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NEW COEFFICIENT CONDITIONS FOR FUNCTIONS

STARLIKE WITH RESPECT TO SYMMETRIC POINTS

R. Aghalary, A. Ebadian

Communicated by O. Mushkarov

Abstract. We consider some familiar subclasses of functions starlike with
respect to symmetric points and obtain sufficient conditions for these classes
in terms of their Taylor coefficient. This leads to obtain several new examples
of these subclasses.

1. Introduction and preliminaries. Let A denote the class of func-
tions

(1.1) f(z) =

∞
∑

n=1

anzn, a1 = 1,

which are analytic in the open unit disc U = {z : |z| < 1}. Let S denote
the univalent subclass of A, and S∗ denote the subclass of S for which f(U) is
starlike with respect to the origin. It is well known that f ∈ S∗ if and only if
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Re(zf ′(z)/f(z)) > 0 for z ∈ U. A function f ∈ A is starlike with respect to
symmetric points in U if for every r close 1, r < 1 and every z0 on |z| = 1
the angular velocity of f(z) about f(z0) is positive at z = z0 as z traverses the
circle |z| = r in the positive direction. This class was introduced and studied by
Sakaguchi [9]. He proved that the condition is equivalent to

Re
zf ′(z)

f(z) − f(−z)
> 0.

Recall the prominent subclasses studied in the theory of univalent functions, for
−1 ≤ B < A ≤ 1, 0 ≤ β < 1 :

ST (A,B) =

{

f ∈ A :
zf ′(z)

f(z)
≺

1 + Az

1 + Bz
; z ∈ U

}

S∗

s (β) =

{

f ∈ A : Re
2zf ′(z)

f(z) − f(−z)
> β; z ∈ U

}

S∗

s (A,B) =

{

f ∈ A :
2zf ′(z)

f(z) − f(−z)
≺

1 + Az

1 + Bz
; z ∈ U

}

Ssβ =

{

f ∈ A :

∣

∣

∣

∣

arg
2zf ′(z)

f(z) − f(−z)

∣

∣

∣

∣

<
βπ

2
; z ∈ U

}

,

where ‘≺’ stands for the subordinate of two functions in A. Set S∗
s ≡ S∗

s (0).

Recently Wang et all [11], Elashwa and Thomas [1], Sudharasan et al.
[10], Reddy et al. [7], and Parvatham and Premabai [6] have obtained various
results concerning functions in S∗

s (0), S∗
s (A,B), Ssβ .

Moreover Nezhmetdinov and Ponnusamy [2] has shown that any of the
following inequalities

2 ≤ 3a2 ≤ 4a3 ≤ · · · ≤ (n + 1)an ≤ · · · ; nan ≤ 2 for n ≥ 2,

or

2/3 ≥ a2 ≥ 2a3 ≥ 3a4 ≥ · · · ≥ (n − 1)an ≥ · · · ≥ 0; nan ≥ a2 for n ≥ 3

implies that f(z) = z +
∞
∑

n=2
anzn is starlike.
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Hence from the above inequalities it is easy to see that the function f(z) =

z +
2

3
z2 +

1

3
z3 is starlike, but a simple calculation shows that this function is not

starlike with respect to symmetric points. Indeed, for z = eiθ we have

Re
zf ′(z)

f(z) − f(−z)
=

8 cos θ
(

cos θ + 2
3

)

3
∣

∣1 + 1
3e2iθ

∣

∣

2 ,

which is negative for θ =
2π

3
, so that f is not starlike with respect to symmetric

points.
Also Ozaki [4], Ponnusamy [5] and Obradovic and Ponnusamy [3] have ob-

tained coefficient conditions for close-to-convex functions and starlike and convex
functions.

Our main result is motivated by this problem. Find conditions on the
Maclaurin coefficients of f which guarantee the corresponding f belongs to S∗

s (0),
S∗

s (A,B), Ssβ. We use the duality technique developed by Ruscheweyh [8] to
obtain our results.

