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Abstract. The classical Filippov’s Theorem on existence of a local tra-
jectory of the differential inclusion ẋ(t) ∈ Φ(t, x(t)) requires the right-hand
side Φ(·, ·) to be Lipschitzian with respect to the Hausdorff distance and
then to be bounded-valued. We give an extension of the quoted result under
a weaker assumption, used by Ioffe in [6], allowing unbounded right-hand
side.

1. Introduction and notation. The well-known Filippov’s Theorem

on existence of a local trajectory of the differential inclusion ẋ(t) ∈ Φ(t, x(t))

requires the right-hand side Φ(·, ·) to be Lipschitzian with respect to the Haus-

dorff distance, and to be bounded-valued. When dealing with a multifunction

taking unbounded values, Ioffe introduced in [6] a weakening of the Lipschitzian
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assumption in terms of pseudo-Lipschitzness: namely, there exists β ≥ 0 such

that for every (t, x1), (t, x2) ,

y1 ∈ Φ(t, x1) ⇒ d(y1,Φ(t, x2)) ≤ (k(t) + β‖y1‖)‖x1 − x2‖,

where k(·) is summable and nonnegative. In this note, we give an existence

result for a local solution of the differential inclusion under such condition. The

structure of the proof is very different from that in [6], it is based on a fixed point

theorem given in Section 2, and which is the principal result of the paper.

Let us give some notation. We let X be a metric space endowed with

the metric d . The open (resp. closed) ball with center x and radius r will be

denoted by Br(x) (resp. Br[x] ). Given a subset C of a metric space X , we

denote by d(x,C) the distance from x to C , that is, d(x,C) = infz∈C d(x, z) ,

and we denote by e(C,D) the Hausdorff–Pompeiu excess of C into D , defined

by e(C,D) = supx∈C d(x,D) , with the conventions e(∅,D) = 0 , and e(C, ∅) =

+∞ whenever C 6= ∅ . We denote by ιS the indicator function of the subset

S ⊂ X defined by ιS(x) = 0 if x ∈ S , ι(x) = +∞ otherwise.

A multifunction from a set X to a set Y is a subset of the cartesian

product X × Y . For x ∈ X , we set F (x) = {y ∈ Y : (x, y) ∈ F} . In section 2

we give a fixed point result generalizing [5, 3] and we apply it in section 3 in order

to obtain a local existence result for a differential equation with an unbounded

right-hand side.

2. A fixed point result. Our main result is the following one, on

fixed points of generalized contractions, for which we give a proof based on the

Ekeland’s principle.

In the line of [2], let us recall some basic facts about it. Given a function

f : X → R ∪ {+∞} , a point x ∈ X is said to be a d -point of f if

f(x) < f(z) + d(z, x) for all z ∈ X , z 6= x .

We also define, for x ∈ X , the set Mf (x) := {z ∈ X : f(z)+d(z, x) ≤ f(x)} . It

is important to observe (it is an immediate consequence of the triangle inequality)

that z is a d -point of f whenever it is a d -point of the restriction of f to some

subset Mf (x) , x ∈ X . Ekeland’s variational principle ([4]) under its simpler

form, given in [7], says that any bounded from below and lower semicontinuous

function defined on a complete metric space admits a d -point.
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Theorem 2.1. Let (X, d) be a complete metric space, and let G ⊂ X×X

be a closed multifunction. Let x0 ∈ X , α > 0 , and κ ∈ [0, 1) . Assume that:

(a) For all x ∈ Bα(x0) and for all y ∈ G(x)∩Bα(x0) we have d(y,G(y)) ≤

κd(x, y) ;

(b) d(x0, G(x0)) < α(1 − κ) .

Then the fixed-point set FG = {x ∈ X : x ∈ G(x)} of G is nonempty, and

d(x0,FG) ≤ (1 − κ)−1d(x0, G(x0)).

P r o o f. Let κ̃ ∈ (κ, 1) be such that d(x0, G(x0)) < α(1− κ̃) . Let us en-

dow X×X with the distance d((x1, v1), (x2, v2)) = max{d(x1, x2), κ̃
−1d(v1, v2)} ,

and let f : X × X → R ∪ {+∞} be the lower semicontinuous function defined

by

f(x, v) = (1 − κ̃)−1d(x, v) + ιG(x, v).

Let v0 ∈ G(x0) be such that d(x0, v0) < α(1 − κ̃) , so that

Mf (x0, v0) ⊂ Bf(x0,v0)(x0, v0) ⊂ Bα(x0, v0).

