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ABSTRACT. In this paper, we research some fundamental properties of con-
tact CR-Submanifolds of a Kenmotsu manifold. We show that the anti-
invariant distribution is always integrable and give a necessary and sufficient
condition for the invariant distribution to be integrable. After then, prop-
erties of the induced structures on submanifold by almost contact metric
structure on the ambient manifold are categorized. Finally, we give some re-
sults for contact CR-product and totally umbilical contact CR-submanifold
in a Kenmotsu manifold and Kenmotsu space form.

1. Introduction. The geometry of semi-invariant submanifolds of a
Kenmotsu manifold has been defined and ivestigated by K. Kenmotsu and M.
Kobayashi [4, 6]. Furthermore, many geometers contributed to study of sev-
eral classes of different manifolds with endowed Riemannian metric tensor[see
references]. In present paper deal with the geometry of leaves of contact CR-
submanifolds of a Kenmotsu manifold.
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In particular, we obtain necessary and sufficient conditions for the con-
tact CR-submanifold to be CR-product, D-geodesic and D+ -geodesic. Further-
more, we get an inequality for the squared norm of the second fundamental
form in terms of the dimensional of distributions which are involved definition
of contact CR-submanifold in a Kenmotsu manifold. Finally, we discuss contact
CR-products and totally umbilical contact CR-submanifolds(CR-products) in a
Kenmotsu space form M (c).

2. Preliminaries. In this section, we give some notations used through-
out this paper. We recall some necessary facts and formulas from the theory of
Kenmotsu manifolds and their submanifolds.

A (2m + 1)-dimensional Riemannian manifold (M, g) is said to be an
almost contact metric manifold if it admits an endomorphism ¢ of its tangent
bundle TM, a vector field ¢ and a 1-form 7, satisfying

(1) P*°X =X +n(X)§, ¢£=0, n() =1, n(¢X)=0
and
(2) 9(@X,9Y) = g(X,Y) —n(X)n(Y), n(X)=g(X,¢)

for any vector fields X,Y tangent to M. Furthermore, an almost contact metric
manifold is called a Kenmotsu manifold if ¢ and & satisfy

(3) (Vx)Y = g(6X,Y)E —n(Y)$X and Vxé=—¢"X = X —n(X)E,

where V denotes the Levi-Civita connection on M [2].

Now, let M be a 2n + 1-dimensional Kenmotsu manifolds with structure
tensors (¢,&,n,9) and M be an m-dimensional isometrically immersed submani-
fold in M. Moreover, we denote the Levi-Civita connections by V and V, respec-
tively. Then the Gauss and Weingarten formula’s for M in M are, respectively,

given by
(4) VxY =VxY +h(X,Y)

(5) VxV =—-AyX + ViV

for any vector fields X,Y tangent to M and vector V normal to M, where V= is
the normal connection on T+M, h and A denote the second fundamental form
and shape operator of M in M, respectively. The A and h are related by

(6) g(h’(va)?V) :g(AVX7Y)'
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We denote the Riemannian curvature tensor of the induced connection V by R.
Then the Gauss and Codazzi equations are, respectively, given by

(7) (RX,Y)Z)" = R(X,Y)Z + Apx.0)Y — Apyy X
and

for any vector fields X, Y, Z tangent to M, where the covariant derivative of A is
defined by

(9) (Vxh)(Y,Z) = Vih(Y,Z) —h(VxY,Z) — h(Y,VxZ)

for any vector fields X, Y, Z tangent to M, where_(R(X, Y)Z)+ and (R(X,Y)Z)T
denote the normal and tangent components of R(X,Y)Z, respectively.
For any vector field X tangent to M, we set

(10) X = X +wX,

where fX and wX are the tangential and normal components of ¢.X, respectively.
Then f is an endomorphism of the T'M and w is a normal-bundle valued 1-form
of TM. For the same reason, any vector field V' normal to M, we set

(11) ¢V = BV + CV,

where BV and C'V are the tangential and normal components of ¢V, respectively.
Then B is an endomorphism of the normal bundle T+M of TM and C is a
tangent-bundle valued 1-form of 7M.