2. Main results.

Theorem 2.1. If a function f ∈ A defined by (1.1) satisfies the condition

(2.1)

∞
∑

n=1

|(n+1)a2n+1 − na2n−1| + |na2n+1 − (n−1)a2n−1|

+ 2|na2n − (n−1)a2(n−1)| ≤ 1

with a0 = 0, then f ∈ S∗
s .

P r o o f. It is well known that the function
1 + ω

1 − ω
maps G = {ω : |ω| = 1}

onto the imaginary axis. At z = 0,
2zf ′(z)

f(z) − f(−z)
= 1, so that f ∈ S∗

s if and only

if
2zf ′(z)

f(z) − f(−z)
6=

1 + x

1 − x
for all |x| = 1, z ∈ U,

or equivalently if and only if

f(z)

z
∗

[

1 − x

(1 − z)2
−

1 + x

(1 − z2)

]

6= 0 for all |x| = 1, z ∈ U,
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where ∗ stands for the Hadamard product of the two functions. Equivalently,
this can be written as follows

−2x +
∞
∑

n=1

a2n+1[2n(1 − x) − 2x]z2n + (1 − x)
∞
∑

n=1

2na2nz2n−1 6= 0.

After dividing the above inequality by −x and multiplying by a non vanishing
factor 1 − z2, it can be easily seen that f ∈ S∗

s if only

2 +
∞

∑

n=1

a2n+1[2n(t + 1) + 2]z2n + (t + 1)
∞

∑

n=1

2na2nz2n−1

−

∞
∑

n=1

a2n−1[2(n − 1)(t + 1) + 2]z2n − (t + 1)

∞
∑

n=1

2(n − 1)a2(n−1)z
2n−1 6= 0

Clearly, for all |t| = 1, from (2.1) we find that the above inequality holds true
and we complete the proof. �

Corollary 2.1. Let the coefficients of f(z) = z +
∞
∑

n=2
anzn satisfy either

of the two conditions

1) 1 ≤ 2a3 ≤ 3a5 ≤ 4a7 ≤ 5a9 ≤ · · · ≤ (n + 1)a2n+1 ≤ · · · and

2) 0 ≤ a2 ≤ 2a4 ≤ 3a6 ≤ 4a8 ≤ · · · ≤ na2n ≤ · · · and

3) (2n + 1)a2n+1 + 2na2n ≤ 2, n ≥ 1,

or

1)
1

2
≥ a3 ≥ 2a5 ≥ 3a7 ≥ 4a9 ≥ 5a11 ≥ · · · ≥ (n − 1)a2n−1 ≥ · · · ≥ 0 and

2) 0 ≤ a2 ≤ 2a4 ≤ 3a6 ≤ 4a8 ≤ · · · ≤ na2n ≤ · · · and

3) (2n + 1)a2n+1 ≥ 2na2n + 2a3, n ≥ 1,

then f ∈ S∗
s .

It is interesting to state a counterpart of Corollary 2.1 for odd functions
f(z).

Corollary 2.2. Let f ∈ A defined by (1.1) is an odd function satisfying

either of the following conditions:

1 ≤ 2a3 ≤ 3a5 ≤ 4a7 ≤ 5a9 ≤ · · · ≤ (n+1)a2n+1 ≤ · · · ; (2n+1)a2n+1 ≤ 2, n ≥ 1,
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or

1

2
≥ a3 ≥ 2a5 ≥ 3a7 ≥ · · · ≥ (n− 1)a2n−1 ≥ · · · ≥ 0; (2n+1)a2n+1 ≥ 2a3, n ≥ 1,

then f ∈ S∗
s .

Theorem 2.2. Let a0 = 0, a1 = 1 and −1 ≤ B < 0 < A ≤ 1. If a

function f ∈ A defined by (1.1) satisfies the condition

∞
∑

n=1

|[A − B(n + 1)]a2n+1 − [A − B(2n − 1)]a2n−1|+ |2na2n+1 − 2(n − 1)a2n−1|

+ 2|2na2n − 2(n − 1)a2(n−1)| ≤ A − B,

then f ∈ S∗
s (A,B).

