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Abstract. This paper is concerned with the problem of deriving Bayesian
prediction bounds for the future observations (two-sample prediction) from
the inverse Weibull distribution based on generalized order statistics (GOS).
Study the two side interval Bayesian prediction, point prediction under sym-
metric and asymmetric loss functions and the maximum likelihood (ML) pre-
diction using “plug-in” procedure for future observations from the inverse
Weibull distribution based on GOS. Study the problem of predicting future
records based on observed progressive type II censored data and observed
order statistics from the inverse Weibull distribution. Finally, a numerical
example using real data are used to illustrate the procedure.

1. Introduction. A concept of GOS was introduced by Kamps [20].
Ordinary order statistics (OS) (David [15], Castillo [12], and Arnold, Balakrish-
nan and Nagaraja [10]), record values, Kth record values and Pfeifer’s records
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(Ahsanullah [6]), sequential order statistics (SOS) (Cramer and Kamps [14]),
progressive Type-II censoring order statistics (PCOS) (Soliman [29] and Sarhan,
Ammar and Abuammoh [27]) and censoring schemes can be discussed as they are
special cases of the GOS, [for a survey of the models contained and of the results
obtained in the GOS, see Kamps [20].

Bayesian prediction intervals under GOS and record values have discussed
by many authors, Ahmadi, Doostparast and Parsian [5], Calabria and Pulcini [13],
AL-Hussaini and Jaheen [8], Nigm and Abd AL-wahab [25], Abd Ellah [1, 2, 3],
Soliman and Abd-Ellah [30], Escobar and Meeker [17], Soliman and Al-Ohaly
[31] present Bayes 2-sample prediction for the Pareto distribution and Raqab
and Balakrishnan [26].

The rest of the paper is as a follows. In Section 2, we present some prelim-
inaries as the model, the loss function , priors and the posterior and progressively
type-II censored data. In Section 3, Bayesian predictive distribution for the fu-
ture GOS in the two-sample prediction case based on past number of GOS, the
ML prediction both point and interval prediction using “plug-in” procedure are
derived and also, point and interval prediction for the lower record values based
on progressively type-II censored data and ordinary order statistics are obtained
as a special case of GOS. Finally, a practical example using real data set was
used for illustration are presented in Section 4.

In this paper we consider the problem of two side interval Bayesian pre-
diction, point prediction under symmetric and asymmetric loss functions and
maximum likelihood (ML) prediction for future observations from the inverse
Weibull distribution, based on (GOS), we will consider the two sample predic-
tion techniques, we will consider the past observations are order statistics and
progressive type II censored and the future observations are record values as a
special cases of GOS.

2. Preliminaries.

2.1. The model and the concept of the GOS. The IWD plays an
important role in many applications, including the dynamic components of diesel
engines and several data set such as the times to breakdown of an insulating fluid
subject to the action of a constant tension; see Nelson [24]. Calabria and Pulcini
[13] provide an interpretation of the IWD in the context of the load-strength
relationship for a component. Recently, Maswadah [22] has fitted the IWD to
the flood data reported in Dumonceaux and Antle [16]. For more details on
the IWD, see, for example Johnson et al. [18] and Murthy et al. [23]. The two
parameter IWD has probability density function (pdf), cumulative distribution
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function (cdf) and reliability function S(t), which are given respectively as

(1) f(x) = θβx−β−1 exp(−θx−β), x ≥ 0, θ, β > 0,

(2) F (x) = exp(−θx−β), x ≥ 0, θ, β > 0,

and the reliability function at time t is

(3) S(t) = 1 − exp(−θt−β), t ≥ 0, θ, β > 0,

where θ and β are scale and shape parameters respectively.

We recall the concept of GOS (cf. Kamps [17]).

Let n ∈ N , n ≥ 2 and m̃ = (m1,m2, . . . ,mn−1) ∈ ℜn−1, then the random
variables X(1, n, m̃, k), . . . ,X(n, n, m̃, k) are called the GOS if their joint pdf is
given by

(4) fX(1,n, em,k),...,X(n,n, em,k)
(x1, . . . , xn)

= cn−1

[
n−1∏

i = 1[F (xi]
mif(xi)

]
[F (xn)]

k−1f(xn),

For F−1 (0) < x1 ≤ · · · ≤ xn < F−1 (1), where

(5) cn−1 =

n∏

i=1

γi = k

n−1∏

i=1

γi, γj = k+ n− j +

n−1∑

i=j

mi and F (x) = 1−F (x).

Let x = X(1, n, m̃, k), . . . ,X(n, n, m̃, k) are n GOS drawn from inverse
Weibull distribution whose pdf is given by (1), the likelihood function (L.F), By
substituting (1), (2) in (3) we obtain

L(θ, β | x)

= cn−1θ
nβn

[
n∏

i=1

x−β−1
i

][
exp(−θ

n∑

i=1

x−βi )

][
n−1∏

i=1

(1 − exp(−θx−βi ))mi

]

(6) [1 − exp(−θx−βn )]k−1.
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The log-likelihood function is given by

(7) ℓ(θ, β | x) = ln cr−1 + r ln θ + r lnβ − (β + 1)
r∑

i=1

lnxi − θ
r∑

i=1

x−βi

+
r−1∑

i=1

mi ln(1 − exp(−θx−βi )) + (γr − 1) ln(1 − exp(−θx−βr )).

