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Abstract. In this paper, we research some fundamental properties of con-
tact CR-Submanifolds of a Kenmotsu manifold. We show that the anti-
invariant distribution is always integrable and give a necessary and sufficient
condition for the invariant distribution to be integrable. After then, prop-
erties of the induced structures on submanifold by almost contact metric
structure on the ambient manifold are categorized. Finally, we give some re-
sults for contact CR-product and totally umbilical contact CR-submanifold
in a Kenmotsu manifold and Kenmotsu space form.

1. Introduction. The geometry of semi-invariant submanifolds of a
Kenmotsu manifold has been defined and ivestigated by K. Kenmotsu and M.
Kobayashi [4, 6]. Furthermore, many geometers contributed to study of sev-
eral classes of different manifolds with endowed Riemannian metric tensor[see
references]. In present paper deal with the geometry of leaves of contact CR-
submanifolds of a Kenmotsu manifold.
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In particular, we obtain necessary and sufficient conditions for the con-
tact CR-submanifold to be CR-product, D-geodesic and D⊥-geodesic. Further-
more, we get an inequality for the squared norm of the second fundamental
form in terms of the dimensional of distributions which are involved definition
of contact CR-submanifold in a Kenmotsu manifold. Finally, we discuss contact
CR-products and totally umbilical contact CR-submanifolds(CR-products) in a
Kenmotsu space form M̄(c).

2. Preliminaries. In this section, we give some notations used through-
out this paper. We recall some necessary facts and formulas from the theory of
Kenmotsu manifolds and their submanifolds.

A (2m + 1)-dimensional Riemannian manifold (M̄, g) is said to be an
almost contact metric manifold if it admits an endomorphism φ of its tangent
bundle TM̄ , a vector field ξ and a 1-form η, satisfying

φ2X = −X + η(X)ξ, φξ = 0, η(ξ) = 1, η(φX) = 0(1)

and

g(φX,φY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ)(2)

for any vector fields X,Y tangent to M̄ . Furthermore, an almost contact metric
manifold is called a Kenmotsu manifold if φ and ξ satisfy

(∇̄Xφ)Y = g(φX, Y )ξ − η(Y )φX and ∇̄Xξ = −φ2X = X − η(X)ξ,(3)

where ∇̄ denotes the Levi-Civita connection on M̄ [2].
Now, let M̄ be a 2n + 1-dimensional Kenmotsu manifolds with structure

tensors (φ, ξ, η, g) and M be an m-dimensional isometrically immersed submani-
fold in M̄ . Moreover, we denote the Levi-Civita connections by ∇̄ and ∇, respec-
tively. Then the Gauss and Weingarten formula’s for M in M̄ are, respectively,
given by

∇̄XY = ∇XY + h(X,Y )(4)

∇̄XV = −AV X + ∇⊥

XV(5)

for any vector fields X,Y tangent to M and vector V normal to M , where ∇⊥ is
the normal connection on T⊥M , h and A denote the second fundamental form
and shape operator of M in M̄ , respectively. The A and h are related by

g(h(X,Y ), V ) = g(AV X,Y ).(6)
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We denote the Riemannian curvature tensor of the induced connection ∇ by R.
Then the Gauss and Codazzi equations are, respectively, given by

(R̄(X,Y )Z)⊤ = R(X,Y )Z + Ah(X,Z)Y − Ah(Y,Z)X(7)

and

(R̄(X,Y )Z)⊥ = (∇̄Xh)(Y,Z) − (∇̄Y h)(X,Z)(8)

for any vector fields X,Y,Z tangent to M , where the covariant derivative of h is
defined by

(∇̄Xh)(Y,Z) = ∇⊥

Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ)(9)

for any vector fields X,Y,Z tangent to M , where (R̄(X,Y )Z)⊥ and (R̄(X,Y )Z)⊤

denote the normal and tangent components of R̄(X,Y )Z, respectively.
For any vector field X tangent to M , we set

φX = fX + ωX,(10)

where fX and ωX are the tangential and normal components of φX, respectively.
Then f is an endomorphism of the TM and ω is a normal-bundle valued 1-form
of TM . For the same reason, any vector field V normal to M , we set

φV = BV + CV,(11)

where BV and CV are the tangential and normal components of φV , respectively.
Then B is an endomorphism of the normal bundle T⊥M of TM and C is a
tangent-bundle valued 1-form of T⊥M .