Let R be the curvature tensor of the connection V. The sectional cur-
vature of a ¢-section is called a ¢-sectional curvature. A Kenmotsu manifold
with constant ¢-sectional curvature c is said to be a Kenmotsu space form and
is denoted by M (c). The curvature tensor R of a Kenmotsu space form M (c) is
given

c+1

— C —

RXY)Z = SV 2)X — (X, 20V} + S (n(X)n(2)Y (Y )n(2)X

+ n(Y)g(X,Z)§ —n(X)g(Y,Z)§ + 9(X,02)pY — g(Y,0Z)pX
(12) + 29(X,9Y)pZ}

for any vector fields X,Y, Z tangent to M [1].
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3. Contact CR-submanifolds in Kenmotsu manifolds. In this
section, we shall define contact CR-submanifolds in a Kenmotsu manifold and
research fundamental properties of their from theory of submanifold.

Let M be an isometrically immersed in an almost contact metric manifold
M, then for every x € M, there exists a maximal invariant subspace denoted by
D, of the tangent space T, M of M. If the dimension of D, is the same for all
value of x € M, then D, gives an invariant distribution D on M.

Definition 3.1. A submanifold M of a Kenmotsu manifold M is called
contact CR-submanifold if there exists on M o differentiable invariant distribution
D whose orthogonal complementary distribution D+ is anti-invariant, i.e.,

1.)YTM=D@D+, ¢€D
2') ¢(Dm) = Dy,
3.) ¢(Dy) C (T M),
for any x € M. A contact CR-submanifold is called anti-invariant(or, totally
real) if D, = {0} and invariant(or, holomorphic) if D = {0}, respectively, for
any x € M. It is called proper contact CR-submanifold if neither D, = {0} nor
D; = {0}.

Next, let M be a contact CR-submanifold of a Kenmotsu manifold M.
Then from the (1), (10) and (11), we can write as the following way;

(13) f°X + BwX = -X +n(X)§, wfX+CwX =0,

(14) fBV + BCV =0 and wBV +C?V = -V

for any vector fields X tangent to M and V normal to M.

Proposition 3.1. Let M be a contact CR-submanifold of a Kenmotsu
manifold M. For any vector field X tangent to M belong to D (resp. D*) is
necessary and sufficient that wX =0 (resp. fX =0).

Furthermore, taking account of (2) and Proposition 3.1, we have
(15) PX ==X +n(X)¢
for any vector field X in D. Moreover
(16) 9g(f X, fY) = g(X,Y) = n(X)n(Y)

for any vector fields X,Y in D.
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Proposition 3.2. Let M be a contact CR-submanifold of a Kenmotsu
manifold M. Then the invariant distribution D has an almost contact metric
structure (f,&,n,9) and so dim(D)=odd.

We denote by v the orthogonal distribution ¢ D+ in 7M. Then we have
(17) T+M = ¢D* @v and ¢D* Lv.

From (17), it can easily to see that v is an invariant distribution with
respect to ¢ and it has an almost complex structure C and so v is even dimen-
sional.

Let M be a contact CR-submanifold of a Kenmotsu manifold M. By
using (4), (5), (10) and (11) we have

(18) (Vx )Y = Auy X + BMX,Y) + g(fX,Y)§ —n(Y)fX
and
(19) (Vxw)Y =Ch(X,Y) - h(X, fY) —n(Y)wX,

where the covariant derivatives of f and w are defined by
(Vxf)Y =VxfY — f(VxY) and (Vxw)Y = VxwY —w(VxY)

for any vector fields X,Y tangent to M.

~ Theorem 3.1. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M. Then the anti-invariant distribution D+ is always integrable.

