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THE LINDELÖF NUMBER GREATER THAN CONTINUUM

IS u-INVARIANT

A. V. Arbit

Communicated by S. P. Gul’ko

Abstract. Two Tychonoff spaces X and Y are said to be l-equivalent
(u-equivalent) if Cp (X) and Cp (Y ) are linearly (uniformly) homeomorphic.
N. V. Velichko proved that countable Lindelöf number is preserved by the
relation of l-equivalence. A. Bouziad strengthened this result and proved
that any Lindelöf number is preserved by the relation of l-equivalence. In this
paper it has been proved that the Lindelöf number greater than continuum
is preserved by the relation of u-equivalence.

Introduction. Our aim is to prove the following main result of the

paper.

Theorem 0.1. Let the spaces Cp (X) and Cp (Y ) be uniformly home-

omorphic and the Lindelöf number of X or Y greater than continuum. Then

l(X) = l(Y ).
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For the proof we need some auxiliary concepts. In the first section, we

consider set-valued mappings K and Kε of the space X to Y generated by the

uniform homeomorphism of the spaces Cp (Y ) and Cp (X), and formulate their

properties. In the second section, we prove the main result. Section 3 is devoted

to the proof of the auxiliary results.

Terminology and notations. In notation and terminology we follow

R. Engelking’s book [2]. The spaces considered in this paper are taken to be

Tychonoff spaces. The symbols X, Y are used only for topological spaces. R
denotes the usual space of real numbers, N = {1, 2, . . .} is the set of natural

numbers. The symbol k,m denotes the set of all natural numbers n such that

k ≤ n ≤ m, where k,m ∈ N, k ≤ m. RX is a space of all real-valued functions on

X, Cp (X) is a space of all real-valued continuous functions on X equipped with

the topology of pointwise convergence. FinF is a family of all finite subsets of a

set F .

The restriction of the mapping f to the subset A is denoted by f |A.

f−1(A) is a preimage of the set A under the mapping f . If A is an interval, then

we shall use the symbol f−1A instead of f−1(A). |A| denotes the cardinality of

A, Int A denotes the interior of A. A subset A of X will be called functionally

closed (functionally open) if A = f−1(1) (A = f−1(0, 1] respectively) for some

continuous function f : X → [0, 1]. We say that the set A is a Gδ-subset of X if A

can be represented as the intersection of some countable family of open subsets

of X.

The cardinal number assigned to the set of all positive integers is denoted

by the symbol ℵ0, and the cardinal number assigned to the set of all real numbers

is denoted by c (continuum). The symbol τ denote infinite cardinal only. For any

cardinal number τ symbol ω(τ) denotes the initial ordinal number λ such that

|λ| = τ . The Lindelöf number l(X) of a space X is the smallest infinite cardinal

τ such that any open cover of X contains a subcover of cardinality at most τ .

For a set-valued mapping p : X → Y and sets A ⊂ X and B ⊂ Y ,

the set p (A) =
⋃
{p (x) : x ∈ A} is called the image of A under p, and the set

p−1(B) = {x ∈ X : p (x) ∩ B 6= ∅} is called the preimage of B under p. A set-

valued mapping p : X → Y is called lower semicontinuous if for every open subset

of Y its preimage under p is open in X, and p is called surjective if for every y ∈ Y

there exists an x ∈ X such that y ∈ p (x).



The Lindelöf number greater than continuum is u-invariant 145

1. Set-valued mappings concerned with uniform homeomor-

phisms of function spaces and their properties.

Definition 1.1. Let h : Cp (Y ) → Cp (X) be a uniform homeomorphism.

Fix x ∈ X, δ > 0, and finite subset K ⊂ Y , and put

a(x,K, δ) = sup{|h(g′)(x) − h(g′′)(x)| :

g′, g′′ ∈ Cp (Y ), |g′(y) − g′′(y)| < δ for all y ∈ K}.

This notion was introduced by S. P. Gul’ko in [3]. Next, we define

a(x,K, 0) = sup{|h(g′)(x) − h(g′′)(x)| :

g′, g′′ ∈ Cp (Y ), g′(y) = g′′(y) for all y ∈ K}.

(if the set K is empty, then the supremum is taken over all g′, g′′ ∈ Cp (Y )). It is

obvious that if 0 ≤ δ1 ≤ δ2, then a(x,K, δ1) ≤ a(x,K, δ2), and if K1 ⊂ K2 ⊂ Y ,

then a(x,K2, δ) ≤ a(x,K2, δ) for all δ ≥ 0. It was proved in [3] that for every

x ∈ X there exists a nonempty finite subset K(x) ⊂ Y such that

1. a(x,K(x), δ) < ∞ for any δ > 0,

2. a(x,K ′, δ) = ∞ for every proper subset K ′ of K(x) and for any δ > 0,

3. If a(x,K, δ) < ∞ for some finite subset K ⊂ Y and δ > 0, then K(x) ⊂ K.

S. P. Gul’ko also proved that if a(x,K, δ0) < ∞ for some finite subset

K ⊂ Y and δ0 > 0, then a(x,K, δ) < ∞ for all δ > 0. We now prove that the set

K(x) has the following property, which is stronger than the property 2.

4. a(x,K ′, 0) = ∞ for every proper subset K ′ of K(x).

To prove this statement we need the following

Lemma 1.2. If a(x,K, 0) < ∞, then a(x,K, δ) < ∞ for all δ > 0.

P r o o f. Fix x ∈ X and finite subset K ⊂ Y such that a(x,K, 0) < ∞.

