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ABSTRACT. Let L,, . be the free m-generated metabelian nilpotent of class
c Lie algebra over a field of characteristic 0. An automorphism ¢ of Ly, .
is called normal if ¢(I) = I for every ideal I of the algebra L,, .. Such
automorphisms form a normal subgroup N(L,, ) of Aut(L,, ) containing
the group of inner automorphisms. We describe the group of normal auto-
morphisms of L, . and the quotient group of Aut(Ly, ) modulo N(L, ).

Introduction. Let L,, be the free m-generated Lie algebra over a field
K of characteristic 0, m > 2, and let L, . = L;/(LY + LSH) be the free
m-generated metabelian nilpotent of class ¢ Lie algebra. This is the relatively
free algebra of rank m in the variety of Lie algebras 2% N M., where A? is the
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metabelian (solvable of class 2) variety of Lie algebras and 1. is the variety of
all nilpotent Lie algebras of class at most c.

An automorphism of an algebra is called normal if it preserves every
ideal of the algebra. Similarly, an automorphism of a group is normal if it
preserves every normal subgroup of the group. Such automorphisms form a
normal subgroup of the group of all automorphisms. The goal of our paper
is to describe the group of normal automorphisms N(L,,.) and the quotient
group Aut(Ly,)/N(Lyp,) of normally outer automorphisms of the Lie algebra
L, .. The corresponding problem for the group of normal automorphisms of free
metabelian nilpotent groups was studied by Endimioni [5, 6, 7]. He showed that
the normal automorphisms 6 of a free metabelian nilpotent group G are exactly
the atomorphisms of the form

0(2) = (2, u1)* D (2, 1),

where wuy, ..., u,, are elements of G, the exponents k(1),...,k(m) are integers.
(As usual, the commutator (a, b) in the group case is defined by (a,b) = a~'b~'ab.).
Endimioni also proved that the group of normal automorphisms of the free
metabelian nilpotent group G is metabelian, generalizing a result of Gupta [8] for
the group of IA-automorphisms in a two-generated metabelian group. Initially,
automorphisms of the form 0(z) = z(x,u1)*™ ... (z,u,)*"™ were studied by
Kuzmin [9].

The group of normal automorphisms of free groups has been studied by
Lubotzky [10]. He showed that N(G) = Inn(G), for any finitely generated free
group G. Lue [11] gave a short proof of this fact using the Freiheitssatz for
groups established by Magnus [12]. The Freiheitssatz for Lie algebras was proved
by Shirshov [15]. Makar-Limanov [13] proved it for associative algebras over a
field of characteristic zero. Following the idea of Lue [11] we show that the free
Lie algebra L,, does not have nontrivial normal automorphisms for any m > 2
and over a field of any characteristic. For the proof we apply the Freiheitssatz for
Lie algebras and use the Hopf property of free Lie algebras. The same result holds
for free associative algebras over a field of characteristic 0. The key step of the
proof was suggested to us by Ualbai Umirbev. If we replace L,, with a relatively
free algebra in a proper subvariety of the variety of all Lie algebras it may happen
that many normal automorphisms appear. In particular, this holds for the free
metabelian nilpotent Lie algebra L, .. Since every inner automorphism of L, .
is normal, the algebra L,, . posseses nontrivial normal automorphisms.

Our first main result is similar to the result of Endimioni [5, 7] in the
case of groups but there are some essential differences. We show that the group
of normal automorphisms is included in the subgroup IA(L,,.) of the automor-
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phisms which induce the identity map modulo the commutator ideal of L,, . when
m > 3,¢ > 2or m = 2,¢c> 4. In the exceptional cases, i.e. (m,c) = (2,2) or
(m,c) = (2,3), every normal automorphism acts on the generators of L, . as
a nonzero scalar times an IA-automorphism. For the proof we define a special
type of automorphisms called generalized inner automorphisms and describe the
group of normal automorphisms in terms of them. We also show that the group
of normal automorphisms N(L,, ) is an abelian group when m > 3,¢ = 2, is a
nilpotent of class 2 group when m > 3,¢ = 3 and is a metabelian group when
m > 2,¢ >4 or (m,c) = (2,2). Finally, N(L, ) is a nilpotent of class two-by—
abelian group when (m,c) = (2,3) which is an analogue of the result of Gupta
[8] and Endimioni [6].

A result of Shmel’kin [16] states that the free metabelian Lie algebra
F, = Ly, /L” can be embedded into the abelian wreath product A,,wrB,,, where
Ay, and By, are m-dimensional abelian Lie algebras with bases {a1,...,a,} and
{b1,...,bm}, respectively. The elements of A,,wrB,, are of the form

> aifity,. o otm) + > Bibi,
=1 =1

where the f;’s are polynomials in Klt1,...,t,] and §; € K. This allows to in-
troduce partial derivatives in F,,, with values in K[ty,...,t;,] and the Jacobian
matrix J(¢) of an endomorphism ¢ of F,. Restricted on the semigroup 1E(F},)
of endomorphisms of F,, which are identical modulo the commutator ideal F
the map J : ¢ — J(¢) is a semigroup monomorphism of IE(F,,) into the mul-
tiplicative semigroup of the algebra M,,(K]|t1,...,ty]) of m X m matrices with
entries from K|tq,...,ty,]. In the present work we consider the embedding of
the free metabelian nilpotent Lie algebra L,, . into the wreath product A,,wrB,,
modulo the ideal (A,,,wrB,,)“"!. The automorphism group Aut(L, ) is a semi-
direct product of the normal subgroup IA(L,,.) and the general linear group
GL,,(K). Considering the group IN(Ly, ) of normal IA-automorphisms, for the
description of the factor group I'N(Ly, ) = Aut(Ly,c)/N(Lp,) it is sufficient to
know only IA(Ly,c)/IN(Ly, ). Drensky and Findik [4] gave the explicit form of
the Jacobian matrices of the coset representatives of the outer automorphisms
in IA(Ly, ¢)/Inn(Ly, ). Since Inn(Lyy, ) is included in the group of normal auto-
morphisms, IA(Ly, c)/IN(Ly, ) is a homomorphic image of IA(Ly, )/Inn(Ly, )
and we find explicitely coset representatives of IN(Ly, ).

The paper is organized as follows. In the first section, we introduce normal
and normally outer automorphisms and discuss the relations between N(L, )
and the normal subgroup IA(L,, ). We also discuss the normal automorphisms
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of the free Lie algebra L,,. In the second section we define the group of generalized
inner automorphisms and give necessary information about its group structure.
In the third section we describe the group of normal automorphisms in terms
of the group of generalized inner automorphisms. Finally we give the explicit
form of the Jacobian matrices of the normal automorphisms and of the Jacobian
matrices of the coset representatives of normally outer TA-automorphisms. We
also give the explicit form of the Jacobian matrices of the coset representatives of
the normal automorphisms modulo the group of inner automorphisms Inn(L, ;).

1. Preliminaries. Let L,, be the free Lie algebra of rank m > 2

over a field K of characteristic 0 with free generators y1,...,yn, and let Ly, . =
Ly, /(L + L&) be the free metabelian nilpotent of class ¢ Lie algebra freely
generated by z1,..., Ty, where 7; = y; + (L, + L&), i = 1,...,m. We use

the commutator notation for the Lie multiplication. Our commutators are left
normed:

[uly .oy up—1,un] = [[U1, ..., upn—1],un], n=3,4,....
In particular,
LE .= [Lome, -\ Linel -
N—_————
k times

For each v € Ly, , the linear operator adv : Ly, . — L, . defined by

u(adv) = [u,v], U € Ly,
is a derivation of L,, . which is nilpotent and ad“v = 0 because Lf{fé = 0. Hence
the linear operator

do) = 1 adv  ad®v _q adv  ad®v ad® v
exp(adv) = +T+ 9] +e= +T+T+"'+m

is well defined and is an inner automorphism of L,, .. The set of all such auto-
morphisms forms a normal subgroup Inn(L,, ) of the group of all automorphisms
Aut(Ly, ) of Ly, .

Let ¢ be an automorphism of an algebra R such that ¢(I) = I for every
ideal I of the algebra R. Such automorphisms are called normal automorphisms.
Clearly they form a normal subgroup of the group of all automorphisms Aut(R)
of R which we denote by N(R). The factor group Aut(R)/N(R) is the group of
normally outer (or N-outer) automorphisms and is denoted by I'N(R).

The next lemma gives the form of normal automorphisms of L, ..
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Lemma 1.1. Let ¢ be a normal automorphism of the algebra L., .. Then
@ is of the form

m
0 x; — ar; + Z[a:i,xj]fij(adxl,...,adq:m), 1=1,...,m, acK",
j=1
where fij(t1,...,tm) € K[t1,...,tm] and K* is the set of nonzero elements of the
field K.