Let R̄ be the curvature tensor of the connection ∇̄. The sectional cur-
vature of a φ-section is called a φ-sectional curvature. A Kenmotsu manifold
with constant φ-sectional curvature c is said to be a Kenmotsu space form and
is denoted by M̄(c). The curvature tensor R̄ of a Kenmotsu space form M̄ (c) is
given

R̄(X,Y )Z =
c − 3

4
{g(Y,Z)X − g(X,Z)Y } +

c + 1

4
{η(X)η(Z)Y − η(Y )η(Z)X

+ η(Y )g(X,Z)ξ − η(X)g(Y,Z)ξ + g(X,φZ)φY − g(Y, φZ)φX

+ 2g(X,φY )φZ}(12)

for any vector fields X,Y,Z tangent to M̄ [1].
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3. Contact CR-submanifolds in Kenmotsu manifolds. In this
section, we shall define contact CR-submanifolds in a Kenmotsu manifold and
research fundamental properties of their from theory of submanifold.

Let M be an isometrically immersed in an almost contact metric manifold
M̄ , then for every x ∈ M , there exists a maximal invariant subspace denoted by
Dx of the tangent space TxM of M . If the dimension of Dx is the same for all
value of x ∈ M , then Dx gives an invariant distribution D on M .

Definition 3.1. A submanifold M of a Kenmotsu manifold M̄ is called
contact CR-submanifold if there exists on M a differentiable invariant distribution
D whose orthogonal complementary distribution D⊥ is anti-invariant, i.e.,

1.) TM = D ⊕ D⊥, ξ ∈ D

2.) φ(Dx) = Dx,

3.) φ(D⊥
x ) ⊆ (T⊥

x M),

for any x ∈ M . A contact CR-submanifold is called anti-invariant(or, totally
real) if Dx = {0} and invariant(or, holomorphic) if D⊥

x = {0}, respectively, for
any x ∈ M . It is called proper contact CR-submanifold if neither Dx = {0} nor
D⊥

x = {0}.

Next, let M be a contact CR-submanifold of a Kenmotsu manifold M̄ .
Then from the (1), (10) and (11), we can write as the following way;

f2X + BωX = −X + η(X)ξ, ωfX + CωX = 0,(13)

fBV + BCV = 0 and ωBV + C2V = −V(14)

for any vector fields X tangent to M and V normal to M .

Proposition 3.1. Let M be a contact CR-submanifold of a Kenmotsu
manifold M̄ . For any vector field X tangent to M belong to D (resp. D⊥) is
necessary and sufficient that ωX = 0 (resp. fX = 0).

Furthermore, taking account of (2) and Proposition 3.1, we have

f2X = −X + η(X)ξ(15)

for any vector field X in D. Moreover

g(fX, fY ) = g(X,Y ) − η(X)η(Y )(16)

for any vector fields X,Y in D.



Contact CR-submanifolds of Kenmotsu manifolds 71

Proposition 3.2. Let M be a contact CR-submanifold of a Kenmotsu
manifold M . Then the invariant distribution D has an almost contact metric
structure (f, ξ, η, g) and so dim(D)=odd.

We denote by ν the orthogonal distribution φD⊥ in T⊥M . Then we have

T⊥M = φD⊥ ⊕ ν and φD⊥⊥ν.(17)

From (17), it can easily to see that ν is an invariant distribution with
respect to φ and it has an almost complex structure C and so ν is even dimen-
sional.

Let M be a contact CR-submanifold of a Kenmotsu manifold M̄ . By
using (4), (5), (10) and (11) we have

(∇Xf)Y = AωY X + Bh(X,Y ) + g(fX, Y )ξ − η(Y )fX(18)

and

(∇Xω)Y = Ch(X,Y ) − h(X, fY ) − η(Y )ωX,(19)

where the covariant derivatives of f and ω are defined by

(∇Xf)Y = ∇XfY − f(∇XY ) and (∇Xω)Y = ∇⊥

XωY − ω(∇XY )

for any vector fields X,Y tangent to M .

Theorem 3.1. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M̄ . Then the anti-invariant distribution D⊥ is always integrable.