If both of the parameters θ and β are unknown, and from the log-likelihood
function given by (11) the MLEs, θ̂ML = θ̂ and β̂ML = β̂ can be obtained by the
numerical solution of the following eq.s

(8)
∂ℓ(θ, β | x)

∂θ
=
r

θ
−

r∑

i=1

x−βi

+

r−1∑

i=1

mix
−β
i exp(−θx−βi )

(1 − exp(−θx−βi ))
+

(γr − 1)x−βi exp(−θx−βi )

(1 − exp(−θx−βr ))
= 0,

(9)
∂ℓ(θ, β | x)

∂β
=
r

β
−

r∑

i=1

lnxi − θ
r−1∑

i=1

x−βi lnxi

− θ
r−1∑

i=1

mix
−β
i exp(−θx−βi ) lnxi

(1 − exp(−θx−βi ))
+

(γr − 1)x−βr exp(−θx−βr ) lnxr

(1 − exp(−θx−βr ))
= 0.

2.2. The loss function. It is well known that, for Bayesian prediction,
the result depends on the loss function assumed. So most authors use the simple
quadratic loss function (squared error (SE)) and obtain the posterior mean as
the Bayesian predictive estimate.

A number of asymmetric loss functions are proposed for use, among these,
one of the most popular asymmetric loss function is (linear-exponential) loss
function (LINEX). It is introduced by Varian [32].

Recently, many authors consider asymmetric loss functions in reliability
and used it in different estimation problems, such as (Wahed, Abdus [33] and
Jokiel-Rokita and Alicja [19]). This function rises approximately exponentially
on one side of zero and approximately linearly on the other side. Under the
assumption that the minimal loss occurs at ϕ̂ = ϕ, the LINEX loss function for
can be expressed as:

(10) L(∆) ∝ exp(c∆) − c∆ − 1; c 6= 0,
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where ∆ = ϕ̂ − ϕ, ϕ̂ is an estimate of ϕ. The sign and magnitude of the
shape parameter c represents the direction and degree of symmetry, respectively
(if c > 0, the overestimation is more serious than underestimation, and vice
versa). For c closed to zero, the LINEX loss is approximately squared error loss
and therefore almost symmetric. The posterior expectation of the LINEX loss
function (10) is

(11) Eϕ[L(ϕ̂− ϕ)] ∝ exp(cϕ̂)Eϕ[exp(−cϕ)] − c(ϕ̂− Eϕ(ϕ)) − 1,

where Eϕ(·) denotes the posterior expectation with respect to the posterior den-
sity of ϕ. The Bayes estimator of ϕ, denoted by ϕ̂BL under the LINEX loss
function is the value ϕ̂ which minimizes (11), it is

(12) ϕ̂BL = −
1

c
ln{Eϕ[exp(−cϕ)]},

provided that the expectation Eϕ[exp(−cϕ)] exists and is finite.

2.3. Prior and posterior distribution. When both of the two para-
meters θ and β are assumed to be unknown, Soland [28] considered a family of
joint prior distributions that places continuous distributions on the scale para-
meter and discrete distributions on the shape parameter. We assume that the
shape parameter β is restricted to a finite number of values β1, β2, . . . , βL with

respective prior probabilities ξ1, ξ2, . . . , ξL such that 0 ≤ ξj ≤ 1,

L∑

j=1

ξj = 1 and

P (β = βj) = ξj. Further, suppose that conditional upon β = βj, j = 1, 2, . . . ,L,
θ has a natural gamma (aj , bj) prior, with a density

(13) π(θ | β = βj) =
b
aj

j

Γ(aj)
θaj−1 exp[−bjθ], aj, bj , θ > 0.

Then the conditional posterior pdf of θ is given by

(14) π∗(θ | β = βj , x) = A1θ
n+aj−1 exp

[
−θ

(
n∑

i=1

x
−βj

i + bj

)]

×

[
n−1∏

i=1

(
1 − exp

(
−θx

−βj

i

))mi

] [
1 − exp

(
−θx

−βj

i

)]k−1
,

where

(15) A−1
1 =

m1∑

q1=0

· · ·

mn−1∑

qn−1=0

k−1∑

d=0

DΓ(n+ aj)

H (βj)
n+aj

.
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On applying the discrete version of Bayes theorem, the marginal probability
distribution of β is given by

(16) pj = P (β = βj | x) == A2

m1∑

q1=1

· · ·

mn−1∑

qn−1=1

k−1∑

d=1

νjb
aj

j β
n
j υjDΓ(n+ aj)

Γ(aj)H (βj)
n+aj

,

where

(17)





A−1
2 =

L∑

j=1

m1∑

q1=0

· · ·

mn−1∑

qn−1=0

k−1∑

d=0

Dνjb
aj

j β
n
j υjΓ(n+ aj)

Γ(aj)[H (βj)]n+aj
,

D = (−1)q1+···+qn−1+d

(
m1

q1

)
· · ·

(
mn−1

qn−1

)(
k − 1

d

)
,

H (βj) =

n∑

i=1

x
−βj

i +

n−1∑

i=1

qix
−βj

i + dx
−βj
n + bj,

υj =
n∏

i=1

x
−βj−1
i .