Proof. Let ¢ be a normal automorphism of the algebra L,, .. Hence ¢
induces a normal automorphism @ of the abelian algebra Ly, . = Ly, ./ L;mc. The
automorphism group of fm,c coincides with the general linear group G L, (K) and
the normal automorphisms of L, . are the elements of GL,,(K) which preserve
the vector subspaces of L,, .. Applying to the vector subspace KT; we obtain
that B(T;) = «;T;, a; € K*. Similarly, for i # j,

?(xi +x5) = i + ayT;
:Oz(fi-i-fj), ae K"

Thus «; = a; = a. Hence ¢ has the form

iz —oari+u, a€K' u €l . i=1,..,m.
It is well known in a metabelian Lie algebra G, see e.g. [1], that
[U17U27UU(3)7 s 7v0(k)] = [1)1,1)2,1)3, s 7Uk’]7 V1.,V € G?

where o is an arbitrary permutation of 3,...,k, i.e. the operators adv, v € G,
commute when acting on G’. The vector space Lj, . has a basis consisting of all

[$i17$127$i37"'7$ik]7 1 Slj va 7:1 >7’2 §7’3 S Slk’v kSC,

and we may permute the elements x;,,...,z; . Reordering the elements z1,...,
T by

T <X <o < T < Ty <0 < Ty

we obtain that the subspace of L;n, spanned by the commutators essentially

depending on x;, has a basis

Cc

[xivxj71:i3v"'7$ik]7 ]7&271§Z3§§7’k7k§6

Hence the normal automorphism ¢ of L,, . has the form

QYT — ar; + Z[xi,xj]fij(ad:rl, .. ,ad:cm) + gi(ﬁci),
J#i
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where a € K*, fij(t1,... ,tm) € K[t1,...,t,] and g;(2;) € Lj, . does not depend
on xj.

For a fixed i = 1,...,m let us consider the ideal J; of L,, . generated by
the element z;, Since ¢ is normal and p(z;) € J; we obtain that

gi(i‘i)EJi, 1=1,...,m,
and hence

gl(i‘l)zo, izl,...,m,
because every element in J; depends on z;. Thus we have

p(r:) = ow; + Y _[ws, 5] fij(aday, . .., adwn,),
J#
which completes the proof. O
A similar proof holds also for the free Lie algebra L,,. But we use the

fact that, applying the anticommutativity and the Jacobian identity, linear com-

binations of commutators of L,, depending essentially on y; can be rewritten as
linear combinations of left normed commutators of the form

[yi»y’izv"'ayik]v yizv"'vyike{ylv"'vym}-

Lemma 1.2. Let ¢ be a normal automorphism of the algebra L,,. Then
@ is of the form

oy —ay +yifi(ady), i=1,...,m, «a€ K",
where fi(adY) = fi(adys,...,ady,) and every polynomial fi(t1,...,tm), i =

1,...,m, belongs to the free associative algebra K (ti,..., ty).

Recall that an algebra R is Hopfian, if it cannot be mapped onto itself
with nontrivial kernel. The following lemma is folklorely known.

Lemma 1.3. Finitely generated free Lie algebras and free associative
algebras over any field of arbitrary characteristic are Hopfian.

For example this fact is stated for relatively free algebras of finite rank
as Exercise 4.10.21, p. 137 in the book of Bahturin [1]. The proof is similar to
the proof in the group case, see Section 4.1 of the book by Neumann [14], and
repeats the steps of the proof of Theorem 9, p. 104 [1]. The proof of [1, Exercise
4.10.21] uses only the fact that over an infinite field relatively free algebras F'(i)
are graded and that N,>1 F"(4U) = 0 which is obviously true for free Lie algebras
and free associative algebras over any field.
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The analogue of the Freiheitssatz in group theory [12] was proved by
Shirshov [15] in the case of Lie algebras in any characteristic. For associative
algebras it was obtained by Makar-Limanov [13] when characteristic of the base
field is 0. The problem is still open for associative algebras over a field of positive
characteristic (see e.g. the book by Bokut’ and Kukin [3]). We shall state the
result for free Lie algebras only.

Theorem 1.4 (Shirshov [15]). Let L(Y') be the free Lie algebra freely
generated by Y = {y1,...,ym}. If f(Y) € L(Y) does not belong to the subalgebra
generated by Yy, ..., Ym—1, then (f(Y))NL(y1,...,ym—1) = 0 where (f(Y)) is the
ideal of L(Y') generated by f(Y).

The idea to use the Freiheitssatz in the following proof was suggested to
us by Ualbai Umirbaev.

Corollary 1.5. If every monomial of f(Y') € L(Y') depends on y,, and
fY) & L(ym) = Kym, then f(Y) is not an image of yn, under an automorphism
of the algebra L(Y), i.e. f(Y) is not a coordinate.

Proof. Let ¢ be an automorphism of L(Y) and let ¢(ym) = f(Y), ie.
f = f(Y) be a coordinate. Clearly f € (ym) < L(Y) because every monomial
of f depends on y,,. Let y,, ¢ (f) < L(Y). This means that f depends also
on the variables y1,...,ym—1. Since ¢ : L(Y) — L(Y) is an automorphism and

©(ym) = [, then

LY)/(F) = L), ¢(Um-1)) = L1, Ym-1)-
On the other hand L(Y)/(ym) = L(y1, ..., Ym—1). As a result

LY)/(f) = L(Y)/(ym) = L(y1s - Ym—1)-

Let us consider the natural homomorphism

7 Ly, ym—1) ELY)/(f) = LY)/(ym) = L(y1, - - s Ym—1)-

7 is onto and ker 7w # 0 because Y, ¢ (f) C (ym). But L(y1,...,ym—1) has the
Hopf property by Lemma 1.3. This is in contradiction with kerm # 0. Then
(f) = (ym) < L(Y). But f depends also on the other variables, for example,
without loss of generality, it depends also on y;. Applying Theorem 1.4 (the
Freiheitssatz) we get that ys,...,y, generate a free algebra of rank m — 1 in
L(Y)/(f) = L(Y)/(ym). But this is not true for L(Y)/(ym), because ¥, # 0 in
L(Y)/(f) while T, = 0 in L(Y)/(gm). O

Lubotzky [10] showed that the group of normal automorphisms of a free
group G is equal to the group of inner automorphisms of G, i.e. N(G) = Inn(G)
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and Lue [11] gave an alternative proof of the statement. Our next theorem states
that the free Lie algebra L,,, does not have nontrivial normal automorphisms for
any m > 2. The idea of the proof is similar to the idea of the proof of the paper
by Lue [11] for free groups.

Theorem 1.6. Let Ly, be the free Lie algebra of rank m > 2 over a field
K of characteristic 0 with free generators yi,...,Yym. Then L., does not have
nontrivial normal automorphisms.

Proof. Applying Lemma 2.1 and Corollary 1.5 we see that L,, does not
have nontrivial normal IA-automorphisms, i.e. the normal automorphisms of L,
are of the form y; — ay;, 1 =1,...,m, a € K*.

Let m = 2 and let us consider the ideal I of Lo generated by f = y; —
[y1,y2]. Let ¢ be a normal automorphism of Ly of the form

Y1 — oy, Y2 — aye, o€ K",

and assume that a # 1. Since ¢ is normal

o(f) = ayr — ®[y1,y2) € I.
Hence we have the system
Y1 — [y1,92] =0 (mod I)
ay1 — &’[y1,y2] =0 (mod I)

Since av # 0, 1, then y; =0 (mod I)) and [y1,y2] =0 (mod I) which means that
I = (y1) < Lo. Now consider the ideal J of Ly generated by all commutators
u € Ly such that deg,, (u) > 2. Then

Ly = Ly/J = span{7a, [U1,Yas - - - Ja] | k > 0}.
N’
k

Recall that f = y; — [y1,v2]. Clearly [f,7;] =0 in L. So the elements of I in Lo
are linear combinations of

uk’:[fvav"'vyZ]v kZO
—_—
k

Thus
I= Zﬁk[?h%a---a%] | Br € K, Zﬁk =0
k>0 Y k>0

This means that 7, € (7,) while 7, ¢ I, because the sum of the coefficients of 7,
is 1. Thus (¥;) # I which is in contradiction with I = (y1). Hence o = 1.
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Now let m > 3 and let ¢ be a normal automorphism of L,, of the form
(p(yl):ayl izl?"'vmv aEK*.

We consider the ideal I of L,, generated by the elements y1 — [y1,¥2], Y3 - - -, Ym.-
Since ¢ is normal then ¢(I) = I and it induces a normal automorphism of L,,/I
which is isomorphic to La/(y1 — [y1,92]). But we already know that in this case
a=1 0O

Remark 1.7. An analogue of Theorem 1.6 holds for free associative
algebras K(Y) = K(y1,...,ym) over a field of characteristic 0. Repeating the
main steps of the proof of Theorem 1.6 we obtain that the only possibility is
that f(Y) = f(ym) depends on y,, only. We extend ¢ to an automorphism @ of
the algebra K (y1,...,y,) where K is the algebraic closure of K. If deg f(Y) =
deg f(ym) = d > 1, then

(p(ym) = f(ym) = ao(ym - al) o (ym - ad)v ag, 1, ...,04 € K?

is a product of several polynomials which is impossible:
Applying ¢! we obtain that the degree of

Ym = aO(Soil(ym) —a)- - (‘Pil(ym) — ag)
is bigger than 1.