P r o o f. We note that f ∈ S∗
s (A,B) if and only if

f(z)

z
∗

[

1 + Bx

(1 − z)2
−

1 + Ax

(1 − z2)

]

6= 0 for all |x| = 1, z ∈ U.

Now by proceeding the same line of the proof Theorem 2.1 we get our result and
we omit the details. �

Corollary 2.3. Suppose the coefficients of f(z) = z +
∞
∑

n=2
anzn satisfies

either of the two conditions

1) (A−B) ≤ (A− 3B)a3 ≤ (A− 5B)a5 ≤ · · · ≤ [A−B(2n + 1)]a2n+1 ≤ · · · and

2) 0 ≤ a2 ≤ 2a4 ≤ 3a6 ≤ 4a8 ≤ · · · ≤ na2n ≤ · · · and

3) [2n(1 − B) + (A − B)]a2n+1 + 4na2n ≤ 2(A − B), n ≥ 1,

or

1)
A − B

A − 3B
≥ a3 ≥ 2a5 ≥ 3a7 ≥ 4a9 ≥ 5a11 ≥ · · · ≥ na2n−1 ≥ · · · ≥ 0 and

2) 0 ≤ a2 ≤ 2a4 ≤ 3a6 ≤ 4a8 ≤ · · · ≤ na2n ≤ · · · and

3) [2n(1 − B) + A − B]a2n+1 ≥ 4na2n + 4a3, n ≥ 1,

then f ∈ S∗
s (A,B).
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P r o o f. Under the first assumption we have

a2n+1 ≥
A − B(2n − 1)

A − B(2n + 1)
a2n−1 ≥

n − 1

n
a2n−1, n ≥ 1

and from the second assumption we have

na2n ≥ (n − 1)a2(n−1), n ≥ 1.

Thus for any N ≥ 1,

N
∑

n=1

|[A−B(2n− 1)](a2n+1 − a2n−1)− 2Ba2n+1|+ |2n(a2n+1 − a2n−1) + 2a2n+1|

+2|2n(a2n−a2(n−1))+2a2n| = [2N(1−B)+(A−B)]a2n+1+4Na2n ≤ 2(A−B),

and Theorem 2.1 implies that f ∈ S∗
s (A,B). The second assertion is verified in

a similar way. �

The proof of the following corollary is similar to Corollary 2.3 and we
omit the details.

Corollary 2.4. Let f ∈ A defined by (1.1) satisfies either of the two

conditions

1) (A−B) ≤ (A− 3B)a3 ≤ (A− 5B)a5 ≤ · · · ≤ [A−B(2n + 1)]a2n+1 ≤ · · · and

2) a2 ≥ 2a4 ≥ 3a6 ≥ 4a8 ≥ · · · ≥ na2n ≥ · · · ≥ 0 and

3) [2n(1 − B) + (A − B)]a2n+1 − 4na2n + 8a2 ≤ 2(A − B), n ≥ 1,

or

1)
A − B

A − 3B
≥ a3 ≥ 2a5 ≥ 3a7 ≥ 4a9 ≥ 5a11 ≥ · · · ≥ na2n−1 ≥ · · · ≥ 0 and

2) a2 ≥ 2a4 ≥ 3a6 ≥ 4a8 ≥ · · · ≥ na2n ≥ · · · ≥ 0 and

3) [2n(1 − B) + A − B]a2n+1 + 4na2n ≥ 8a2 + 4a3, n ≥ 1,

then f ∈ S∗
s (A,B).

In the following corollary we generalize the results obtained in [2] for odd
functions.