Then from (14) and (16) the joint posterior of the parameters θ and β is given
by

(18) π∗(θ, β | x) = pjπ
∗(θ | β = βj , x).

2.4. Progressively type-II censored data. A progressively Type-
II censored sample is observed as follows: n units are placed on a life-testing
experiment and only m ≤ n are completely observed until failure. The censoring
occurs progressively in m stages. The m stages are failure times of m completely
observed units. At the time of the first failure ( the first stage ), R1 of (n − 1)
surviving units are randomly withdrawn from the experiment, R2 of the (n−R1−
2) surviving units are withdrawn at the time of the second failure ( the second
stage ) and so on. Finally, at the time of the mth failure ( the mth stage ), all
the remaining (Rm = n−m−R1 − · · · −Rm−1) surviving units are withdrawn.
We will refer this to as progressively Type-II censoring scheme (R1, R2, . . . , Rm).

Then, we shall denote the m completely observed failure times by X
(R1,...,Rm)
i:m:n ,

i = 1, 2, . . . ,m.
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The progressively Type-II censored sample X
(R1,...,Rr)
1:n:N , . . . ,X

(R1,...,Rn)
n:n:N ,

with censoring scheme R̃ = (R1, . . . , Rn), and Ri ∈ N0, 1 ≤ i ≤ n, is a spe-
cial case of the GOS with the parameters mi = Ri, i = 1, 2, . . . , n − 1 and
k = γn = Rn + 1, see Burkschat et al. [8].

3. Prediction. In this section we will reduce Bayesian prediction for
inverse Weibull distribution based on GOS

3.1. Bayesian prediction based on GOS. Suppose that X(1, n, m̃, k),
. . . ,X(n, n, m̃, k), k > 0, m̃ = (m1,m2, . . . ,mn−1) ∈ ℜn−1, are the n GOS,

drawn from Inverse Weibull distribution, defined by (1). Let Z(1, N, M̃ ,K), . . . ,

Z(N,N, M̃ ,K), K > 0, M̃ = (M1,M2, . . . ,MN−1) ∈ ℜN−1 be a second indepen-
dent GOS of size N from the same distribution. Our aim is to develop a method
to construct a prediction interval for a number of future. This is the two-sample
prediction technique.

Let Zs denotes the sth GOS in the future sample of size N , 1 ≤ s ≤ N ,
the probability density function (pdf) of Zs, (M1 = · · · = MN−1 = M = −1), is
given by

(19) g1(zs | θ, β) =
ks

(s− 1)!
[F (zs)]

k−1f (zs) [gM (F (zs)]
s−1,

where

(20) gM (t) = hM (t) − hM (0),

and for 0 < t < 1

(21) hM (t) =

{
−(1 − t)M+1/(M + 1) M 6= −1,
− ln(1 − t) M = −1.

By substituting From (20) and (21) in (20), we obtain

(22) g1(zs | θ, β) =
ks

(s− 1)!
[F (zs)]

k−1f (zs) [− ln(1 − F (zs))]
s−1.

Applying (1) and (2) in (22), we obtain

(23) g1(zs | θ, β) =
ks

(s− 1)!
θβz−β−1

s exp(−θz−βs )

× [1 − exp(−θz−βs )]k−1[− ln(1 − exp(−θz−βs ))]s−1.
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When both of the two parameters θ and β are unknown, then the Bayesian
predictive density function of Zs, 1 ≤ s ≤ N , will be

(24) g2(zs | x) =

∫
∞

0

L∑

j=1

g1(zs | θ, βj)π
∗(θ, βj | x)dθ.

It follows that the Bayesian prediction intervals for the future sample Zs, s =
1, 2, . . . , N for some given value of λ1, is given by

(25) P [Zs ≥ λ1 | x] =

∫
∞

λ1

g2(zs | x)dzs.

The predictive bounds of two-sided interval with cover τ for the Zs, may thus be
obtained by solution the following two equations for the lower and upper Bayesian
prediction bounds Ls(x) and Us(x) for Zs, s = 1, 2, . . . , N :

(26) P [Zs ≥ Ls(x) | x] =
1 + τ

2
, P [Zs ≥ Us(x) | x] =

1 − τ

2
.