The situation in the case of free metabelian nilpotent Lie algebra L,, .
is different. Applying Lemma 1.1 it is easy to see that Inn(Ly;,.) C N(Lp,).
Hence L,, . posseses nontrivial normal automorphisms. The group N(L,,.) is
not necessarily included in the normal subgroup IA(Ly,.) of Aut(L,) of the
automorphisms which induce the identity map modulo the commutator ideal of
Ly, . Our next lemma states that in some cases N(Ly, ) C IA(Lp, ).

Lemma 1.8. (i) If m > 3 and ¢ =2, then N(Ly,2) C IA(Lp,2).

(1) If m > 3 and ¢ = 3, then N(Ly, 3) C IA(Ly, 3).

(¢49) If m > 2 and ¢ > 4, then N(Lp, ) C IA(Ly,.c).

Proof. (i) Let ¢ be a normal automorphism of Ly, 2, m > 3. By Lemma
1.1, ¢ has the form

m
90:1:¢—>a1?¢+ZBij[l‘i,fL‘j], 1=1,...,m, OéEK*,
j=1

where §;; € K. Let us consider the ideal J generated by u = x1 + [z2, x3]. It has
a basis

r1 + [x2,$3], [l’l,l'j], j=2,...,m.
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Since ¢ is normal
p(u) = oy + P[rg, x3] + Bralrr, wa] + -+ + Bim[r1, Tm] € J.

Clearly the summand oz + a?[xg, 23] is included in the vector space spanned by
the element u. Thus a = o or a = 1.

(77) Let ¢ be a normal automorphism of Ly, 3, m > 3. By Lemma 1.1, ¢
has the form

m
O T —>a:ci+2[xi,a:j]f¢j, i=1,....m, aecK",
j=1

where f;; € Kladxy,...,adzy,]. We can express ¢ as

m
piw—ami+ Y [z (fijo + fijn);
j=1

where fi;0 € K, fij1 € w/w?. Here w states for the augmentation ideal of
Kladzy,...,adzy,).

Let us consider the ideal J generated by u = [x1,x2| + [z1, 23, z3]. J has
a basis

[1:171:2] + [xlvx?nx?)]v [1:171:271:]']7 j = 17' EEERLLR

Since ¢ is normal, p(u) € J. Easy calculations give that

m m

p(u) = o®[w1, x2] + o[11, 73, 73] — @Y [, 25, 71] foj0 + @ Y _[w1, 25, 22 fij0-
p= =1

Clearly the summand o?[z1, 29] + o3[z1, 23, 73] is included in the vector space
spanned by the element [z1, 2] + [z1, 73, 73]. Thus a® = a3 or a = 1.

(73i) Let ¢ be a normal automorphism of L, ., m > 2, ¢ > 4. By Lemma
1.1, ¢ has the form

m
(p:xi—>ami+2[xi,xj]fij, 1=1,...,m, aclk,
=1

where f;; € Kladx,...,adzy,].
Let us consider the ideal J generated by

v =[1,x9,...,T2) + [T1, 22,21, ..., 21].

c—1 c
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J has a basis consisting of v and the elements of the form

[z1,22,...,20,25], j=1,...,m.

~
C

Since ¢ is normal ¢(v) € J. Similar steps as (i7) give that

! [€1, T, ..., x2] +aC [x1, 22,21, ..., 21]

c—1 c

is included in the vector space spanned by the element v. Thus a=1. O

Lemma 1.9. In the cases (m,c) = (2,2) and (m,c) = (2,3) every normal
automorphism of L, . acts on the generators of Ly, . as a nonzero scalar times
a normal TA-automorphism.

Proof. Firstly we analyze the structure of the ideals of the free metabe-
lian nilpotent Lie algebra L. The monomials in Lo are x1, 2 and [z1, 2.
Let 0 # u € L 5 posses the form

u = a1r1 + aare + aglry, 2]

for some o, g, 3 € K and let I be the ideal of Ly o generated by u. If ay # 0
then [u,x2] = a1]r1,x2] € I and I is a nonzero ideal containing the commutator
ideal L’2’2. Therefore all the nonzero ideals of Ly 5 are L’272, K(agz1 4+ agms) —|—L’272
and L272.

Now let @ € K* and ¢ € IN(Lg2). Let us define id, as follows:

idy (1) = auy,

idy(22) = auws.

We have to show that id,¢ preserves the ideals of Lys. Since ¢ is normal, it
sufficies to show that id, is normal. Clearly idy(Ly5) = Ly, Ifw € I =
K(a1z1 + asws) + L’272 has the form

w = Bi(a1x1 + o) + oz, x2], P02 € K,
then

ide(w) = afrarz1 + afiasms + o Ba[r1, 22)

= aﬁl (alxl —+ 0421‘2) -+ a2ﬂ2 [1‘1,1‘2] el.

Now let us consider the free metabelian nilpotent Lie algebra Ly 3. The
monomials in Lo 3 are z1, 2, [z1,%2], [x1,22,21] and [x1,22,22]. Let I be a
nonzero ideal of Lyg. If I C L%73 then I consists of homogeneous elements of
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degree three and if w € I then id,(w) = o®w € I. If I is not included in L%g
then it is easy to see that I contains L%g and I = I/ng < L273/L§’3 = Loo. But
we already know that in this case id, is normal. O

Let F,,, = L,,/L!, be the free metabelian Lie algebra of rank m. We shall

denote the free generators of F;, with the same symbols x1,...,x,, as the free
generators of Ly, ., but now z; = y; + Ly, i = 1,...,m. Let K[t1,...,ty] be

the (commutative) polynomial algebra over K freely generated by the variables
t1,...,ty and let A, and By, be the abelian Lie algebras with bases {a1,...,an}
and {b1,...,by}, respectively. Let Cy, be the free right K|[tq,...,t,,]-module with
free generators aq,...,a,. We give it the structure of a Lie algebra with trivial
multiplication. The abelian wreath product A,,wrB,, is equal to the semidirect
sum C,, N\ B,,,. The elements of A,,wrB,, are of the form

> aifity,. o otm) + > Bibi,
=1 =1

where f; are polynomials in KJti,...,t,] and 3; € K. The multiplication in
A wrBy, is defined by

[C’nu Cm] = [Bma Bm] = 07

[aifi(tl, ... ,tm),bj] = aifl-(tl, . ,tm)tj, 1,7 =1,...,m.

Hence A,,wrB,, is a metabelian Lie algebra and every mapping {x1,...,Zn} —
A,,wrB,, can be extended to a homomorphism F,, — A,,wrB,,. In particular,
as a special case of the embedding theorem of Shmel’kin [16], the mapping z; —
a; +b;,,1=1,...,m, can be extended to an embedding of F,, into A,,wrB,,.

Both F,,, and A,,wrB,, are graded algebras. The monomials in A,,wrB,,
of degree 1 are of the form a;,b; and of degree n > 2 have the form a;ty ..., 1.
Let us consider the ideal (A,,wrB,,)*"! spanned by the elements of A,,wrB,, of
length at least ¢+ 1. Then the quotient (A, wrB,,)/(A,wrB,,)¢"! is metabelian
and nilpotent of class ¢ and the homomorphism

€:Lpme— (ApwrBp,)/(ApwrB,, )¢t

defined by e(z;) = a; + b;, i = 1,...,m, is a monomorphism. If
f = Z[l‘i,l‘j]fij(adl‘l, - ,ad:cm), fij(tlv - ,tm) € K[tl, - ,tm]/Qc,
where ) is the augmentation ideal of Klty,...,t,], then

S(f) = Z(aﬂfj — ajti)fij(tl, e ,tm).
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The next lemma follows from [16], see also [2].

Lemma 1.10. The element > ", a;fi(t1,...,tm) of Cp belongs to
e(Ly, ) if and only if

D tifi(ty,. . tm) =0 (mod Q)T
i=1

The embedding of L,, . into Ay, wrBy,/ (A wrBy, )¢t allows to introduce
partial derivatives in Ly, . with values in KJti,...,t,]/Q¢ If f € L, . and

e(f) = Zﬁibi +Zaifi(t1w~atm)7 Bi € K, fi € K[t1,...,tm]/QF,
i=1 =1

then

of
8xi

The Jacobian matrix J(¢) of an endomorphism ¢ of L,, . is defined as

9o(x1)  09(wm)
8$1 8$1

= filt1, .., tm).

o) — <a¢<xj>) _

D, € My, (K[t1, ..., tm]/Q°),

do@)  Iplwm)

0T, 0xm

where M, (K|t1,...,t,]/Q°) is the associative algebra of m x m matrices with
entries from Kty,...,t,]|/Q¢ Let IE(L,,.) be the multiplicative semigroup of
all endomorphisms of L,,. which are identical modulo the commutator ideal
Ly, .. Let I, be the identity m x m matrix and let S be the subspace of
My, (Kt1,. .., ty]/°) defined by

S = {(fij) € My(Kt1, .- tm)/Q) | Y tifi; =0 (mod Q) j = 1,...,m}.
i=1

Clearly I,,+ S is a subsemigroup of the multiplicative group of M,,(K[t1,...,tn]/

0°). If ¢ € IE(Lyy.), then J(¢) = I, + (s45), where s;; € S. It is easy to check

that if ¢, € IE(Lyy, ) then J(¢y) = J(¢)J (). The following proposition is well

known, see e.g. [2].