Corollary 2.5. Suppose that f ∈ A defined by (1.1) is an odd function

satisfying either of the two conditions
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1) (A−B) ≤ (A− 3B)a3 ≤ (A− 5B)a5 ≤ · · · ≤ [A−B(2n + 1)]a2n+1 ≤ · · · and

[2n(1 − B) + (A − B)]a2n+1 ≤ 2(A − B), n ≥ 1

or

1)
A − B

A − 3B
≥ a3 ≥ 2a5 ≥ 3a7 ≥ 4a9 ≥ 5a11 ≥ · · · ≥ na2n−1 ≥ · · · ≥ 0 and

[2n(1 − B) + (A − B)]a2n+1 ≥ 4a3, n ≥ 1

then f ∈ ST (A,B).

By putting B = −1 and a2n+1 =
A + 2n + 1

A + 2n − 1
a2n−1, (n = 1, 2, 3, . . . ) with

a1 = 1 in the first part of Corollary 2.5 we obtain

Example 2.1. The function f(z) = z +

∞
∑

n=1

1 + A

2n + 1 + A
z2n+1 belongs to

ST (A,−1).

Also by taking B = −1 and a3 =
A + 1

A + 3
and a2n+1 =

n − 1

n
a2n−1, (n =

2, 3, . . . ) in the second part of Corollary 2.5 we obtain

Example 2.2. The function f(z) = z +
A + 1

A + 3

∞
∑

n=1

1

n
z2n+1 belongs to

ST (A,−1).

Moreover by choosing a2n+1 =
A + 1

n(A + 3)
and a2n =

(A + 1)2

4nN(A + 3)
, (N ≥ 1)

it is easy to see that the conditions of the second part of Corollary 2.4 is satisfied,
so we have

Example 2.3. The function

f(z) = z +

N
∑

n=1

A + 1

n(A + 3)
z2n+1 +

N
∑

n=1

(A + 1)2

4nN(A + 3)
z2n

belongs to S∗
s (A,−1).

Theorem 2.3. Let a0 = 0, a1 = 1 and 0 < α ≤ 1. If a function f ∈ A
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defined by (1.1) satisfies the condition

∞
∑

n=1

|(2n− e−iπα)(a2n+1 −a2n−1)+ (a2n+1−a2n−1)|+ |2na2n+1 −2(n−1)a2n−1|

+ 2|2na2n − 2(n − 1)a2(n−1)| ≤ 2 sin
π

2
α,

then f ∈ Ssα.

P r o o f. It is well known that f ∈ Ssα if and only if

f(z)

z
∗

1

1 − te±(iαπ/2)

[

(1 + z) − (1 − z)te±(iαπ/2)

(1 − z)2(1 + z)

]

6= 0 (z ∈ U, t ≥ 0)

Equivalently, this can be written as follows

(2.2) 1+
∞

∑

n=1

a2n+1

[

2n + 1 − te±(iαπ/2)

1 − te±(iαπ/2)

]

z2n+
∞
∑

n=1

a2n

[

2n

1 − te±(iαπ/2)

]

z2n−1 6= 0.

Then after multiplying (2.2) by 1 − z2, we need to maximize the modulus of

Hn(ω) =
An − Bnω

1 − ω
and Gn(ω) =

Cn

1 − ω

where An = [(2n + 1)a2n+1 − (2n − 1)a2n−1], Bn = (a2n+1 − a2n−1), Cn =
2na2n − 2(n − 1)a2(n−1) and ω = te±(iαπ/2), t ≥ 0.

Note that the functions Hn and Gn maps the two rays ω = te±(iαπ/2) onto
two circles with radii

R′

n =
1

2
csc

(πα

2

)

|An − Bn|, R′′

n =
1

2
csc

(πα

2

)

|Cn|,

whereas their centers are at the points

P±

n =
1

2

[

(An + Bn) ± i(An − Bn) cot
(πα

2

)]

and

T±

n =
1

2

[

Cn ± iCn cot
(πα

2

)]

,

respectively. Since, by our assumption, An, Bn and Cn are real, and so the
required maxima are |P±

n | + R′
n, |T±

n | + R′′
n, and the rest of the proof readily

follows. �
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3. Applications.