3.2. ML prediction for GOS. By replacing θ and β in the conditional
density function (22) by θ̂ and β̂ which we can find it from the numerical solution
of the eq.s (8) and (9), then

(27) g3(zs | θ̂, β̂) =
ks

(s− 1)!
θ̂β̂z−

bβ−1
s exp(−θ̂z−

bβ
s )

× [1 − exp(−θ̂z−
bβ

s )]k−1[− ln(1 − exp(−θ̂z−
bβ

s ))]s−1.

The ML prediction intervals for Zs, s = 1, 2, . . . , N are obtained by evaluating
P [Zs ≥ λ2 | x], for some given value of λ2. It follows, from (27) that

(28) P [Zs ≥ λ2 | x] =

∫
∞

λ2

g3(zs | θ̂, β̂)dzs.

The predictive bounds of a two-sided interval with cover τ , for Zs, s = 1, 2, . . . , N
can be obtained by solving the following two lower Ls(x) and upper Us(x) bounds:

(29) P [Zs ≥ Ls(x) | x] =
1 + τ

2
, and P [Zs ≥ Us(x) | x] =

1 − τ

2
.

3.3. Bayesian prediction based on progressive type II censored.
In this section we will predict of sample from lower record values based on pro-
gressive type II censored sample, then by putting k = 1 and replacing F (x) by
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F (x) in eq. (23), the pdf of future lower record values Zs, is given by

(30) g4(zs | θ, βj) =
1

Γ(s)
θsβjz

−sβj−1
s exp(−θz

−βj
s ).

From eq. (29) and eq. (18) in progressive type II censored (mi = Ri and k =
Rn + 1), then eq. (24), reduce to

g5(zs | x) =

L∑

j=1

A3p1jβjz
−sβj−1
s

Γ(s)

∫
∞

0
θn+s+aj−1 exp

[
−θ

(
n∑

i=1

x
−βj

i + z
−βj
s + bj

)]

×[

n∏

i=1

(1 − exp(−θx
−βj

i ))Ri ]dθ

=
L∑

j=1

R1∑

q1=0

· · ·

Rn∑

qn=0

D1A3p1jβjz
−sβj−1
s Γ(n+ s+ aj)

Γ(s)[T (βj) + z
−βj
s ]n+s+aj

,(31)

where

(32)





p1j = A4

R1∑

q1=0

· · ·

Rn∑

qn=0

νjb
aj

j β
n
j υjD1Γ(n+ aj)

Γ(aj)[T (βj)]n+aj

A−1
4 =

L∑

j=1

R1∑

q1=0

· · ·

Rn∑

qn=0

νjb
aj

j β
n
j υjD1Γ(n+ aj)

Γ(aj)[T (βj)]n+aj
,

T (βj) =

n∑

i=1

x
−βj

i +

n∑

i=1

qix
−βj

i + bj ,

A−1
3 =

R1∑

q1=0

· · ·

Rn∑

qn=0

D1Γ(n+ aj)

[T (βj)]n+aj
,

D1 = (−1)q1+···+qn

(
R1

q1

)
. . .

(
Rn
qn

)
.

Then the Bayesian prediction intervals for the future lower record value
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Zs, s = 1, 2, . . . , N , is given by

(33) P [Zs ≥ λ3 | x]

=
L∑

j=1

R1∑

q1=0

· · ·
Rn∑

qn=0

D1A3p1jΓ(n+ s+ aj)

sΓ(s)λ
sβj

3 [T (βj)](n+s+aj)
2F1

[
s, n+ s+ aj ; s+ 1;−

λ
−βj

3

T (βj)

]
,

where

2F1[a, b; c; z] =
∞∑

ℓ=0

(a)ℓ(b)ℓ
(c)ℓℓ!

zℓ, (w)ℓ = w(w + 1) . . . (w + ℓ− 1),

is the hypergeometric function.
The τ 100% Bayesian prediction bounds the future lower record value Zs,

s = 1, 2, . . . , N are obtained by solution the following two nonlinear eq.s for lower
bounds Ls(x) and upper bounds Us(x) :

(34)





L∑

j=1

R1∑

q1=0

· · ·

Rn∑

qn=0

D1A3p1jΓ(n+ s+ aj)

sΓ(s)[Ls(x)]sβj [T (βj)](n+s+aj)

×2F1

[
s, n+ s+ aj; s + 1;−

[Ls(x)]
−βj

T (βj)

]
=

1 + τ

2
,

L∑

j=1

R1∑

q1=0

· · ·
∑

qn = 0R1
D1A3p1jΓ(n+ s+ aj)

sΓ(s)[Us(x)]sβj [T (βj)](n+s+aj)

×2F1

[
s, n+ s+ aj; s+ 1;−

[Us(x)]
−βj

T (βj)

]
=

1 − τ

2
.