Proposition 1.11. The map J : IE(Ly, ) — I, +S defined by ¢ — J(¢)
is an isomorphism of the semigroups IE(Ly, o) = IA(Ly, ¢) and I, + S.
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Now we know that the group of normal automorphisms N(L,, ) is in-
cluded in the subgroup IA(L;,.) when m >3, ¢ =2, m >3, ¢ =3, or m > 2,
¢ > 4 and in other cases m = 2, ¢ = 2 and m = 2, ¢ = 3 every normal automor-
phism is a nonzero scalar times an [A-automorphism. The automorphism group
Aut(Ly, ) is a semidirect product of the normal subgroup IA (L, .) and the gen-
eral linear group GL,,(K). Considering the group of normal TA-automorphisms
IN(Ly,c), for the description of the factor group I'N(Ly, ) = Aut(Ly, ) /N(Lp, )
it is sufficient to know only IA(Ly, )/IN(Ly, ). Drensky and Findik [4] gave the
explicit form of the Jacobian matrices of the coset representatives of the outer
automorphisms in IA(L,, .)/Inn(Ly, ). Since Inn(L,, ) is included in the group
of normal automorphisms, IA(Ly, .)/IN(Ly, ) is the homomorphic image of the
factor group IA(Ly, .)/Inn(Ly, ).

Lemma 1.12 (Drensky and Findik [4]). The automorphisms with the
following Jacobian matrices are coset representatives of the subgroup Inn(L,, )
of the group IA(Ly, .):

S(ta, .. tm) fo o

tiga(to,ts, ... tm) +ra(te, ... itm) foo -+ fom
JO) = I + | tiaslts, o tm) +r3testm)  f2 o fam |

t1gm(tm) + rm(t2, - oo ) Foa oo fom

where s, q;, 1, fij € Q/Q°, i.e., are polynomials of degree < c—1 without constant
terms. They satisfy the conditions

m m m
s+2tiq150, ZtiriEO, Ztifijzo (mod Q)™ j=2...,m,
=2 =2 i=1

ri = ri(ta,...,tm), i = 1,...,m, does not depend on t1, qi(ti,...,tm), i =
2,...,m, does not depend on ti,...,t;_1 and fio does not contain a summand
dts, d € K.

2. Generalized inner automorphisms. In this section we introduce
a special type of automorphisms of the free metabelian nilpotent Lie algebra
L., .. We shall use these automorphisms in order to describe the group of normal
automorphisms N(Ly, ¢) of Ly, . in the next section.

Definition 2.1. An automorphism 1 of the algebra Ly, . is called gener-



Normal and normally outer automorphisms 185

alized inner automorphism if ¢ has the form

m
w:xiﬁxi—&—Z[xi,xj]fj, 1=1,...,m,
j=1
where f; € Kladxy,...,adxy,].

Every inner automorphism is a generalized inner automorphism. We give
necessary information for the structure of generalized inner automorphisms in
the next lemmas and theorems.

Lemma 2.2. Let ¢ and ¢ be generalized inner automorphisms of the
form

m
wxl_)x1+2[£lvxj]fj7 izl,...,m,

Jj=1

m
¢:$i_)$i+2[$ivlit]gt7 izl,...,m,
t=1

where fj,g: € Kladzy,...,adx,,). Then the composition ¢ is of the form

m m m
¢¢ ‘I.’L_)mz+levxtgt+leaxj]fj+ Z[xi7xt7xj]gtfj7 Zzlavm
t=1 =1

Jit=1

Proof. Let ¢ and ¢ be as above. Then
V(D)) = (i) + Y (i), ()] ge
t=1

m
:1/}(1:1)+Z T; + $17$j f]7$t+zxt7xj j gt
1 =

t=1 Jj=
m m
= w(xl) + Z[xiaxt]gt + Z ([.Ti,xj,l't] - [‘rhx]:x’b])fjgt
t=1 t,j=1
m
= T +Z[xz>$j 9t + Z Liy Lj fj + Z Ly Lty Lj gtf]7
t=1 j=1 Jt=1

1=1,...,m. O

Theorem 2.3. Generalized inner automorphisms form a subgroup of the
automorphism group Aut(La, ).
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Proof. Let 1 and ¢ be generalized inner automorphisms of the form

m
1/):1:1'—»1:1'—#2[:51-,@]]"]-, i=1,...,m,
j=1

¢z — xi+2[£i»£t]gta i=1,...,m,
=1

where f;,g; € K[adzy,...,adz,]|. Applying Lemma 2.2 we have that

W) (@) =i + D [wiywilge + 3 _[wa, wilf5 + > (w6, 20, 75100

t=1 j=1 j=1
m m m
— Z zi, x5)(g; + f5) + Z[:ﬁi,ajt]gt Z adz; fj,
=1 t=1 j=1

for every i = 1,...,m. Let us put hy = g¢ Z _jadz;fj, t=1,...,m. So we have
m m
(W) (:) = mi+ Y [wi,x5)(g; + f3) + Y s wilh
j=1 t=1

=zi+ Y [, x)(g5 + f5 + hy)
j=1

Il
8

NE

i+ D iz,

<.
Il
—

where Fj = g; + fj +h;, j = 1,...,m. Thus the composition ¢ is a generalized
inner automorphism. It remains to prove that for any inverse automorphism 1)~!
of a generalized inner automorphism ) is also a generalized inner automorphism.
For this purpose it suffices to construct for each integer n > 2 a generalized inner
automorphism 1, such that ¥, is of the form

m
Yy x5 —>mi+2[xi,xj]hj, 1=1,...,m,
j=1

with h; € w™~ 1 where w states for the augmentation ideal of K[adzy,...,adzy,),
i.e. the length of the commutator [z;, z;|h; is at least n+ 1. Let ¢ be of the form

Yo = mi+ > [ a](fo+ o+ fiea),
=1



Normal and normally outer automorphisms 187

where fj0 € K, fji, € wk Wkt k =1,...,¢— 2. Let us consider the generalized
inner automorphism

m
o i Xy — X — ijo[lfiafﬂj], fjo € K.
j=1
From Lemma 2.2 we obtain that
m
Wyt — x+ Y [wiw)(gn o+ gre—a),  ggr € WP /WM
j=1
Now consider the generalized inner automorphism

m

Y3y — X — Z[Cﬁiafﬂj]gﬂa gj1 € w.
=1

Similarly we have that

Uy sy — i+ Y [ w](hje + 4 hyjeoa), g € WF/OFT
=

Repeating this process we construct o, 3, ..., %, and obtain that

Yihotps .. he = 1. m
Lemma 2.4 Let ¢ be a generalized inner automorphism of the form
m
wxl_)x1+2[£lvxj]fj7 izl,...,m,
j=1
where f; € Kladxy,...,adx,,]. Then for every w € Ly, .

Ylu) =u+ Y [u,z]f;
j=1

Proof. By linearity it is sufficient to show that for every k= 1,2, ...
m
,(/)([$7;17 s vmlk]) = [xiu s 7mik] + Z[[J:ilv ce vmik]7$j]fj‘
j=1

We make induction on the degree k of the commutators. The case k = 1 is trivial.
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It is true for k = 2:
Y[y, 2q] = [Y(xp), Y (24)]

= |z, + Z[l'p,l'j]fj,xq + Z[%v%‘]fj

Jj=1 Jj=1

IV

I
=

= [wp, g + ) _([wp, ;0] = 2, 25, 20]) f

J

s

I
=

= [zp, zq] + [[zp, zq], 5] f;-

Now assume that the equality holds for £k — 1. Then
1/}([-731'17 s 7$lk]) = W)([J:llv s 7$ik71])7 1/}(1:%)]

m m
=|[@ir, . @iy 4] +Z[[$i1v ce 7$ik71]7$]’]fj7£ik +Z[$ik71:j]fj
j=1

j=1
m
:[{Ell:7xzk]+2[[x1177xlk]7xj]f] o
j=1
Corollary 2.5. The group of generalized inner automorphisms

GInn(Ly, ) is a subgroup of the group of normal automorphisms N(Ly, ).