From Ekeland’s variational principle, f has a d -point (x̄, v̄) belonging to the

closed set Mf (x0, v0) . Now, given (x, v) ∈ Bα(x0, v0)∩G with f(x, v) > 0 , and

taking into account that Bκα(v0) ⊂ Bα(x0) , we can find w ∈ G(v) such that

d(v,w) < κ̃d(x, v) , so that (x, v) 6= (v,w) and

f(x, v) − f(v,w) = (1 − κ̃)−1(d(x, v) − d(v,w)) ≥ d((x, v), (v,w)),

which shows that (x, v) is not a d -point of f . It follows that f(x̄, v̄) = 0 , which

means that v̄ = x̄ ∈ G(x̄) , that is, x̄ ∈ FG . Since (x̄, x̄) ∈ Mf (x0, v0) we have

d(x0, x̄) ≤ f(x0, v0) = (1 − κ̃)−1d(x0, v0) , yielding the conclusion of the lemma

since κ̃ can be chosen arbitrarily close to κ , and v0 can be chosen arbitrarily

in G(x0) . �

Remark 2.1. The previous result widely extends the one given in

[5, 3]. Indeed, in the quoted results, the existence of a fixed point is obtained

under the stronger assumption that for all x1 , x2 ∈ Bα(x0) we have e(G(x1) ∩

Bα(x0), G(x2)) ≤ κd(x1, x2) .
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3. Differential inclusion. Given t0 ∈ R , a > 0 , and α > 0 , we

consider a base function x0 ∈ W 1,1([t0, t0 + a];Rn) , and a multifunction Φ ⊂

Q × Rn with closed values, where

Q = {(t, ξ) : t ∈ [t0, t0 + a], ‖ξ − x0(t)‖ ≤ 2α}.

We make the following assumptions on the multifunction Φ :

(H1) For all ξ ∈ Rn , the multifunction Φ(·, ξ) is L -measurable;

(H2) There exists β ≥ 0 such that for every (t, x1), (t, x2) ∈ Q ,

y1 ∈ Φ(t, x1) ⇒ d(y1,Φ(t, x2)) ≤ (k(t) + β‖y1‖)‖x1 − x2‖,

where k is summable and nonnegative.

Assumption (H1) means that for every ξ ∈ Rn and for every open set

O ⊂ Rn , the set {t ∈ R : Φ(t, ξ) ∩ O 6= ∅} is (Lebesgue-)measurable. From our

assumptions (H1) and (H2) and from the results of [1, Chapter 8], it follows that,

for any measurable y : [t0, t0 + a] → Rn with graph in Q , the multifunction

Φ(·, y(·)) is measurable, and that, for every measurable v : [t0, t0 + a] → Rn ,

there exists a measurable u : [t0, t0 + a] → Rn such that u(t) ∈ Φ(t, y(t)) and

‖v(t)−u(t)‖ = d(v(t),Φ(t, y(t))) for all t ∈ [t0, t0+a] . Moreover, u is summable

if so is v .

Let us set:

D(a) =

∫ t0+a

t0

e−K(t−t0)d(ẋ0(t),Φ(t, x0(t))) dt, V (a) =

∫ t0+a

t0

e−K(t−t0)‖ẋ0(t)‖ dt ,

where K(t) =
∫ t0+t

t0
k(s) ds for t ∈ [0, a] .

Theorem 3.1. Under assumptions (H1) and (H2), let us assume that

a > 0 and α > δ > 0 are such that:

(1) eK(a)β(α + V (a)) < 1

and

(2) e2K(a)
(

D(a)+ δ(1− e−K(a) +β(D(a)+V (a)))
)

< α(1− eK(a)β(α+V (a))) .
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Then, for all s0 ∈ [t0, t0 + a] and for all ξ0 ∈ Bδ(x0(s0)) , there exists a solution

x ∈ W 1,1([t0, t0 + a];Rn) of

(3)







ẋ(t) ∈ Φ(t, x(t)) for a.e. t ∈ [t0, t0 + a]

x(s0) = ξ0

.

P r o o f. Let X = {x ∈ W 1,1([t0, t0 + a];Rn) : x(s0) = ξ0} be endowed

with the norm

‖x‖X =

∫ t0+a

t0

e−K(t−t0)‖ẋ(t)‖ dt ,

and let α̂ = e−K(a)α . Let us define a multifunction Ga ⊂ X × X by

(x, y) ∈ Ga ⇔ ẏ(t) ∈ Φ(t, x(t)) for a.e. t ∈ [t0, t0 + a].