By using (31) the Bayes point predictor the future lower record value Zs
under SE and LINEX loss functions are given respectively, as

(35) Z̃s(BS) =

L∑

j=1

R1∑

q1=0

· · ·

Rn∑

qn=0

D1A3p1jβjΓ(n+ s+ aj)

Γ(s)
I1(zs, βj),

(36) Z̃s(BL) = −
1

c
Log




L∑

j=1

R1∑

q1=0

· · ·
Rn∑

qn=0

D1A3p1jβjΓ(n+ s+ aj)

Γ(s)
I2(zs, βj)


 ,
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where

(37)





I1(zs, βj) =

∫
∞

0
z
−sβj
s [T (βj) + z

−βj
s ]−(n+s+aj)dzs,

I2(zs, βj) =

∫
∞

0
z
−sβj−1
s e−czs [T (βj) + z

−βj
s ]−(n+s+aj)dzs.

Special case:
1. The τ 100% Bayesian prediction bounds for the first future lower record

value Z1 of the future sample of size N can be obtained by putting s = 1, in (34),
as

(38)





L∑

j=1

R1∑

q1=0

· · ·

Rn∑

qn=0

D1A3p1jΓ(n+ aj + 1)

[L1(x)]βj [T (βj)](n+aj+1)

×2F1

[
1, n+ aj + 1; 2;−

[L1(x)]
−βj

T (βj)

]
=

1 + τ

2
,

L∑

j=1

R1∑

q1=0

· · ·

Rn∑

qn=0

D1A3p1jΓ(n+ aj + 1)

[U1(x)]βj [T (βj)](n+aj+1)

×2F1

[
1, n + aj + 1; 2;−

[U1(x)]
−βj

T (βj)

]
=

1 − τ

2
.

2. The τ 100% Bayesian predictive bounds for the last future lower record
value ZN of the future sample of size N can be obtained by putting s = N , in
(34), as

(39)





L∑

j=1

R1∑

q1=1

· · ·

Rn∑

qn=1

D1A3p1jΓ(n+N + aj)

NΓ(N)[LN (x)]Nβj [T (βj)](n+N+aj)

×2F1

[
N,n+N + aj;N + 1;−

[LN (x)]−βj

T (βj)

]
=

1 + τ

2
,

L∑

j=1

R1∑

q1=0

· · ·
Rn∑

qn=0

D1A3p1jΓ(n+N + aj)

NΓ(N)[Un1(x)]
Nβj [T (βj)](n+N+aj )

×2F1

[
N,n+N + aj ;N + 1;−

[UN (x)]−βj

T (βj)

]
=

1 − τ

2
.

3. The Bayesian point prediction for the first future lower record value
Z1 of the future sample of size N can be obtained by putting s = 1, in (35) and
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(36), as

(40) Z̃1(BS) =

L∑

j=1

R1∑

q1=0

· · ·

Rn∑

qn=0

D1A3p1jβjΓ(n+ aj + 1)I1(z1, βj),

(41) Z̃1(BL) = −
1

c
Log




L∑

j=1

R1∑

q1=0

· · ·

Rn∑

qn=0

D1A3p1jβjΓ(n+ aj + 1)I2(z1, βj)


 ,

where I1(z1, βj) and I2(z1, βj) defined from (37) with s = 1.

4. The Bayesian point prediction for the Last future lower record value
ZN of the future sample of size N can be obtained by putting s = N , in (35) and
(36), as

(42) Z̃N(BS) =
L∑

j=1

R1∑

q1=1

· · ·
Rn∑

qn=1

D1A3p1jβjΓ(n+N + aj)

Γ(N)
I1(zN , βj),

(43) Z̃N(BL) = −
1

c
Log




L∑

j=1

R1∑

q1=1

· · ·

Rn∑

qn=1

D1A3p1jβjΓ(n+N + aj)

Γ(N)
I2(zN , βj)


 ,

where I1(zN , βj) and I2(zN , βj) defined from (37) with s = N .

3.4. Bayesian prediction based on order statistics. In this subsec-
tion we will predict lower record values sample from the order statistics sample
so let (m1 = m2 = · · · = mn−1 = 0 and k = 1) in eq. (18) and (M1 = M2 =
· · · = MN−1 = −1) and k = 1 and replace F (zs) by F (zs)) in eq. (23), then eq.
(24), reduce to

g6(zs | x) =
L∑

j=1

p2jβj [φ(βj)]
n+ajz

−sβj−1
s

Γ(s)Γ(n+ aj)

∫
∞

0
θn+s+aj−1 exp[φ(βj) + z

−βj
s ]dθ,

(44) =
L∑

j=1

p2jβj[φ(βj)]
n+ajz

−sβj−1
s

Bet(n+ aj , s)[φ(βj) + z
−βj
s ]n+s+aj

,
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where

(45)





p2j = A4

ξjb
aj

j β
n
j υjΓ(n+ aj)

Γ(aj)[φ(βj)]n+aj
, φ(βj) =

n∑

i=1

x
−βj

i + bj ,

A−1
4 =

L∑

j=1

ξjb
aj

j β
n
j υjΓ(n+ aj)

Γ(aj)[φ(βj)]n+aj
.