Proof. Let 1 be a generalized inner automorphism of the form

m
1/):1:1'—»1:1'—#2[:51-,@]]"]-, i=1,...,m,
j=1

where f; € Kladzi,...,adz,,]|. Let u be an element of an ideal J of the free
metabelian nilpotent Lie algebra L, .. From Lemma 2.4 we know that

Ylu) =u+ Y [u,z5]f;.
j=1

Hence ¢(u) € J. O

Now we describe the group structure of the group of generalized inner
automorphisms GInn(Ly, ).

Theorem 2.6. (i) The group GInn(Ly,2) is abelian;
(13) The group GInn(L,, 3) is nilpotent of class 2;
(¢13) The group GInn(Ly, ), ¢ > 4, is metabelian.
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Proof. (i) Let ¢,¢ € GInn(Ly,2) be generalized inner automorphisms
of the form

m
w:xi—mni—i—Zaj[xi,xj], i=1,...,m,
j=1

m
qul_)xl+2ﬁj[$lvxj]v izl,...,m,
7=1

where o, 3; € K for j = 1,...,m. Then the composition ¥¢ is

(@) =¥ | @i+ Y Bilwi, a5

J=1

m m
=x;+ Z ajleg, zg] + Z Bjlwi, x]
=1 =1

=x; + Z(O&j + ,Bj)[xi,l‘j].
j=1

Thus ¥é = ¢.
(17) Let ¢, ¢,v € GInn(Ly, 3) be generalized inner automorphisms of the
form

m
go:xi—>1:¢+2[mi,1:j]fj, 1=1,...,m,
j=1

m

qul_)xl—i_Z[l‘l?l‘J]gj? izl,...,m,
j=1

m
vixp— xi+2[1:¢,1:j]hj, i=1,...,m,
j=1

where f;,95,h; € Kladz1,...,adz,,] and let

m m m

U= Zad:cjfj, v = Zadq:jgj, w = Zadxjhj.

Jj=1 J=1 Jj=1

Using the arguments of Theorem 2.3 we have that

e =3 O = ety v =00,
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where
m m
P2 1 T — T — Z[l‘z’»fj]fj? Q3 x; — T + Z[inafﬂj]fj“»
Jj=1 J=1
m m
Goiwi—wi— Y [wiwilg daiwi— wi+ Y [wwilg,
Jj=1 J=1
m
Y2 i T Hxi—Z[xi,x]‘]h]‘; Y3 1T —>:I:¢+Z[x,-,xj]hjw.
J=1 J=1

Using Lemma 2.2 direct calculations give that

(0, 0) = ¢ "0 0o = Pap3pad3pd

has the form

(@, 0) s @i — i+ >_[wi,25](gju — fiv).
j=1

m
Let us define t = ) adz;(gju — fjv). Then we obtain that
j=1

(907(;57 T i_)xl+2$l7$] (gju_f]) )

Since the polynomials h;t, (gju—fjv)w € Kladzy,...,adz,,] have no components
of degree < 1, we obtain that [z;,z;](h;t — (gju — fjv)w) = 0 in L, 3 and
(p,0,7) = 1.

(¢43) Let m > 2,¢ > 4 and let ¢, ¢ € GInn(Ly,.) be generalized inner
automorphisms of the form

m
1/):1:1'—»1:1'—#2[331-,@]]"]-, i=1,...,m,
j=1

m
o T —>xi+2[1:i,a:t]gt, i=1,...,m,
t=1

where fj,9; € Kladxy,...,adz,,]. Then we know from Lemma 2.2 that the
composition ¢ is of the form

1/)¢ T —>xz+2$z,$t gt+zx’b7x] f] + Z Li, Tty Tj gtfja L= 17"'7m'

7=1 7,t=1
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Lemma 2.4 states that

m

(u) =u+ Z[u,:cj]fj, d(u) =u+ Z[u,xt]gt,

j=1 t=1

for every u € Ly, . Hence

m m
Yo u—>u+2u :ctgt+2u :cjf]—i-Zuxt,x]gth

7,t=1

If u is an element of the derived algebra L! ., then

m,c?

(VIO u—>u+2u actgt—&-Zu x]fj—l—z (adzy)(adx;)g: f5,

7t=1

where adxy, adz, g, f; € Kladxy,...,adx,,]. Hence

'(/)d)(u) = qbl/J(U), u € L;n,c

This means that the commutator

(¥,¢) =¥ ™'¢" o € (GInn(Lyn,c), GInn(Li,c))

of 1 and ¢ acts trivially on Ly, .

Now let us define the generalized normal automorphisms p and o in the
commutator subgroup (GInn(Ly, ), GInn(Ly, ) and let wy(z;) = p(x;) — x; and
wo(x;) = o(x;) —x, i =1,. .. ,m. Then clearly the elements wi(x;) and wa(x;)

are in Lj, ., i.e. p and o act trivially on them. Thus

po (i) = p(i +wa(@;)) = p(x;) + wo (i) = zi + w1 (@) + wa(w:)
op(x;) = o(z; + wi(z;)) = o(x;) + walzs) = 5 + wi(zs) + walzs),

which means that po = op. Hence (GInn(Ly, ), GInn(Ly, )) is abelian and so
GInn(L,, ) is metabelian. O

Example 2.7. Now we give an explicit proof of the fact that GInn(Ls 3)
is nilpotent of class 2. Let ¢ € GInn(Ly3) be a generalized inner automorphism
of the form

Y(z1) =21 + oz, v2] + o[z, 22, 1] + a2z, T2, T2
Y(z2) =x2 + Blz1, 2] + G121, T2, 1] + P2[T1, T2, 22],
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where o, aq, a9, 3, 01,82 € K. Easy calculations give that the inverse function
¥~! has the form

wil(:rl) =1 — afry, x2] — (af + a1)[z1, 22, 21] + (oz2 — ag)[x1, z2, 2]

(@) =xa — Blw1, w2] — (B° + B1) w1, 2, 21] + (aff — Ba)[21, w2, 72)].
If ¢ € GInn(Ls 3) is another generalized inner automorphism,
¢(x1) =21 + plz1, v2] + p1[71, T2, 21] + P2[21, T2, T2]
P(x2) =22 + ql21, 22| + Q1[T1, T2, 1] + G221, T2, T2,
where p, p1,p2, 49, q1, g2 € K with inverse
¢ (x1) =1 — pla1, 2] — (pq + p1) w1, 22, 21] + (p* — pa)[w1, 2, 73]
¢ M w2) =m2 — q[w1, w2] — (¢ + q1)[1, 2, 21] + (g — q2)[w1, T2, 2],
calculating the composition ¢ we have that
Yé(z1) =z14+ (0 + p)[o1, 22|+ (1 +p1—pB)[21, T2, 1]+ (2 +p2tpa) [T, T2, T2]
VYo(x) =w2+(8 + q)[r1, v2] + (B1+q1—90)[71, 22, 1]4+(Bo+q2+qa) (1, T2, 2],
and the composition ¢~ 14¢ is of the form
¢ (1) =21 + afry, xo] + (a1 — pB + qa) |1, T2, T1] + azlz1, T2, T2
¢ WP(w2) =x2 + Blz1, 2] + BilT1, T2, 1] + (B2 — PB + q) [T1, T2, T2).
Finally we obtain that (¢, ¢) = ¥~ '¢~1¢ has the form
(¥, 9)(x1) =21 + (g — Bp)[z1, T2, 71]
(1, ¢)(w2) =22 + (aq — Bp)[z1, T2, T2].
Now let § € GInn(Lg 3) be a generalized inner automorphism of the form
0(x1) =21 + alz1, 2] + ar[r1, 22, 21] + az]x1, T2, 22]
0(1‘2) =T9 + b[l‘l, 1‘2] + by [1‘1, T9, l‘l] + bQ[l‘l, X9, 1‘2],
where a, a1, as,b,b1,bs € K. Direct calculations give that
(¥, 9),0)(z1) =21 + (0.b — 0.a)[z1, T2, 1]
(¥, 9),0)(z2) =22 + (0.0 — 0.a)[z1, 22, 2],

which means that

(¢, 9),0) = (¥,6)"107(9,)0 = 1.
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3. Main results. In this section we describe the group of normal
automorphisms in terms of generalized inner automorphisms. We give the explicit
form of the Jacobian matrices of the normal automorphisms and of the coset
representatives of normally outer [A-automorphisms.

Lemma 3.1. Let ¢ be a normal IA-automorphism of Ly, o. Then ¢ is
a generalized inner automorphism of Ly, 2. Furthermore ¢ is an inner automor-
phism of Ly, 2.