P r o o f. For any vector fields Z,W tangent to D⊥, by using (18), we have

f(∇ZW ) = −Bh(Z,W ) − AφW Z

which is also equivalent to

f [Z,W ] = AφZW − AφW Z.(20)

On the other hand, we obtain

g(AφW Z,U) = g(h(U,Z), φW ) = −g(φ(∇̄UZ),W ) = −g(∇̄UφZ − (∇̄Uφ)Z,W )

= g(AφZW,U) + g(−η(Z)φU + g(φU,Z)ξ,W ) = g(AφZW,U)(21)

for any U ∈ Γ(TM). It implies that

AφZW = AφW Z,(22)
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for any vector fields Z,W ∈ Γ(D⊥). By combining of (20) and (22), we get
f [Z,W ] = 0, that is, [Z,W ] ∈ Γ(D⊥) which proves our assertion. �

Theorem 3.2. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M̄ . Then the invariant distribution D is integrable if and only if the second
fundamental form of M satisfies

h(X,φY ) = h(φX, Y )(23)

for any X,Y ∈ Γ(D).

P r o o f. For any vector fields X,Y in D, making use of (3) and (4), we
have

φ[X,Y ] = φ(∇XY −∇Y X) = φ(∇̄XY − ∇̄Y X) = ∇̄XφY − (∇̄Xφ)Y

− ∇̄Y φX + (∇̄Y φ)X = ∇XφY −∇Y φX + h(X,φY ) − h(Y, φX)

− η(X)φY + η(Y )φX + g(φY,X)ξ − g(φX, Y )ξ.(24)

From the normal components of (24), we conclude

ω[X,Y ] = h(X,φY ) − h(φX, Y ).(25)

Thus D is integrable if and only if (23) is satisfied. �

Proposition 3.3. Let M be a contact CR-submanifold of a Kenmotsu
manifold M̄ . The invariant distribution D is integrable if 1-form ω is parallel.

P r o o f. If 1-form ω is parallel, then from (19) we have Ch(X,Y ) =
h(X, fY ) for any X,Y ∈ Γ(D). It implies (23). �

Let M be a contact CR-submanifold of a Kenmotsu manifold M̄ . For any
vector fields U tangent to M and V normal to M , by using (3), (4), (5) and (11)
we have

(∇̄Uφ)V = ∇̄UφV − φ(∇̄UV )

g(φU, V )ξ = (∇̄UB)V + (∇̄UC)V + h(U,BV ) + ωAV U

+ −ACV U + fAV U.(26)

The tangential and normal components of (26), respectively, we have

(∇̄UB)V = g(φU, V )ξ + ACV U − fAV U(27)
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and

(∇̄UC)V = −h(U,BV ) − ωAV U,(28)

where the covariant derivatives of B and C are, respectively, defined by

(∇̄UB)V = ∇UBV − B(∇⊥

UV ) and (∇̄UC)V = ∇⊥

UCV − C(∇⊥

UV ).

Furthermore, for any X,Y ∈ Γ(D), the Equation (18) reduces

(∇Xf)Y = Bh(X,Y ) + g(fX, Y )ξ − η(Y )fX.(29)

Thus we have the following Proposition.

Proposition 3.4. Let M be a contact CR-submanifold of a Kenmotsu
manifold M̄ . Then induced structure (f, ξ, η, g) is an almost contact metric struc-
ture on D if and only if Bh(X,Y ) = 0 for any X,Y ∈ Γ(D).

Lemma 3.1. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M̄ . M is anti-invariant submanifold of Kenmotsu manifold M̄ if and only
if the endomorphism f is parallel.

P r o o f. If f is parallel, then from (29) we have

Bh(X,Y ) + g(fX, Y )ξ − η(Y )fX = 0(30)

for any X,Y ∈ Γ(D). Taking Y = ξ in (30), we get Bh(X, ξ)+g(fX, ξ)−fX = 0.
Since h(X, ξ) = 0 and fξ = 0, we conclude fX = 0 which implies M is anti-
invariant submanifold.

Conversely, we suppose that M is anti-invariant. Then form (29), we have

(∇Xf)Y = −f(∇XY ) = Bh(X,Y ),

for any X,Y ∈ Γ(TM). Because M is anti-invariant, f(∇XY ) ∈ Γ(TM⊥) and
Bh(X,Y ) ∈ Γ(TM), we conclude −f(∇XY ) = Bh(X,Y ) = 0. Thus we get the
desired result. �

Theorem 3.3. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M̄ . Then the anti-invariant distribution D⊥ is totally geodesic in M if and
only if h(X,Z) ∈ Γ(ν) for any X ∈ Γ(D) and Z ∈ Γ(D⊥).
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P r o o f. For any Z,W ∈ Γ(D⊥) and X ∈ Γ(D), we have

g(∇ZW,φX) = g(∇̄ZW,φX) = −g(∇̄ZφX,W )

= −g((∇̄Zφ)X + φ∇̄ZX,W )

= −g(−η(X)φZ + g(φZ,X)ξ,W ) + g(∇̄ZX,φW )

= g(h(X,Z), φW )

Thus ∇ZW ∈ Γ(D⊥) if and only if h(X,Z) ∈ Γ(ν). �

Theorem 3.4. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M̄ . Then the invariant distribution D is totally geodesic in M if and only if
the second fundamental form of M satisfies h(X,Y ) ∈ Γ(ν) for any X,Y ∈ Γ(D).