Then the Bayesian prediction intervals for the future lower record value Zs, s =
1, 2, . . . , N , is given by

P [Zs ≥ λ4 | x] =

L∑

j=1

p2jβj [φ(βj)]
n+aj

Bet(n+ aj , s)

∞∫

λ4

z
−sβj−1
s [φ(βj) + z

−βj
s ]−(n+s+aj)dzs

(46) =

L∑

j=1

p2j[φ(βj)]
−s[λ4]

−sβj

sBet(n+ aj , s)
2F1

[
s, n+ s+ aj ; s+ 1;−

[λ4]
−βj

φ(βj)

]
.

The τ 100% Bayesian predictive bounds the future lower record value Zs, s =
1, 2, . . . , N , are obtained by solution the following two nonlinear equations for
lower bounds Ls(x) and upper bounds Us(x) :

(47)





L∑

j=1

p2j [φ(βj)]
−s[Ls(x)]

−sβj

sBet(n+ aj , s)

×2F1

[
s, n+ s+ aj ; s+ 1;−

[Ls(x)]−βj

φ(βj)

]
=

1 + τ

2
,

L∑

j=1

p2j [φ(βj)]
−s[Us(x)]

−sβj

sBet(n+ aj , s)

×2F1

[
s, n+ s+ aj ; s+ 1;−

[Us(x)]−βj

φ(βj)

]
=

1 − τ

2
.

By using (44) the Bayes point predictor the future lower record value Zs under
SE and LINEX loss functions are given, respectively, as

(48) Z̃s(BS) =
L∑

j=1

p∗jβj [φ(βj)]
n+aj I3(zs, βj)

Bet(n+ aj, s)
,
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(49) Z̃s(BL) = −
1

c
Log




L∑

j=1

p∗jβj [φ(βj)]
n+aj I4(zs, βj)

Bet(n+ aj, s)


 ,

where

(50)





I3(zs, βj) =

∫
∞

0
z
−sβj
s [φ(βj) + z

−βj
s ]−(n+s+aj)dzs,

I4(zs, βj) =

∫
∞

0
z
−sβj−1
s e−czs [φ(βj) + z

−βj
s ]−(n+s+aj)dzs.

Special case:
1. The τ 100% Bayesian prediction bounds for the first future lower record

value Z1 of the future sample of size N can be obtained by putting s = 1, in (47),
as

(51)





L∑

j=1

p2j(n + aj)[L1(x)]
−βj

[φ(βj)]
2F1

[
1, n+ aj + 1; 2;−

[L1(x)]
−βj

φ(βj)

]
=

1 + τ

2
,

L∑

j=1

p2j(n + aj)[U1(x)]−βj

[φ(βj)]
2F1

[
1, n + aj + 1; 2;−

[U1(x)]−βj

φ(βj)

]
=

1 − τ

2
.

2. The τ 100% Bayesian prediction bounds for the last future lower record
value ZN of the future sample of size N can be obtained by putting s = N , in
(47), as

(52)





L∑

j=1

p2j [φ(βj)]
−N [LN (x)]−Nβj

NBet(n+ aj, N)

×2F1

[
N,n+N + aj;N + 1;−

[LN (x)]−βj

φ(βj)

]
=

1 + τ

2
,

L∑

j=1

p2j [φ(βj)]
−N [UN (x)]−Nβj

NBet(n+ aj, N)

×2F1

[
N,n +N + aj;N + 1;−

[UN (x)]−βj

φ(βj)

]
=

1 − τ

2
.
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3. The Bayesian point prediction for the first future lower record value
Z1 of the future sample of size N can be obtained by putting s = 1, in (48) and
(49), as:

(53) Z̃1(BS) =

L∑

j=1

p∗jβj [φ(βj)]
n+aj

Bet(n+ aj , 1)
I3(z1, βj),

(54) Z̃1(BL) = −
1

c
Log




L∑

j=1

p∗jβj [φ(βj)]
n+aj

Bet(n+ aj , 1)
I4(z1, βj)


 ,

where I3(z1, βj) and I4(z1, βj) defined from (50) by putting s = 1.

4. The Bayesian point prediction for the Last ZN observation of the future
sample of size N can be obtained by putting s = N , in (48) and (49), as

(55) Z̃N(BS) =

L∑

j=1

p∗jβj [φ(βj)]
n+aj

Bet(n+ aj, N)
I3(zN , βj),

(56) Z̃N(BL) = −
1

c
Log




L∑

j=1

p∗jβj [φ(βj)]
n+aj

Bet(n+ aj , N)
I3(zN , βj)


 ,

where I3(zN , βj) and I4(zN , βj) defined from (50) by putting s = N .

3.5. ML prediction for record values. From eq. (27) the density
function for future lower record values Zs, s = 1, 2, . . . , N , is given by

(57) q(zs | θ̂, β̂) =
1

(s − 1)!
θ̂sβ̂z−s

bβ−1
s exp(−θ̂z−

bβ
s ).