Proof. Clearly, le,z has a basis [x;,2;], 1 < i < j < m. Let ¢ be a
normal automorphism in IA(Ly,2). If m = 2, then IA(Ly2) = Inn(Ly ). Since
Inn(Ly2) C N(Lg232) then ¢ is an inner automorphism. In particular ¢ is a
generalized inner automorphism. Let m > 3 and ¢ be of the form

@(z1) =21 + [T1, 1171 + 1222 + -+ + CL T

©(x2) =x2 + [T2, 2171 + C22T2 + + -+ + ComTim)]

So(mm) =Ty + [‘rm; Cm1%1 + CmaT2 + -+ -+ Cmmmm]v

where ¢;; € K for every 4,5 = 1,...,m. Now consider the ideal Jio of Ly, 2
generated by x1 + z2. As a vector space Jio posseses a basis

Tr1 + T9, [acl,acg], [:r1+x2,$j], j=3,....,m.

Since ¢ is normal ¢(x; + z2) € Ji2. But

m m
o(x1+x2) = 1‘1+1?2+(012—021)[$1,$2]+Z C1j [$1+J327-Tj]+2(02j_clj)[$2axj]7
=3 J=3
m
which means that ) (cz; — c1j)[x2, z;] € Ji2N Ly, .. Then
j=3
m m
Z dj[x2, z;] = plz1, z2] + Z qjlrr + 2,75,
j=3 Jj=3
for some p,q; € K, dj = coj —c15, j = 3, ..., m, which means that d; = 0. Hence
c2j = c1j, j = 3,...,m. Similarly, considering the ideals Jy; of L, > generated
by x1 + xy, for every k = 3,...,m, we obtain that
Ck2 = C12y- -+, Ckk—1 = C1,k—1,Ck,k+1 = Clk+15- - - Ckm = Clm-

Finally, considering the ideals Jo, of L,,2 generated by xo + xp, k =
3,...,m, similar arguments give that

Cr1 = €21, k:3,...,m.
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Thus
¢ = exp(adu), u=ca171+ c1272 + 1323 + - + ClnTm,
i.e. ¢ is an inner automorphism. O

Lemma 3.2. Every normal IA-automorphism of Lo 3 is generalized in-
ner.

Proof. Let ¢ be a normal IA-automorphism of Ly 3 such that
o(r1) =21 + afr1, 22| + Q1[r1, T2, T1] + Q2[T1, T2, 7]
@(r2) =29 + B2, 1] + Bi[72, 21, 21] + BalT2, 71, 2],

where o, aq,a0,0,010: € K. Let us define fi = 8+ (iadxi + Geadxe and
fo = a4+ ajadxy + asadrs. Then we can rewrite ¢ in the following way.

2
o(z1) =z1+ Y |1, 2],

j=1
2
(1) =29 + Y _[72, ;1))
j=1
which completes the proof. O
We know that Inn(Ly, ) C N(Ly, ). If ¢ = 2, then Inn(Ly, 2) = IN(Ly, 2)

by Lemma 3.1. But the elements ¢ of IN(L,, ) are not necessarily inner auto-
morphisms when ¢ > 3. For example it follows from Lemma 3.2 that

p(r1) =21 + [71, T2, T2]

p(r2) =22
is a normal automorphism which is not an inner automorphism.

Lemma 3.3. Let ¢ be a normal IA-automorphism of Ly, . acting trivially
on Limc/Ly, .. Then ¢ is a generalized inner automorphism.

Proof. If m = 2 then ¢ is of the form
o(x1) =21 + [21, 2] f12
o(x2) =2 + 22, 21] fo1,

where [x1, z2] f12, [x2, 1] fo1 € L5 .. This means that

o(z1) =1 + 21, 21] f21 + [21, 2] f12
o(x2) =2 + [x2, 1] fo1 + [22, T2| f12.
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Thus ¢ is a generalized inner automorphism. In the case ¢ = 2, m > 2, we know
from Lemma 3.1 that such automorphisms are generalized inner. Hence we can
assume that ¢ > 3, m > 3. Let ¢ be a normal automorphism of L,, . acting
trivially on L, /Ly, .. Since ¢ > 3 and m > 3 then we can assume from Lemma
1.8 that ¢ is of the form

m
pra o wi+ Y 1075 fij,
i=1

where |7, z;]fij(adry, ..., adz,,) is in the the center Ly, . of the free metabelian
nilpotent Lie algebra L,, . for every ¢,j = 1,..., m. Such automorphisms form an
abelian subgroup of AutL,, .. Let us define the generalized inner automorphism

m
11T — wp+ Z[in,%]fu-
j=2

Then the composition gocpfl has the form
Pt (21) =11
m
ooy (o) =z + [rro 2| fir + Y o 25)(feg — frj), K # L
ALk

Now consider the generalized inner automorphism ¢y : x; — x;+[z;, x1] fo1. Then

et ey (1) =1
py oy (o) =2+ Y [72, 75109
J#1,2

1 oy (w3) =T + (w3, 21]g31 + Z [3, 2]93;
J#1,3

(Pgoflgogl(xm) =Tm + [xmaxl]gml + Z [xmvxj]gmj
Jj#lm
where gkl = fkl - f21 for k >3 and 9kj = fkj - flj for k > 2, j > 2. Thus
it suffices to show that ¢ = (pgol_lgog ! is a generalized inner automorphism. Let
a be a nonzero constant and let us consider the ideal J,12 of L, . generated by
axi + xo. The vector space J,12 has a basis modulo Lf’n,&

axy + T2, [T1, 22, [ry + w2, 25], j=3,...,m.
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Since ¢ is normal, ¢(ax1 + x2) € Ja12,

qb(cm:l + 1:2) =oaxr] + 2+ 2[1‘27%]92]‘»
7=3

which means that

m
Z T2, %]92j € Jar2 N LY,
Jj=3

Then

m m
> w2, 35]g0; = w1, 2a)P + > [am + 32,75]Q;,
j=3 =3

for some P,Q; € w?/w"!, j =3,...,m. Using the embedding Ly, . into the
wreath product we have that

m m
as Z tjg2; — Z ajtagz;
j=3 j=3
m m m
=a1 | taP+ Z thj +ao | —t1 P + thQj — Z aj(oztl + tQ)QJ
=3 =3 =3
we have that Since ay,...,a,, are free generators of a free K[ty,..., t,]/Q¢ -
module, for every j = 3,...,m we have that
tago; = (aty +t2)Q;.
Thus atq + to divides g2, j = 3,...,m, for every a € K*. Since characteristic of
the field K is 0 we can choose more than ¢ — 2 distinct scalars o € K*. Then by
nilpotency the function go;(t1,...,tm) is 0, j = 3,..., m. Hence
923 =+ = gam = 0.
Considering the ideals Ju1%, kK = 3,...,m of Ly, . generated by axy +x) the same

argument gives that gp; =0, 7 # 1,k, k=3,...,m
Now let us consider the ideal J,23 of Ly, . generated by axs + x3. It has
a basis

azg + 3, [12, 73], [@xz2 + 73,75,  JF 2,3,
modulo L?n,c' Since ¢ is normal, ¢(axs + x3) € Jao3.

P(axs + x3) = s + 23 + 2[3537 5]93;-
i#3
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This means that [3,21]g31 € Ja23 N Ly, . because we know that g3, =0, k # 1, 3.
Then

(w3, 21]g31 = [z, 23] P + Y [aws + 3, 2;]Q;,
J#2,3

for some P,Q); € w2 /w1 j # 2,3, Using the embedding L,, . into the wreath
product, considering only the coefficient of a; we have that

t3g31 = (axa + x3)Q1.

Thus atg + t3 divides g3; for every a € K*. Hence the function gs1(t1,...,t,) is
0 and g31 = 0.

Finally, considering the ideals J,or, K = 4,...,m, of L,, . generated
by aze + xj the same argument gives that gy = 0, & = 4,...,m. Hence

¢ = cpgoflgogl =1, i.e. ¢ = a1 which means that ¢ is a generalized inner
automorphism. O

Theorem 3.4. Let ¢ be a normal IA-automorphism of Ly, .. Then ¢ is
a generalized inner automorphism.

Proof. We argue by induction on the nilpotency class ¢ of Ly, .. If ¢ = 2,
the result follows from Lemma 3.1. (In this case, each normal TA-automorphism
is inner.) Now consider a normal IA-automorphism ¢ of Ly, ., ¢ > 2, of the form

m
prai— w4 Y [wna)(figo+ o+ fije2),
j=1

where fijo € K, fijx € wF/wh™ k =1,...,c — 2. Then ¢ induces a normal
IA-automorphism on Ly, ./ L7, .- By induction, since this quotient is isomorphic
to Ly, c—1, there exists a generalized inner automorphism % : Ly, . — Ly, . such
that

p(z;) = P(z:) + Z[Cﬂi,l‘j]fij,cfz, i=1,...,m.

m
j=1

It follows for ¢ = 1,...,m that

O ([, 5] fije—2)

NE

(i) = @ +

<.
I
—_

I
B

+
NE

[T, 5] fije—2-

<.
I
—_
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Thus ¢ = v '¢ is a normal IA-automorphism of Ly, acting trivially on
Lpc/ Ly, .. By Lemma 3.3, ¢ is a generalized inner automorphism, and so is

p=1v¢. O

Now we give one of the main results which is obtained as a direct conse-
quence of Lemma 1.1, Lemma 1.9, Lemma 3.1, Lemma 3.2 and Theorem 3.4.