P r o o f.

g(∇XφY,Z) = g(∇̄XφY,Z) = g((∇̄Xφ)Y + φ(∇̄XY ), Z)

= g(g(φX, Y )ξ − η(Y )φX,Z) − (∇̄XY, φZ)

= g(φX, Y )η(Z) − η(Y )g(φX,Z) − g(h(X,Y ), φZ)

= −g(h(X,Y ), φZ)(31)

for any X,Y ∈ Γ(D) and Z ∈ Γ(D⊥). Thus ∇XY ∈ Γ(D) if and only if h(X,Y ) ∈
Γ(ν). This completes of the proof. �

4. Contact CR-products in a Kenmotsu manifold. In this
section we shall define a contact CR-product in Kenmotsu manifolds, give a
necessary and sufficient condition that a contact CR-submanifold to be a contact
CR-product and we research contact CR products and totally umbilical contact
CR-(submanifolds)products in a Kenmotsu space form M̄(c).

Definition 4.1. A contact CR-submanifold M of a Kenmotsu manifold
M̄ is called a contact CR-product if MT and M⊥ are totally geodesic submanifolds
of M , where MT and M⊥ denote the integral manifolds of the leaves of D and
D⊥, respectively.

Next we shall prove the following Theorem.

Theorem 4.1. Let M be a contact CR-submanifold of a Kenmotsu man-
ifold M̄ . M is a contact CR-product if and only if the shape operator of M

satisfies

AφD⊥D = 0.(32)
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P r o o f. We suppose that M be a contact CR-product in a Kenmotsu
manifold M̄ . From Theorem 3.3 and Theorem 3.4, respectively, we have AφZX ∈
Γ(D) and AφZX ∈ Γ(D⊥) for any X ∈ Γ(D) and Z ∈ Γ(D⊥). It imply that (32)
is satisfied.

Conversely, (32) is satisfied. Then Theorem 3.3 and Theorem 3.4 tell us
that MT and M⊥ are totally geodesic submanifolds in M . Thus M is a contact
CR-product. Hence the theorem is proved completely. �

Now, let M be a contact CR-product of a Kemotsu space form M̄(c), we
shall calculate bisectional sectional curvature of Kenmotsu manifold M̄(c). By
using (8), (9) and considering Theorem 3.3 and Theorem 3.4, we have

−HB(X,Z) = g(R(X,φX)Z, φZ) = g((∇̄Xh)(φX,Z) − (∇̄φXh)(X,Z), φZ)

= g(∇⊥

Xh(φX,Z) − h(∇XφX,Z) − h(∇XZ, φX), φZ)

−g(∇⊥

φXh(X,Z) − h(∇φXX,Z) − h(∇φXZ,X), φZ)

= Xg(h(φX,Z), φZ) − g(∇̄XφZ, h(φX,Z)) − φXg(h(X,Z), φZ)

+g(∇̄φXφZ, h(X,Z))

= g((∇̄φXφ)Z + φ(∇̄φXZ), h(X,Z)) − g((∇̄Xφ)Z

+φ(∇̄XZ), h(φX,Z))

= g(−η(Z)φ2X + g(φ2X,Z)ξ + φ(∇̄φXZ), h(X,Z))

−g(−η(Z)φX + g(φX,Z)ξ + φ(∇̄XZ), h(φX,Z))

= g(φh(φX,Z), h(X,Z)) − g(φh(X,Z), h(φX,Z))

= 2g(φh(φX,Z), h(X,Z))

= −2g(∇̄ZφX,φh(X,Z)) = −2g((∇̄Zφ)X + φ(∇̄XZ), φh(X,Z))

= −2g(−η(X)φZ + g(φZ,X)ξ + φh(X,Z), φh(X,Z))

= −2g(h(X,Z), h(X,Z)) = −2‖h(X,Z)‖2,

for any X ∈ Γ(D) and Z ∈ Γ(D⊥). So we get

HB(X,Z) = 2‖h(X,Z)‖2 .(33)

Thus we have following the Theorem.
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Theorem 4.2. Let M be a contact CR-product of a Kenmotsu space
form M̄(c) with constant φ-holomorphic sectional curvature c. Then there do not
exist contact CR-products in a Kenmotsu space form M̄(c) such that c < −1.