Proof. For any vector fields Z, W tangent to D+, by using (18), we have
[(VzW) = —-Bh(Z,W) - Ayw Z
which is also equivalent to
(20) FlZ, W] = ApzW — Ayw Z.
On the other hand, we obtain
9(Aew Z2,U) = g(h(U,2),¢oW) = —g(6(VuZ), W) = —9(VuoZ — (Vu¢)Z, W)
(21) = 9(AezW,U) + g(—n(2)oU + g(¢U, Z)§, W) = g(Agz W, U)
for any U € I'(T'M). It implies that
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for any vector fields Z,WW € T(D'). By combining of (20) and (22), we get
flZ,W] =0, that is, [Z, W] € T'(D+) which proves our assertion. [

_ Theorem 3.2. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M. Then the invariant distribution D is integrable if and only if the second
fundamental form of M satisfies

(23) WX, ¢Y) = h(pX,Y)

for any X,Y € I'(D).
Proof. For any vector fields X,Y in D, making use of (3) and (4), we

have
PX,Y] = ¢(VxY —VyX)=¢(VxY —VyX)=Vxo¢Y — (Vx§)Y
— VyoX + (Vyd)X = VxoY — VyoX + h(X,¢Y) — h(Y, $X)
(24) = (X)eY +n(Y)oX + g(oY, X)€ — g(6X, V).

From the normal components of (24), we conclude
Thus D is integrable if and only if (23) is satisfied. O

Proposition 3.3. Let M be a contact CR-submanifold of a Kenmotsu
manifold M. The invariant distribution D is integrable if 1-form w is parallel.

Proof. If 1-form w is parallel, then from (19) we have Ch(X,Y) =
X, fY) for any X,Y € I'(D). It implies (23). O

Let M be a contact CR-submanifold of a Kenmotsu manifold M. For any
vector fields U tangent to M and V normal to M, by using (3), (4), (5) and (11)
we have

(Vup)V = VyoV —¢(VyV)
g(@pU, V)¢ = (VuB)V + (VyCO)V + h(U, BV) + wAyU
(26) + —AcvU+ fAyU.

The tangential and normal components of (26), respectively, we have

(27) (VuB)V = g(oU,V)§+ AcvU — fAVU
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and

(28) (VuC)W = —h(U,BV)—wAyU,

where the covariant derivatives of B and C' are, respectively, defined by
(VuB)V = VyBV — B(V$V) and (VyO)V = VECV — C(VEV).

Furthermore, for any X,Y € I'(D), the Equation (18) reduces

(29) (Vx /)Y = Bh(X,Y) +g(fX.Y)¢ (V) fX.

Thus we have the following Proposition.

Proposition 3.4. Let M be a contact CR-submanifold of a Kenmotsu
manifold M. Then induced structure (f,&,m,g) is an almost contact metric struc-
ture on D if and only if Bh(X,Y) =0 for any X,Y € T'(D).

~Lemma 3.1. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M. M is anti-invariant submanifold of Kenmotsu manifold M if and only
if the endomorphism f is parallel.

Proof. If f is parallel, then from (29) we have
(30) Bh(X,Y) +g(fX,Y)§ =n(Y)fX =0

for any X, Y € I'(D). Taking Y = ¢ in (30), we get Bh(X,&)+g(fX,&)—fX = 0.
Since h(X,£) = 0 and f§ = 0, we conclude fX = 0 which implies M is anti-
invariant submanifold.

Conversely, we suppose that M is anti-invariant. Then form (29), we have

(Vx )Y = —f(VxY) = BhX,Y),

for any X,Y € I'(TM). Because M is anti-invariant, f(VxY) € ['(TM~) and
Bh(X,Y) € I'(TM), we conclude —f(VxY) = Bh(X,Y) = 0. Thus we get the
desired result. O

~ Theorem 3.3. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M. Then the anti-invariant distribution D' is totally geodesic in M if and
only if (X, Z) € T'(v) for any X € T(D) and Z € T'(D%).
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Proof. For any Z,W € I'(D+) and X € I'(D), we have
9(VzW,6X) = g(VzW,0X) = —g(VzoX, W)
= —9((Vz29)X + ¢VzX, W)
= —g9(-n(X)9Z +9(¢Z, X)E, W) + g(Vz X, oW)
= 9(MX,2),0W)
Thus VW € I'(D1) if and only if h(X,Z) € I'(v). O
Theorem 3.4. Let M be a contact CR-submanifold of a Kenmotsu man-

ifold M. Then the invariant distribution D is totally geodesic in M if and only if
the second fundamental form of M satisfies h(X,Y) € T'(v) for any X,Y € T'(D).