Corollary 3.5. Let K* denote the set of invertible elements of the field
K. Then

(1) N(Lma) = K5
) N(Lg2) = K* AInn(La3s);
(131) N(Lg3) = K* A GInn(Ls 3);
(1v) N(Lp,c) = GInn(Ly, ), m>3, ¢>2o0rm=2, ¢>4,

where K stands for the semi-direct product of the groups.

Now we describe the group structure of the group of normal automor-
phisms N(Ly, ).

Theorem 3.6. (i) The group N(Ly,2), m > 3, is abelian;

(i1) The group N(L,3), m > 3, is nilpotent of class 2;

(23i) The group N(Lp ), m > 2,¢ >4 or (m,c) = (2,2), is metabelian;

(tv) The group N(Lg3), is nilpotent of class two-by—abelian.

Proof. Let ¢, ¢3 € N(Lao) = K* £Inn(Ls2) be normal automorphisms
of the form

"Z)a 4o

(r1) =ax1 + aaslzy, z2]

VYo(x2) =09 + vy [T2, 1],
(1)
(

<

5(x1) =Bz + BB2[z1, 22]
Yg(xe) =Px2 + 1|22, 21],

where a1, a9, 51,02 € K and «, 8 € K*. Easy calculations give that

1/1;1(301) =a o — a*2a2[:1:1,:1:2]

w;l(acg) =a lry — a_2a1[:1:2,:1:1],

¥y (x1) =071 — 72w, 22)
by (x9) =0y — B2 B1[wa, 1),
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By direct calculations we obtain that the commutator (1/;0”(;55) =
¢;1¢§1¢a¢g has the form

(Cardp) 12 = i+ > (o oy (B = 1) + 87181 — a )z, z,], i=1,2.
j=1

This means that (1o, ¢3) € GInn(La2) = Inn(Ls o) which is abelian from Theo-
rem 2.6. Hence N(Lg ) is metabelian.

We know from Corollary 3.5 that if m > 3 or m = 2,¢ > 4 then N(L;, ) =
GInn(Ly, ). Applying Theorem 2.6 we get that N(L,,2) is abelian when m > 3,
N(Lyy,3) is nilpotent of class 2 when m > 3 and that N(L,, ) is metabelian when
m > 2, ¢ > 4. Thus it remains to show that N(Ly3) is a nilpotent of class
two—by—abelian group.

Now let 1), @3 in N(La3) be normal automorphisms of the form

wa:lii_’axi'i_fi? izl?"'vmv

¢ﬂxl_>ﬁ$’b+gl7 izl:"'vmv
where f;, g; € L, . and a, 8 € K*. Clearly the inverse functions are of the form

-1, -1 / .
wa T lil+f17 1_17"'7m7

Qﬁglzq:i—»B_lxi—i—gZ’-, i=1,...,m,

where f],g; € L, .. Easy calculations give that the commutator (¢, ¢g) of g
and ¢g is included in GInn(Lj3) which is nilpotent of class 2 by Theorem 2.6.
Thus N(Lg 3) is a nilpotent of class two-by-abelian group. O

Now we have collected the necessary information for the description of
the group of normally outer automorphisms I'N(L,, ). We shall find the coset
representatives of the normal subgroup IN(Ly,.) of the group IA(Ly,.) of IA-
automorphisms L, ., i.e., we shall find a set of IA-automorphisms 6 of L, .
such that the factor group II'N(L,.) = IA(Lm,)/IN(Lp, ) of the outer IA-
automorphisms of L,, . is presented as the disjoint union of the cosets IN (L, ).

Lemma 3.7. Let m = 2, then the group of normally outer 1A-automor-
phisms I'N(Lg ) is trivial.

Proof. Let ¢ be an IA-automorphism of L .. Then ¢ has the form

p(x1) — 1 + [T1, T2] f
p(x2) — T2 + [T1,22]9,
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where f, g € K|adx1,adzs]. Then clearly

o(x1) = z1 + [z, 1] f1 + [21, 22] f2
o(x2) = zo + [x2, 1) [1 + [22, 22| f2,

where f1 = g, fo = f, i.e. ¢ is a generalized inner automorphism or from Theorem
3.4 ¢ is a normal IA-automorphism. Thus IA(Ly.) = IN(La.). O

Theorem 3.8. (i) Let ¢ be a normal IA-automorphism of the form
m
O x —>xi+2[xi,a:j]fj, 1=1,...,m,
j=1

where f; € Kladxy,...,adxy,]. Then the Jacobian matriz of ¢ is

tafo+ - +itmfm  —tafi - —imfi

—t1f2 doeatifi o —tmf

J(p) = I + —t1f3 —tafs 0 —lmf3
—t1fm —tofm 0 Xjamtif

(i1) Let © be the set of automorphisms 6 of Ly, . with Jacobian matriz of
the form

0 fiat2) - fim

P2(t:1) fo2 o fom
JO)=I,+ | pst)  fa2 o fam |

where p;, fij, are polynomials of degree < ¢ — 1 without constant terms with the
following conditions

m m
D tipi=0, Y tifi; =0 (mod Q) j=2,...,m,
1=2 i=1

pi = pi(t1), i = 1,...,m, does not depend on t1, and fio = fia(l2) does not
depend on to.

Then © consists of coset representatives of the subgroup IN(Ly, ) of the
group IA(Ly, ) and I'N(Ly, ) is a disjoint union of the cosets IN(Ly, )0, 6 € ©.
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(111) Let W be the set of normal IA-automorphisms ¢ of Ly, . with Jacobian
matriz of the form

gltj%‘(Tj) —toq(T1) -+ —~tmq(T1)
j
—t192(T%) ;:Qtqu'(Tj) s =tnga(Th)
JW)=In+ | —tig3(T3) —taqs(T3) -+ —tmas(T3) |-
han(T) —tain(Tn) Y tay(T))
Jj#Em

where q;(T}), 7 = 1,...,m, are polynomials of degree < c — 1 in 02 with the
following conditions

m
S 4(1) =0 (mod Q)°*,
i=2
and q;(Tj) depends on tj, ... ty, only, j=1,...,m.
Then ¥ consists of coset representatives of the subgroup Inn(L,,.) of
the group IN(Ly, ) and IN(Ly,c)/Inn(Ly, ) is a disjoint union of the cosets
Inn(Ly, )¢, ¥ € 0.

Proof. (i) Let ¢ be a normal IA-automorphism of the form

m
1/):1:1'—»1:1'—#2[:51-,@]]"]-, i=1,...,m,
j=1

where f; € K[adz1,...,adz,,). The Jacobian matrix of ¢ is
&g(ml) . 8<pa(mm)
a €T L1 L1
J(p) = ( Sg(xé)) | | e MK t)/90).
! dp(x) .. Op(wm)
OTm O0Tm

Easy calculations give

dp(x;) 2tfr 1=,
8.@-] =0ij + 477 ) )
¢ _t]f’b ? 7é I

where 9;; is Kronecker symbol. Thus we obtain the desired form of the matrix
J(p).

(77) When m = 2 then from Lemma 3.7 the factor group IA(Lg )/IN(L2 )
is trivial which satisfies the conditions. Let m > 3. Since Inn(L,, ) is included
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in the group of normal automorphisms, the factor group IA(Ly,.)/IN(Lp, ) is
the homomorphic image of IA(Ly,.)/Inn(Ly, ). Then from Lemma 1.12 we can
consider the Jacobian matrix of the TA-automorphism v of the form

5(t27'--atm) f12 flm

tiga(to,ts, ... tm) +1ra(te, ... tm) foo -+ fom
JW) = I+ | t@s(tssstm) +r3(tay o itm)  fa2 o fam |

t1qm(tm) + rm(t2, - tm) Foa o fom

where s, q;, 1, fi; are polynomials of degree < ¢ — 1 without constant terms with
the conditions

m m m
s-i—ZtiqiEO, Ztirizo, Ztifijz() (mod Q)T j=2,...,m,
i=2 i=2

i=1
s = s(tay...ytm), 1o = ri(te,...,tm), © = 1,...,m, does not depend on ti,
qi(tiy. .. tm), © = 2,...,m, does not depend on ty,...,t;—1 and fjo does not
contain a summand dts, d € K.
Let

leO, kaka k:27"'7m7

and let us define the normal automorphism

m
go::ri—>xi+2[xi,xj]fj, 1=1,...,m.
j=1

Then from (i) the Jacobian matrix of ¢ is of the form

s 0 0
—t1qg2 —S—1taga --- —tmq2

Jo)=1I,+ | —tis  —taqz - —tmgs
—t1gm —toqm s =S —1tmQm

Let us denote the m x 2 matrix consisting of the first two columns of J (1) and
I, by J(ev)2 and I, respectively. Direct calculations give that J(¢w)s is of
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the form
—s? —sfi2 + fi2
—s(tiga +r2) + 12 *
J(@)2 = Imo + | —5(t1a3 +73) +73 * :
_S(tIQm + rm) +rm *

where we have denoted by * the corresponding entries of the second column of
the Jacobian matrix of ).
Now let