Observe that Φ is closed, due to assumption (H2) and to the fact that Φ is

closed-valued. It then follows that the multifunction Ga is closed. Let z0 = x0 +

ξ0 −x0(s0) , so that z0 ∈ X , let x ∈ Bα̂(z0) , and let y ∈ Ga(x)∩Bα̂(z0) . Using

the fact that, for any x ∈ Bα̂(z0) , we have (t, x(t)) ∈ Q for all t ∈ [t0, t0 + a] ,

and relying on assumption (H2), we find v ∈ Ga(y) such that

‖ẏ(t) − v̇(t)‖ ≤ (k(t) + β‖ẏ(t)‖)‖x(t) − y(t)‖

for a.e. t ∈ [t0, t0 + a] . Setting χ(t) = k(t) + β‖ẏ(t)‖ , we get

∫ t0+a

t0

e−K(t−t0)‖ẏ(t) − v̇(t)‖dt

≤

∫ t0+a

t0

e−K(t−t0)χ(t)

(
∫ t

s0

‖ẋ(s) − ẏ(s)‖ ds

)

dt

≤

∫ t0+a

t0

(
∫ t0+a

s

e−K(t−t0)χ(t)dt

)

‖ẋ(s) − ẏ(s)‖ds.

As

∫ t0+a

s

e−K(t−t0)k(t) dt = e−K(s−t0) − e−K(a) ≤ e−K(s−t0)
(

1 − e−K(a)
)

,
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and

β

∫ t0+a

s

e−K(t−t0)‖ẏ(t)‖ dt ≤ β‖y‖X ≤ β(α̂ + ‖z0‖X) = β(α + V (a)) ,

we derive that

‖v − y‖X ≤
(

1 − e−K(a) + β(α + V (a))
)

‖y − x‖X ,

leading to

d(y,Ga(y)) ≤ κ(a)‖x − y‖X ,

for all x ∈ Bα̂(z0) and all y ∈ Ga(x) ∩ Bα̂(z0) , where κ(a) = 1 − e−K(a)(1 −

eK(a)β(α + V (a))) belongs to [0, 1) thanks to assumption (1).

Let us now estimate d(z0, Ga(z0)) . To this end, let u0 ∈ L1([t0, t0 +

a];Rn) be such that u0(t) ∈ Φ(t, x0(t)) and

(4) ‖ẋ0(t) − u0(t)‖ = d(ẋ0(t),Φ(t, x0(t)))

for a.e. t ∈ [t0, t0 + a] . From assumption (H2), we have

d(u0(t),Φ(t, z0(t))) ≤ (k(t) + β‖u0(t)‖)‖z0(t) − x0(t)‖ < (k(t) + β‖u0(t)‖)δ̂

for some δ̂ ∈ (0, δ) . Now, let v0 ∈ L1([t0, t0 + a];Rn) be such that v0(t) ∈

Φ(t, z0(t)) and

(5) ‖u0(t) − v0(t)‖ = d(u0(t),Φ(t, z0(t)))

for a.e. t ∈ [t0, t0 + a] , and let w0(t) = ξ0 +
∫ t

s0
v0(s) ds for t ∈ [t0, t0 + a] , so

that w0 ∈ Ga(z0) . From (4) and (5) we then get, for a.e. t ∈ [t0, t0 + a] :

‖ẋ0(t) − v0(t)‖ ≤ ‖ẋ0(t) − u0(t)‖ + ‖u0(t) − v0(t)‖

< d(ẋ0(t),Φ(t, x0(t))) + (k(t) + β‖u0(t)‖)δ̂

and

‖z0 − w0‖X =

∫ t0+a

t0

e−K(t−t0)‖ẋ0(t) − v0(t)‖ dt

≤

∫ t0+a

t0

e−K(t−t0)
(

d(ẋ0(t),Φ(t, x0(t))) + (k(t) + β‖u0(t)‖)δ̂
)

dt



On differential inclusions with unbounded right-hand side 7

< D(a) + δ(1 − e−K(a) + β(D(a) + V (a))) .

Assumption (2) tells us that

D(a) + δ
(

1 − e−K(a) + β(D(a) + V (a))
)

< α̂(1 − κ(a)),

yielding d(z0, Ga(z0)) < α̂(1 − κ(a)) . Thus, we can apply Theorem 2.1 to find

x ∈ FGa
such that

‖x − z0‖X <
eK(a)(D(a) + δ(1 − e−K(a) + β(D(a) + V (a)))

1 − eK(a)β(α + V (a))
.

As any fixed point x ∈ FGa
is a solution of (3), we are led to the conclusion of

the theorem. �

Remark 3.1. Assuming that αβ < 1 , there clearly exists a > 0

satisfying conditions (1) and (2).

Remark 3.2. In the case when β = 0 , conditions (1) and (2) reduce to

e2K(a)
(

D(a) + δ(1 − e−K(a))
)

< α ,

a condition close to the one in the classical Filippov’s Theorem.
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