Then from eq.s (28) and (29) the τ 100% ML prediction intervals for the future
lower record values Zs , s = 1, 2, . . . , N , is given by numerical solution of the
following eq.s

(58)





θ̂s

Γ(s)
InGamma (s, θ̂s, [Ls(x)]

−bβ) =
1 + τ

2
,

θ̂

Γ(s)
InGamma (s, θ̂s, [Us(x)]

−bβ) =
1 − τ

2
.
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where InGamma (t1, t2, ϕ) is the incomplete Gamma function defined by

(59) InGamma(t1, t2, ψ) =

∫ ψ

0
yt1−1 exp[−t2y]dy.

By using (57) the ML point predictor for the future lower record values Zs,
s = 1, 2, . . . , N , is given by

(60) E(Zs) =
θ̂sβ̂

(s− 1)!

∫
∞

0
z−s

bβ
s exp(−θ̂z−

bβ
s )dzs =

Γ[s− (1/β̂)] θ̂
1bβ

Γ(s)
.

Special case:
1. The τ 100% ML prediction intervals for the first future lower record

value Z1 of the future sample of size N can be obtained by putting s = 1, in (58),
as

(61)





θ̂InGamma(1, θ̂, [L1(x)]−
bβ) =

1 + τ

2
,

θ̂InGamma(1, θ̂, [U1(x)]
−bβ) =

1 − τ

2
.

2. The τ 100% ML prediction intervals for the last future lower record
value ZN of the future sample of size N can be obtained by putting s = N , in
(58), as

(62)





θ̂N

Γ(N)
InGamma(N, θ̂, [LN (x)]−

bβ) =
1 + τ

2
,

θ̂N

Γ(N)
InGamma(N, θ̂, [UN (x)]−

bβ) =
1 − τ

2
.

3. TheML point prediction for the first and last future lower record value
Z1 and ZN of the future sample of size N can be obtained by putting s = 1and
s = N respectively, in (60), as

(63) E(Z1) = θ̂
1bβ Γ[1 − (1/β̂)],

(64) E(ZN ) = θ̂
1bβ Γ[N − (1/β̂)]/Γ(N).
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4. Application examples.

Example (Real data).
I) Prediction based on progressive type II censored. Consider the

data given by Dumonceaux and Antle [13], represents the maximum flood levels
(in millions of cubic feet per second) of the Susquehenna River at Harrisburg,
Pennsylvenia over 20 four-year periods (1890−1969) as: 0.654, 0.613, 0.315, 0.449,
0.297, 0.402, 0.379, 0.423, 0.379, 0.324, 0.269, 0.740, 0.418, 0.412, 0.494, 0.416,
0.338, 0.392, 0.484, 0.265. Therefore, we observe the following order statistics :
0.265, 0.269, 0.297, 0.315, 0.324, 0.338, 0.379, 0.379, 0.392, 0.402, 0.412, 0.416,
0.418, 0.423, 0.449, 0.484, 0.494, 0.613, 0.654, 0.74. We can obtain the values of
(aj , bj) by using the expected values of the reliability S(t);

E[S(t) | β = βj ] =

∫

θ

(1 − exp(−θt−βj))
b
aj

j θ
aj−1 exp[−bjθ]

Γ(aj)
dθ

(65) = 1 −

(
1 +

t−βj

bj

)−aj

, t > 0.

Now suppose that the prior beliefs about the distribution enable one to specify
two values (S(t1), t1) and (S(t2), t2) . Then the values of aj , bj can by obtained
numerically from (65). If there are no prior beliefs, a nonparametric approach
can be used to estimate the two values of S(t) by using

(66) S(ti = Xi) =
n− i+ 0.625

n+ 0.25
.

See Martez and Waller [18].
By using the nonparametric approach of the reliability function , we set

t1 = 0.412 and t2 = 0.338 in (66), we get S(t1) = 0.47 and S(t2) = 0.72.
For L = 10 concerning the value of the MLE of the parameter β, (β̂ =

2.5743 ), we assume that βj takes the values: 2.3 (0.1) 3.2 with equal probabilities
each of 0.1. Then the values of the hyper-parameters aj , bj at each value of βj
are obtained by solving the following equations using Newton-Raphson method.

(67) 1 − (1 +
0.412−βj

bj
)−aj = 0.47,

(68) 1 − (1 +
0.338−βj

bj
)−aj = 0.72.



62 A. H. Abd Ellah

Table 1. Progressive type II censored sample (m = 8, n = 20)

i 1 2 3 4 5 6 7 8

xi,m,n 0.265 0.269 0.297 0.392 0.402 0.484 0.494 0.613

Ri 0 0 5 0 5 0 0 2

Table 1 shows the values of the progressive type II censored data

In Table 2 and Table 3 we reduce the 90% , 95% Bayesian prediction
intervals (BPI) for the future lower record Zs, s = 1, 2, 3, 4, 5 and the Bayes
point prediction, under SE and LINEX loss function based on progressive type
II censored data.