91:07 9k = —Sqk, k:27"'7m7
and let us define the normal automorphism
m
qb::ci—>xi+2[xi,xj]gj, 1=1,...,m.
j=1

The Jacobian matrix of ¢ is of the form

52 0 . 0

stiga  s(s+1taqa) - stm@q2

J(¢) =TI, + | stias st2q3 o 5tmqs3
st1qm stogm oo 8(s+ timGm)

Calculating J(¢p1)) we have that
—54 f12(1 —S+S2 —53)

—s%t1go +12(1 — 5+ 5* — 5%) *
J(pop)y = Iz + | —5"tias +r3(1 — s+ 52 = 5) *
—8%t1qm + (1 — 5+ 57 — 5%) *

Repeating this process sufficiently many times, we get that the (1,1)-th entry
and the coefficients of the elements t1q;, j = 2,...,m, are zero, because Ly, . is
nilpotent. So we have the form

0 g2
p2(tA1) *
J(Y)e = Ima+ | P3(t1) [
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where p; = pi(t1), i = 2,...,m, does not depend on t{, gjo does not contain a
summand dts, d € K. Let us express gio as

g12 = tof + fo,

where f5 does not depend on ¢, and f € Q because gi2 does not contain a
summand dts, d € K. Let us consider the normal automorphism

¢1:x; — xp + [z, f, i=1,...,m.

The Jacobian matrix of ¢; is of the form

0 —tof -~ —twf

0 tf - 0
J@)=In+ |0 0 -0 ;

0 0 e tf

Calculating J(¢17y) we have that

0 tf(taf + f2) +tof + fo— tof
tlfp2 + p2 *
J(17)2 = Lma + t1fps + p3 *
tlfpm + Pm *

Now let
gl:o? gk:fpk7 k:27"'7m7
and let us define the normal automorphism
m
@0 1T — T —|—Z[:ci,zj]gj, i=1,...,m.
j=1

Calculating J(¢2¢17) we see that the summands —t; fp; in the first col-
umn disappears:

0 titaf?+tiffo+ fo
D2 *
J(p217)2 = Ima + | P3 *

Pm *
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Let us consider the (1,2)-th entry ¢t f? +t1f fo+ fo of the matrix J(pa¢p17y) and
express the element f as

f=tF + Fy,

where F5 does not depend on t5. Now we have that
titaf +tiffo+ fo = tita(f> + Ffo) + (12 + 1) fo

= titoh + ho,
where hy = (tlﬁg + 1)f2 does not depend on ty and h = f2 + FfQ. Note that
the minimal degree of the monomials of the summand which depend on ¢3 (in
this step this is t1toh) is bigger than of the minimal degree of the corresponding
summand to f of the previous step which means that the degree increases.

We repeat the process one more step and consider the normal automor-
phism

01w — x; + x5, x| (adzrh), i=1,...,m.

Calculating J(p1¢2¢17) we have that

0 2h(titah + ho) + titah + hy — totih
t2hpa + pa *
2
J(p102017)2 = Lo + | t1hp3 +p3 *

Now let
91 =0, grL=tihpy, k=2,...,m,

and let us define the normal automorphism

m
Yo 1 X —>1:i+2[1:¢,1:j]gj, 1=1,...,m.

j=1

Then
0 3teh? + t3hhy + ho
P2 *

J(p20102017)2 = Ima + | P3 <

Pm *
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Let us consider the (1,2)-th entry t3toh? + t%him + hy of the matrix
J(p2p102¢17)2 and express the element h as

h=1tH + ﬁg,
where ﬁg does not depend on to. Now we have that
t?tQhQ + t%hiLQ + iLQ = t%tg(t1h2 + HiLQ) + (t%ﬁg + l)iLQ
= t1Q(t1, ..., tm) + Q(l2),

Again, the length of the summands in #35Q(t1, ... ,t;) which depend on t5 in-
creases step by step. Repeating this argument sufficiently many times, by nilpo-
tency, we get finally that

0 q(t2)
pa(t1) =
J()2 = Ima + | P3(t1) %

Hence, starting from an arbitrary coset of IA-automorphisms IN(Ly, )1,
we have found that it contains an automorphism 6 € © with Jacobian matrix
prescribed in the theorem. Now, let 6; and 65 be two different automorphisms in
© with IN(Ly, ¢)01 = IN(Ly,,)02. Hence, there exists a nontrivial automorphism
¢ in IN(Ly,.) such that §; = ;. Direct calculations show that this is in
contradiction with the form of J(6;).

(#3i) Let ¢ be a normal IA-automorphism of Ly, .. From (4), the Jacobian
matrix of @ is

tofot - Htmfm  —tafi 0 —lnfi
—t1f2 Zj;&Q tjfj _tmfZ
J(@) = I, + —t1f3 —tafs o —tmfs ,
—t1fm —tofm o Xiamtif

where f;(t1,...,tm) € K[t1,...,tm], 7 =1,...,m. When ¢ = 2 then from Lemma
3.1, IN(Lp,2) = Inn(Ly,2). As a result we may consider that f;(ti,...,tn) € Q.

Let us express the polynomials f;(t1,...,tm), j =2,...,m, in the follow-
ing way:

Filte, o tm) =t f (b, tm) + hy(T2).
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Now let u € L,, . be of the form
U= — Z[l‘l, xl]fj(ad:cl, R ,adq:m), gﬂ(tl, R ,tm) € Q,
i>1
and let consider the inner automorphism ¢; = exp(adu). Then the Jacobian

matrix of ¢; has the form

_thl —tQGl s —tmGl
—t1Gy —taGy  --- —tmGQ
J(¢1) = 1Im + . . . . )
_thm _tZGm e _tme
where
Gi=tafy —t3f3— - —tmfom,

Gy =— t1?2, Gs = —t1?3, ciny Gy = _tlfm-
The element u belongs to the commutator ideal of L,,. and the linear
operator adu acts trivially on L;, .. Hence exp(adu) is the identity map restricted
on Lj, .. Since the automorphism ¢ is TA, we obtain that

toho(To), + - + tmhm(To), —toF
—t1he(T3), tF1 4 Y tihi(Ts),
=3
J(P10)2 = Ima + ~t1hs(T3), —tahs(Tn) ’
—t1hm (T2), —tohm (T2)

Now we write h;(T>) in the form

hl(TQ) = tgh;-(Tg) + h;’(Tg), 1=3,...,m,

and define

m

¢2 = exp(adug), ug= Z[mi,m]h;(admg, ooy aday,).
i=3

Then we obtain that

1+ toHo(To) + -+« + thlh (Th)  —toFy
—t1Ho(T3) *

J(p2d10070)2 = —t1h5(T3) * .

—tlh{,/n(Tg) *
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Hy(Ty) = ho(T) Zth’ (Ty).

Repeating this process we construct inner automorph1sms @3, ..., Pm—_1 such that
Y= Pm-1- P201¢,
1 +t2H2(T2) + - +thm(Tm) —tng(Tl)
—tlHQ(TQ) k
J(Pm—1 - P201p)2 = —t1Hs(T3) * )
—t1Hy (Thn) *

Hence, starting from an arbitrary coset of normal TA-automorphisms
Inn(Ly, ), we found that it contains an automorphism ¢ € ¥ with Jacobian
matrix prescribed in the theorem. Now, let 1; and 19 be two different auto-
morphisms in ¥ with Inn(Ly, ¢)¢1 = Inn(Ly, )12. Hence, there exists a nonzero
element u € Ly, . such that ¢y = exp(adu)i. Direct calculations show that this
is in contradiction with the form of J(¢1). O

Example 3.9. When m = 3 the results of Theorem 3.8 have the following
simple form. If ¢ is a normal automorphism of the form
¢y — 1 + [T1, 2] fo + [21, 73] f3
T2 — X + [w2, 1] f1 + [T2, 73] f3
T3 — x3 + [73, 71 f1 + [23, 72| f2,
where f1, fo, f3 € K[adz, adzy, adzs] then the Jacobian matrix of ¢ is

L+tafo+t3fs —tafi —t3f1
J(p) = —t1f2 L+t fi+1t3f3 —t3f2
—t1f3 —taf3 14+t fi +tafo
The Jacobian matrix of the normally outer automorphism @ is
1 fia(ti,t3)  fis
J(0) = t3p(ta, t3) 1+ fo2 f23 ;

—top(ta, t3) f32 1+ f33

where p(t2,t3), fij, are polynomials of degree < ¢—1 without constant terms with
the following conditions

t1fi; +tafaj +tafs; =0 (mod Q)°H, j=2,3,
p(t2,t3) does not depend on t; and fi2 = fi2(t1,3) does depend on .
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