f∅

(

l
∑

k=1

akxk

)

.

The fact that

g∅

(

l
∑

k=1

akx
′
k

)

= g∅

(

l
∑

k=1

akx
′′
k

)

= g∅





∑

k∈{m:tm 6=∅}

akx
′′′
k



 = f∅





∑

k∈{m:tm=∅}

akx
′′′
k



 = 0

implies the following:
∣

∣

∣

∣

∣

e∗γ

(

l
∑

k=1

akxk

)∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

g∅





∑

k∈{m:tm=∅}

akx
′′′
k





∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f∅

(

l
∑

k=1

akx
′
k

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

f∅

(

l
∑

k=1

akx
′′
k

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f∅





∑

k∈{m:tm 6=∅}

akx
′′′
k





∣

∣

∣

∣

∣

∣

From Remark 5.1 we get that,
∣

∣

∣

∣

∣

∣

g∅





∑

k∈{m:tm=∅}

akx
′′′
k





∣

∣

∣

∣

∣

∣

≤
∑

k∈{m:tm=∅}

ak|g∅(x
′′′
k )| ≤ 2Cn

∑

k∈{m:tm=∅}

akεk.

From Lemma 3.3 and Remark 5.1 we have that,
∣

∣

∣

∣

∣

∣

f∅





∑

k∈{m:tm 6=∅}

akx
′′′
k





∣

∣

∣

∣

∣

∣

≤
∑

k∈{m:tm 6=∅}

ak(
∏

t<tk

bt)|gtk(x′′′
k )| ≤

≤ 2C
1

2
n

∑

k∈{m:tm 6=∅}

akεk ≤ 2Cn
∑

k∈{m:tm 6=∅}

akεk.



166 I. Gasparis, M. K. Papadiamantis, D. Z. Zisimopoulou

Finally, we conclude that

∣

∣

∣

∣

∣

l
∑

k=1

akxk(γ)

∣

∣

∣

∣

∣

≤ 2Cn
∑

k∈{m:tm=∅}

akεk +
2C

bn
φ1

(

l
∑

k=1

akek

)

+
2C

bn
φ2

(

l
∑

k=1

akek

)

+ 2Cn
∑

k∈{m:tm 6=∅}

akεk

≤
2C

bn
(φ1 + φ2)

(

l
∑

k=1

akek

)

+ 2Cn

l
∑

k=1

akεk

≤
2C

bn
(φ1 + φ2)

(

l
∑

k=1

akek

)

+ 2Cn max{ak : k ∈ N}

(

l
∑

k=1

εk

)

≤
2C

bn
(φ1 + φ2)

(

l
∑

k=1

akek

)

+ 2Cnε

(

l
∑

k=1

ar
k

)

1
r

.

where in the last inequality we used the fact that the ℓr norm dominates the c0

norm. �

Remark 5.4. From [4] Theorem I.4, we know that ‖
∑

akek‖T (An,b) ≥

M (
∑

ar
k)

1
r . This result and the previous Proposition, yield that

∣

∣

∣

∣

∣

l
∑

k=1

akxk(γ)

∣

∣

∣

∣

∣

≤
2C

bn
(φ1 + φ2)

(

l
∑

k=1

akek

)

+
2Cnε

M

∥

∥

∥

∥

∥

l
∑

k=1

akek

∥

∥

∥

∥

∥

T (An,b)

.

For ε =
M

nbn
,

∣

∣

∣

∣

∣

l
∑

k=1

akxk(γ)

∣

∣

∣

∣

∣

≤
6C

bn

∥

∥

∥

∥

∥

l
∑

k=1

akek

∥

∥

∥

∥

∥

T (An,b)

.

Therefore,

(5)

∥

∥

∥

∥

∥

l
∑

k=1

akxk

∥

∥

∥

∥

∥

∞

≤
6C

bn

∥

∥

∥

∥

∥

l
∑

k=1

akek

∥

∥

∥

∥

∥

T (An,b)

.

Corollary 5.5. For every block sequence in Xr there exists a further
block sequence satisfying inequality (5).
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6. The main result.

Proposition 6.1. Let (xk)k∈N be a skipped block sequence in Xr satisfying
minsuppxk+1 > maxsuppxk + k and the conditions of Proposition 5.3. Then
(xk)k∈N is equivalent to the basis of the Tsirelson space T (An, b) for n and b

determined as before.

P r o o f. It is an immediate consequence of Propositions 4.4, 5.3 and
Remark 5.4. �

Proposition 6.2. The space T (An, b) is isomorphic to ℓp for some p ∈
(1,∞).

P r o o f. In a similar manner as in [4] Theorem I.4, one can see that for
every normalized block sequence (xk)k of the basis (ej)j and for every scalar

sequence (ak) it holds that, ‖
∑

akxk‖ ≤
2

bn
‖
∑

akek‖. Zippin’s Theorem [13]

yields that T (An, b) is isomorphic to some ℓp for some p ∈ (1,∞). �

Remark 6.3. An alternative proof could also be derived using the
Results in Sections 4 and 5. Indeed, let (yl)l∈N be a skipped block sequence in
Xr. Then, there exists a further block sequence (xk)k∈N satisfying simultane-
ously the assumptions of Corollaries 4.5 and 5.5. Therefore, (xk)k∈N satisfies the
assumptions of Proposition 6.1.