Proof.
9(VxoY,Z) = g(VxoY,Z) = g((Vx9)Y + ¢(VxY),Z)
= 9(g(¢X,Y)§ —n(Y)$X, Z) — (VxY,92)
= 96X, Y)n(Z) —n(Y)g(¢X,Z) — g(h(X,Y),¢Z)
(31) = —9(h(X,Y),02)

forany X,Y € I'(D) and Z € I'(D1). Thus VxY € I'(D) if and only if h(X,Y) €
I'(v). This completes of the proof. O

4. Contact CR-products in a Kenmotsu manifold. In this
section we shall define a contact CR-product in Kenmotsu manifolds, give a
necessary and sufficient condition that a contact CR-submanifold to be a contact
CR-product and we research contact CR products and totally umbilical contact
CR-(submanifolds)products in a Kenmotsu space form M (c).

Definition 4.1. A contact CR-submanifold M of a Kenmotsu manifold
M is called a contact CR-product if Mp and M| are totally geodesic submanifolds
of M, where My and M| denote the integral manifolds of the leaves of D and
D+, respectively.

Next we shall prove the following Theorem.

Theorem 4.1. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M. M is a contact CR-product if and only if the shape operator of M
satisfies
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Proof. We suppose that M be a contact CR-product in a Kenmotsu
manifold M. From Theorem 3.3 and Theorem 3.4, respectively, we have AgzX €
['(D) and AyzX € I'(D4) for any X € I'(D) and Z € I'(D1). It imply that (32)
is satisfied.

Conversely, (32) is satisfied. Then Theorem 3.3 and Theorem 3.4 tell us
that Mr and M are totally geodesic submanifolds in M. Thus M is a contact
CR-product. Hence the theorem is proved completely. O

Now, let M be a contact CR-product of a Kemotsu space form {\_4 (c), we
shall calculate bisectional sectional curvature of Kenmotsu manifold M (c). By
using (8), (9) and considering Theorem 3.3 and Theorem 3.4, we have

—Hp(X,Z) = g(R(X,¢X)Z,0Z) = g(Vxh)($X,Z) — (Vexh)(X, Z),¢Z)

= g(Vxh(¢X,Z) - WVx¢X,Z) — M(VxZ,¢$X),$Z)
—g(Vix (X, Z) = W(Vyx X, Z) = W(Vyx Z, X), 0 Z)

= Xg(MX,Z),62) - g(Vx¢Z, W$X, Z)) — $Xg(M(X, Z),$Z)
+9(Vox9Z, WX, Z))

= 9(Vex9)Z + 6(Vyx 2), M(X, 2)) — g((Vx9)Z
+6(VxZ), (X, Z))

= 9(—n(2)$*X + g(¢*X, 2)¢ + ¢(Vyx Z), (X, Z))
—g(—n(2)¢X + g(6X, )¢ + ¢(Vx Z), h(¢X, Z))

= g(ph(¢X, Z), h(X, Z)) — g(¢h(X, Z), h(¢ X, Z))

= 2g(oh(¢X, Z), h(X, Z))

= —29(Vz0X,6h(X, Z)) = —29(V24)X + ¢(Vx Z), 6h(X, Z))

= —29(-n(X)$Z + g(¢Z, X)¢ + oh(X, Z), $h(X, Z))

= —29(h(X, Z),MX, Z)) = =2|h(X, Z)|*,

for any X € I'(D) and Z € T(D+). So we get
(33) Hp(X, Z) = 2||(X, Z)|".