Theorem 3.1. Let 0 < A ≤ 1. Suppose that a > 0 and, in addition,

(3.1) b > max

{

1 + a, a
11 + 2A − A2

(A + 1)2

}

.

Then the function

(3.2) Φ(z) = z +
4a

(a + b)(1 + A)
z3 +

∞
∑

n=1

(a, n)

(a + b, n)
z2n

belongs to S∗
s (A,−1).

P r o o f. Consider

Φ(z) = z + A3z
3 +

∞
∑

n=2

A2nz2n.

Then we find that

(n − 1)A2n−2 − nA2n =
(a, n − 1)

(a + b, n)
[(n − 1)(b − 1) − a]

which is nonnegative for all n ≥ 2 if b > 1 + a.

Now we let T1 =
∞
∑

n=2
|2nA2n − 2(n − 1)A2(n−1)|, and

T = |A3(A + 3) − (A + 1)| + |2A3| + |2A2| + T1.

Next, we evaluate T1. We obtain

T1 = 2
∞
∑

n=2

(a, n − 1)

(a + b, n)
[(n − 1)(b − 1) − a]

= 2(b − 1)

∞
∑

n=2

(a, n)

(a + b, n)
− 2a(b − 1)

∞
∑

n=2

(a, n − 1)

(a + b, n)
− 2a

∞
∑

n=2

(a, n − 1)

(a + b, n)

= 2(b − 1)
a

a + b

[

Γ(a + b + 1)Γ(b − 1)

Γ(b)Γ(a + b)
− 1

]

−
2ab

a + b

[

Γ(a + b + 1)Γ(b)

Γ(b + 1)Γ(a + b)
− 1

]

=
2a

a + b
.
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We note that, under the condition (3.2), we have

T = (A + 1) − A3(A + 3) + 2A3 +
4a

a + b
= A + 1

and by Theorem 2.2 we get our result. �

Theorem 3.2. Let 0 < A ≤ 1. Suppose that a, b > 0 and, in addition,

(3.3)
Γ(a + b)

Γ(a)Γ(b)
<

(A + 1)2

2(A + 3)
.

Then the function

(3.4) Ψ(z) = z +
2Γ(a + b)

Γ(a)Γ(b)(1 + A)
z3 +

∞
∑

n=1

(a, n)(b, n)

(a + b, n)(1, n)
z2n

belongs to S∗
s (A,−1).

P r o o f. Write the function Ψ(z) as

Ψ(z) = z + B3z
3 +

∞
∑

n=1

B2nz2n.

First we observe that, if c = a + b, then

nB2n − (n − 1)B2n−2 = n
(a, n)(b, n)

(c, n)(1, n)
− (n − 1)

(a, n − 1)(b, n − 1)

(c, n − 1)(1, n − 1)

=
(a, n − 1)(b, n − 1)

(a + b, n)(1, n − 1)
ab,

and, therefore we get

M1 :=

∞
∑

n=2

|2nB2n − 2(n − 1)B2(n−1)|

= 2ab

∞
∑

n=2

(a, n − 1)(b, n − 1)

(a + b, n)(1, n − 1)

=
2Γ(a + b)

Γ(a)Γ(b)
−

2ab

a + b
.
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Now if we let

M = |B3(A + 3) − (A + 1)| + |2B3| + |2B2| + M1,

then, by (3.4) and the definition of B3 we find that

M = (A + 1) −
2Γ(a + b)(A + 3)

Γ(a)Γ(b)(1 + A)
+

4Γ(a + b)

Γ(a)Γ(b)(1 + A)
+

2ab

a + b
+

2Γ(a + b)

Γ(a)Γ(b)
−

2ab

a + b

= 1 + A,

and by Theorem 2.2 our proof is complete. �

By putting A = 1, a = b =
1

2
in the Theorem 3.2 we have

Example 3.1. The function

Ψ(z) = z +
1

π
z3 +

∞
∑

n=1

[(2n)!]2

24n(n!)4
z2n

belongs to S∗
s (1,−1).
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