Table 2. 90% and 95% BPI for lower records Zs, s = 1, 2, 3, 4, 5 based
on progressive type II censored data

s 90% BPI Length 95% BPI Length

1 [0.2791, 1.3424] 1.0633 [0.2564, 1.7676] 1.5110

2 [0.2332, 0.6480] 0.4147 [0.2174, 0.7533] 0.5358

3 [0.2082, 0.4743] 0.2660 [0.1955, 0.5295] 0.3340

4 [0.1913, 0.3920] 0.2006 [0.1803, 0.4286] 0.2483

5 [0.1787, 0.3427] 0.1639 [0.1688, 0.3699] 0.2011

Table 3. Bayesian point prediction for lower records Zs, s = 1, 2, 3, 4, 5 based
on progressive type II censored data under SE and LINEX loss function

s SE LINEX

c = 0.1 c = 0.5 c = 1

1 0.6235 0.6103 0.5785 0.5530

2 0.3872 0.3861 0.3822 0.3777

3 0.3142 0.3139 0.3124 0.3106

4 0.2749 0.2747 0.2739 0.2729

5 0.2491 0.2490 0.2485 0.2478

In Table 4 we reduce the 90% , 95% ML prediction intervals (MLPI) for
the future lower record Zs, s = 1, 2, 3, 4, 5 and the ML point prediction based on
Progressive type II censored sample.
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Table 4. 90% and 95% MLPI and ML point prediction for lower records Zs,
s = 1, 2, 3, 4, 5 based on progressive type II censored data

s 90% MLPI Length 95% MLPI Length Point P.

1 [0.2781, 1.3500] 1.0719 [0.2565, 1.7760] 1.5195 0.6231

2 [0.2326, 0.6365] 0.4039 [0.2185, 0.7387] 0.5202 0.3811

3 [0.2084, 0.4605] 0.2521 [0.1975, 0.5132] 0.3156 0.3071

4 [0.1922, 0.3772] 0.1850 [0.1832, 0.4118] 0.2286 0.2673

5 [0.1802, 0.3272] 0.1470 [0.1725, 0.3528] 0.1803 0.2413

II) Prediction based on order statistics. By using the real data in (I)
and for L = 10 concerning the value of the MLE of the parameter β, (β̂ = 4.314),
we assume that βj takes the values: 4 (0.1) 4.9 with equal probabilities each of
0.1.

Then the values of the hyper-parameters aj , bj at each value of βj are
obtained by using the same way in (I).

In Table 5 and Table 6 we reduce the 90% , 95% Bayesian prediction
intervals for the future lower record Zs, s = 1, 2, 3, 4, 5 and the Bayes point
prediction, under SE and LINEX loss function based on order statistics.

Table 5. 90% and 95% BPI for lower records Zs, s = 1, 2, 3, 4, 5 based on order statistics

s 90% BPI Length 95% BPI Length

1 [0.2780, 0.7189] 0.4409 [0.2641, 0.8472] 0.5830

2 [0.2492, 0.4618] 0.2126 [0.2391, 0.5051] 0.2659

3 [0.2328, 0.3821] 0.1493 [0.2244, 0.4080] 0.1836

4 [0.2213, 0.3403] 0.1190 [0.2139, 0.3589] 0.1451

5 [0.2125, 0.3135] 0.1009 [0.2057, 0.3282] 0.1225

Table 6. Bayesian point prediction for lower records Zs, s = 1, 2, 3, 4, 5 based on order
statistics

s SE LINEX

c = 0.1 c = 0.5 c = 1

1 0.4337 0.4323 0.4274 0.4221

2 0.3340 0.3338 0.3328 0.3317

3 0.2957 0.2956 0.2951 0.2946

4 0.2731 0.2730 0.2727 0.2724

5 0.2574 0.2574 0.2572 0.2569
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In Table 7 we reduce the 90%, 95% ML prediction intervals for the future
lower record Zs, s = 1, 2, 3, 4, 5 and the ML point prediction based on order
statistics.

Table 7. 90% and 95% MLPI and ML point prediction for lower records Zs,
s = 1, 2, 3, 4, 5 based on order statistics

s 90% MLPI Length 95% MLPI Length Point P.

1 [0.2779, 0.7133] 0.4355 [0.2648, 0.8402] 0.5754 0.4307

2 [0.2498, 0.4555] 0.2057 [0.2407, 0.4978] 0.2571 0.3309

3 [0.2339, 0.3755] 0.1415 [0.2266, 0.4005] 0.1739 0.2925

4 [0.2229, 0.3333] 0.1104 [0.2166, 0.3512] 0.1346 0.2699

5 [0.2145, 0.3062] 0.0917 [0.2090, 0.3202] 0.1113 0.2543
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