Let’s observe that every further block sequence (zk)k of (xk)k is also
skipped block and satisfies Proposition 6.1, thus it is equivalent to the basis
of the space T (An, b). Hence, every block sequence (zn)n of (xk)k is equivalent
to (xk)k. Zippin’s theorem [13] yields that the space < (xk)k > is isomorphic to
some ℓp. Therefore, T (An, b) ∼= ℓp for some p ∈ (1,∞).

In order to determine the exact value of p, we need the following Propo-
sition.

Proposition 6.4. The space T (An, b) is isomorphic to ℓr with
1

r
+

1

r′
= 1

and
n
∑

i=1
br′

i = 1.

P r o o f. Let us observe that for every x ∈ c00, ‖x‖ ≤ ‖x‖r. To see this, use
induction on the cardinality of suppx. If | suppx| = 1, it is trivial. Assume that
it holds for every y ∈ c00 with | supp y| ≤ n and let x ∈ c00 with | suppx| = n+1.

Then either ‖x‖ = ‖x‖∞ or ‖x‖ =
n
∑

i=1
bi‖Eix‖ for some appropriate subsets
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E1 < E2 < . . . < En. In the first case, there is nothing to prove as for every
p ∈ [r,∞) ‖x‖∞ ≤ ‖x‖p. Therefore we only need to deal with the second case.

It suffices to observe that for every i = 1, 2, . . . , n, the cardinality of
suppEix is less than suppx and thus, using the inductive hypothesis along with
Hölder′s inequality, we get that

‖x‖ ≤
n
∑

i=1

bi‖Eix‖r ≤

(

n
∑

i=1

br′

i

)
1
r′
(

n
∑

i=1

‖Eix‖
r
r

)
1
r

= ‖x‖r.

By combining the preceding argument with Proposition 6.2, we conclude that
T (An, b) is isomorphic to ℓp for some p ∈ [r,∞).

For every l ∈ N set Ml = {1, 2, . . . , n}l. We have already mentioned that

for every l ∈ N the functional fl =
∑

s∈Ml

(

l
∏

i=1
bsi

)

e∗s belongs to W (An, b) where

si is the i-th coordinate of s, for each i = 1, 2, . . . , n and
∑

s∈Ml

l
∏

i=1
bsi

= (
∑n

i=1 bi)
l.

We set as =
l
∏

i=1
bsi

and xl =
∑

s∈Ml

a
r′

r
s es. It is easily seen that for every l ∈ N,

‖xl‖ = 1. Indeed,

‖xl‖ ≤ ‖xl‖r =





∑

s∈Ml

ar′

s





1
r

=

(

n
∑

i=1

br′

i

) l
r

= 1 = fl(xl) ≤ ‖xl‖.

We claim that for p′ > r and every ε > 0 there exists l ∈ N such that
‖xl‖p′ < ε. If the claim holds we are done as p coincides with r.

P r o o f o f t h e C l a i m. Notice that for p′ > r,
n
∑

i=1
b

r′

r
p′

i =
n
∑

i=1
b
r′(1+δ)
i

for some 0 < δ < 1. But for every i = 1, 2, . . . , n bi < 1, and therefore

n
∑

i=1

b
r′(1+δ)
i <

n
∑

i=1

br′

i = 1.

Thus, there exists l ∈ N such that

(

n
∑

i=1
b
r′(1+δ)
i

)l

< εp′ . Then for this l,

‖xl‖p′ =





∑

s∈Ml

a
r′

r
p′

s





1
p′

=





∑

s∈Ml

ar′(1+δ)
s





1
p′

=

(

n
∑

i=1

b
r′(1+δ)
i

)
l

p′

< ε. 2
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Theorem 6.5. For every r ∈ (1,∞) the space Xr is ℓr saturated.

P r o o f. As it was mentioned in the above Remark, for every skipped
block sequence in Xr we can find a further block sequence (xk)k such that the
space 〈(xk)k〉 is isomorphic to ℓr. �

Remark 6.6. From the previous Theorem, we deduce that the space
Xr is a separable L∞ space which does not contain ℓ1. Therefore, the results
of D.Lewis-C.Stegall [10] and A. Pelczyński [12] yields that X

∗
r is isomorphic to

ℓ1. Alternatively, one can use the corresponding argument of D. Alspach [1] and
show directly that (Mq) is a shrinking FDD for Xr. It then follows that (e∗γ)γ∈Γ

is a basis for X
∗
r, equivalent to the usual ℓ1-basis.

REFERE NC ES

[1] D. Alspach. The dual of the Bourgain-Delbaen space. Israel J. Math. 117

(2000), 239–259.

[2] S. A. Argyros, I. Deliyanni. Banach spaces of the type of Tsirelson.
arXiv (math/9207206v1), 1992.

[3] S. A. Argyros, R. Haydon. A Hereditarily Indecomposable L∞-space
that solves the scalar-plus-compact problem. Acta Math. (to appear).
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