P r o o f. We suppose that M is a contact CR-product in Kenmotsu space
form M̄(c). Then from (3) and (4), we know h(Z, ξ) = 0. By using (12) and (33),
we have

g(R(X,φX)φZ,Z) =

(

c + 1

2

)

{g(X,X) − η2(X)}g(Z,Z)

=

(

c + 1

2

)

g(φX,φX)g(Z,Z) = 2‖h(X,Z)‖2,

for any X ∈ Γ(D) and Z ∈ Γ(D⊥). So we have

‖h(X,Z)‖2 =

(

c + 1

4

)

g(Z,Z)g(φX,φX),(34)

for any X ∈ Γ(D) and Z ∈ Γ(D⊥). This equality is impossible for c < −1. This
proves our assertion. �

Theorem 4.3. Let M be a contact CR-product in Kenmotsu space form
M̄(c). Then we have

‖ h ‖2≥

{

c + 1

2

}

pq,(35)

where dimD = 2p + 1 and dim D⊥ = q.

P r o o f. Let {e1, e2, . . . , e2p, ξ, e
1, e2, . . . , eq} be an orthonormal basis of

Γ(TM) such that e1, e2, . . . , e2p, ξ are tangent to Γ(D) and e1, e2, . . . , eq are tan-
gent to D⊥. Then norm of the second fundamental form ‖ h ‖2 is defined by

‖ h ‖2 =

p
∑

i,j=1

g(h(ei, ej), h(ei, ej)) +

q
∑

r,s=1

g(h(er , es), h(er , es))

+ 2

p
∑

i=1

q
∑

r=1

g(h(ei, e
r), h(ei, e

r))

Taking X = e1, e2, . . . , e2p, ξ and Z = e1, e2, . . . , eq in (34), then we obtain

‖ h ‖2>

(

c + 1

2

)

pq 2
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Contact CR-submanifold M is called a totally umbilical contact CR-
submanifold if its second fundamental form h satisfies h(X,Y ) = g(X,Y )H,
for any X,Y ∈ Γ(TM), where H denote the mean curvature vector of M .

Theorem 4.4. Let M be a contact CR-submanifold of a Kenmotsu space
form M̄(c). There exist no totally umbilical contact CR-submanifolds in a Ken-
motsu space form M̄(c) such that c 6= −1.

P r o o f. We suppose that M is a totally umbilical contact CR-submanifold
in Kenmotsu space form M̄(c). Then by using (8), we obtain

g(R̄(φX,X)Z, φZ) = g(X,Z)g(∇⊥

φXH,φZ) − g(φX,Z)g(∇⊥

XH,φZ)

= 0,(36)

for any X ∈ Γ(D) and Z ∈ Γ(D⊥). Since the ambient space M̄ is a Kenmotsu
space form, from (12) we infer

g(R̄(φX,X)Z, φZ) =
c + 1

2
{g(φX,φX)g(Z,Z)}.(37)

Thus from (36) and (37), we obtain the desired result. �

Theorem 4.5. Let M be a totally umbilical contact CR-submanifold of
a Kenmotsu manifold M̄ . Then at least one of the following is true;

i.) M is totally geodesic

or

ii.) dim(D⊥) > 1

P r o o f. By direct calculations, we have

AφV X = −AV φX(38)

for any X ∈ Γ(D) and V ∈ Γ(ν). Since M is a totally umbilical contact CR-
submanifold and by using (38), we have

g(AφCHX,X) = −g(ACHφX,X)

g(X,X)g(H,φCH) = −g(X,φX)g(CH,H) = 0

which is equivalent to CH = 0. On the other hand, by using (22) we have

g(AφBHZ,W ) = g(AφZBH,W )

g(Z,W )g(H,φBH) = g(BH,W )g(H,φZ)

g(Z,W )g(BH,BH) = g(BH,W )g(BH,Z)
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for any Z,W ∈ Γ(D⊥). This is implies that BH is either identical zero, or BH

and Z are linearly dependent. If BH = 0, then totally umbilical contact CR-
submanifold is totally geodesic otherwise, the anti-invariant distribution D⊥ is
one dimensional. This completes of the proof of the theorem. �
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