Thus we have following the Theorem.
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Theorem 4.2. Let M be a contact CR-product of a Kenmotsu space
form M (c) with constant ¢-holomorphic sectional curvature c. Then there do not
exist contact CR-products in a Kenmotsu space form M(c) such that ¢ < —1.

Proof. We suppose that M is a contact CR-product in Kenmotsu space
form M(c). Then from (3) and (4), we know h(Z,¢) = 0. By using (12) and (33),
we have

c+1

G(R(X,6X)02.2) = ( ){g<X,X>—n2<X>}g<Z,Z>

(C; 1) 96X, 6X)g(Z. 2) = 2| h(X, Z)|*,

for any X € I'(D) and Z € T'(D+). So we have

c+1
(31) Inx, 21 = () a2, 219(0x.03)
for any X € T'(D) and Z € I'(D*). This equality is impossible for ¢ < —1. This
proves our assertion. [

B Theorem 4.3. Let M be a contact CR-product in Kenmotsu space form
M(c). Then we have

c+1
(35) = {5 b
where dim D = 2p + 1 and dim D+ = q.
Proof. Let {e1,e2,...,e9,&, el e?,...,e?} be an orthonormal basis of

['(T'M) such that ey, es, ..., ez, § are tangent to I'(D) and el,e?,... el are tan-
gent to D*. Then norm of the second fundamental form || A || is defined by

p q
Ih)? = g(h(eire;), hlei ) + Y g(h(e”, e), h(e %))
i,j=1 r,s=1
p q
+ QZZQ 61: 6176))
i=1 r=1

Taking X = eq,e2,...,€2,,§ and Z = el e?,

c+1
11> (5 ) o .

.,e?in (34), then we obtain
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Contact CR-submanifold M is called a totally umbilical contact CR-
submanifold if its second fundamental form h satisfies h(X,Y) = ¢g(X,Y)H,
for any X, Y € I'(T'M ), where H denote the mean curvature vector of M.

_Theorem 4.4. Let M be a contact CR-submanifold of a Kenmotsu space
form M (c). There exist no totally umbilical contact CR-submanifolds in a Ken-
motsu space form M(c) such that ¢ # —1.

Proof. Wesuppose that M is a totally umbilical contact CR-submanifold
in Kenmotsu space form M (c). Then by using (8), we obtain
9(R(¢X,X)Z,0Z) = 9(X,2)9(VixH,6Z) - 9(¢X, 2)g(Vx H,$Z)
(36) = 0,

for any X € I'(D) and Z € T'(D1). Since the ambient space M is a Kenmotsu
space form, from (12) we infer

(37) g(R(6X, X)Z,02) = T .

{9(0X,¢X)g(Z,2)}.
Thus from (36) and (37), we obtain the desired result. O

Theorem 4.5. Let M be a totally umbilical contact CR-submanifold of
a Kenmotsu manifold M. Then at least one of the following is true;

i.) M is totally geodesic
or
ii.) dim(DL) > 1
Proof. By direct calculations, we have

(38) Agy X = —AvoX

for any X € I'(D) and V € I'(v). Since M is a totally umbilical contact CR-
submanifold and by using (38), we have

9(Apcn X, X) = —g(AcndX,X)
9(X, X)g(H,¢CH) = —g(X,¢X)g(CH,H) =0
which is equivalent to CH = 0. On the other hand, by using (22) we have
9(AspnZ, W) = g(AyzBH, W)
9(Z,W)g(H,¢BH) = g(BH,W)g(H,$Z)
9(Z,W)g(BH,BH) = g¢g(BH,W)g(BH,Z)
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for any Z,W € T'(D%). This is implies that BH is either identical zero, or BH
and Z are linearly dependent. If BH = 0, then totally umbilical contact CR-
submanifold is totally geodesic otherwise, the anti-invariant distribution D+ is
one dimensional. This completes of the proof of the theorem. 0O

1]
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