We prove that the function δ 7→ a(x,K, δ) is continuous at the point 0. Let

ε > 0. Since h is a uniform homeomorphism, there exist a finite subset K ′ ⊂ Y

and δ > 0 such that for all g′, g′′ ∈ Cp (Y ) we have the implication

(| g′(y) − g′′(y)| < δ for all y ∈ K ′) ⇒ |h(g′)(x) − h(g′′)(x)| < ε.
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Let g′, g′′ ∈ Cp (Y ) and | g′(y)− g′′(y)| < δ for all y ∈ K. Since Y is a Tychonoff

space, there is g ∈ Cp (Y ) such that

g(y) =

{
g′(y) if y ∈ K;
g′′(y) if y ∈ K ′ \ K.

Then | g(y) − g′′(y)| < δ for all y ∈ K ′, hence |h(g)(x) − h(g′′)(x)| < ε. Now by

the triangle inequality we obtain

|h(g′)(x)−h(g′′)(x)| ≤ |h(g′)(x)−h(g)(x)|+|h(g)(x)−h(g′′)(x)| < a(x,K, 0)+ε.

Passing to the supremum over all g′, g′′ ∈ Cp (Y ) such that | g′(y) − g′′(y)| < δ

for all y ∈ K, we have inequality a(x,K, δ) ≤ a(x,K, 0) + ε, which implies that

the function δ 7→ a(x,K, δ) is continuous at the point 0. Therefore there exists

δ0 > 0 such that a(x,K, δ0) < ∞, hence a(x,K, δ) < ∞ for all δ > 0. �

For any x ∈ X we put a(x) = a(x,K(x), 0). Using this notation we have

the following simple assertions.

(K1) If g′, g′′ ∈ Cp (Y ) and g′|K(x) = g′′|K(x), then |h(g′)(x) − h(g′′)(x)| ≤ a(x).

(K2) For any proper subset K ′ ⊂ K(x) and any real b there exist functions

g′, g′′ ∈ Cp (Y ) such that g′|K ′ = g′′|K ′ and |h(g′)(x) − h(g′′)(x)| > b.

Besides, this mapping surjectively maps the space X onto Y (see Lemma

3.2 on page 158), i.e., for any y ∈ Y there exists x ∈ X such that y ∈ K(x).

For every x ∈ X and every ε > 0 we define nonempty finite set Kε(x) ⊂ Y

satisfying the following conditions:

(KE1) a(x,Kε(x), 0) ≤ ε;

(KE2) a(x,K ′, 0) > ε for every proper subset K ′ of Kε(x).

It is easy to check that such a set always exists. Indeed, since h is uni-

formly continuous, it follows that there exist δ > 0 and a finite set K ⊂ Y such

that for all g′, g′′ ∈ Cp (Y ) we have the implication (| g′(y)−g′′(y)| < δ for all y ∈

K) ⇒ |h(g′)(x) − h(g′′)(x)| ≤ ε. Then a(x,K, 0) ≤ ε. Reducing the set K until

it satisfies the condition (KE2), we obtain the set Kε(x).

There can be several sets satisfying properties (KE1) and (KE2); then we

denote by Kε(x) anyone of them. By the property 3 of K(x) we have K(x) ⊂

Kε(x) for every ε > 0, and by the property 4 we have K(x) = K a(x) for any

a ≥ a(x). Thus K(x) is the smallest of all sets Kε(x).
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The following lemma is analogous to result obtained by O. G. Okunev [4]

for t-equivalence.

Lemma 1.3. Let x0 ∈ X, ε > 0, U is an open subset of Y such that

K(x0)∩U 6= ∅. Then there is an open neighborhood V of x0 such that Kε(x)∩U 6=

∅ for any x ∈ V .

P r o o f. We can assume that K(x0) ∩ U = {y0}. Put K ′ = K(x0) \ {y0}.

By the property 2 of K(x) there exist functions g1, g2 ∈ Cp (Y ) coinciding on K ′

such that |h(g1)(x0) − h(g2)(x0)| > ε + a(x). Since Y is completely regular, it

follows that there exists a function g0 ∈ Cp (Y ) coinciding with g1 on Y \U such

that g0(y0) = g2(y0). Then g0|K(x0) = g2|K(x0) and |h(g0)(x0)−h(g2)(x0)| ≤ a(x).

By the triangle inequality we obtain that

|h(g1)(x0) − h(g0)(x0)| ≥ |h(g1)(x0) − h(g2)(x0)| − |h(g0)(x0) − h(g2)(x0)| > ε.

Let us prove that the set V defined by the formula V = {x ∈ X : |h(g1)(x) −

h(g0)(x)| > ε} is the required open neighborhood of x0. Assume the contrary.

Let x ∈ V be a point such that Kε(x) ∩ U = ∅. Then g1 coincides with g0 on

Kε(x). Therefore |h(g1)(x) − h(g0)(x)| ≤ ε, a contradiction to the assumption

that x ∈ V . �

The last theorem yields the following corollaries.

Corollary 1.4. Let x0 ∈ X, ε > 0, k ∈ N, and let U be an open subset

of Y such that |K(x0) ∩ U | ≥ k. Then there is an open neighborhood V of x0

such that |Kε(x) ∩ U | ≥ k for all x ∈ V .

The proof is trivial.

Corollary 1.5. Let U be an open subset of Y . Then K−1(U) is a Gδ-set

in X.

P r o o f. Let K−1(U) 6= ∅. Since K(x) ⊂ Km(x) for all m ∈ N and

there is a natural number n such that K(x) = Kn(x), it follows that K−1(U) =⋂
m∈N

K−1
m (U). By Corollary 1.4 we have K−1(U) ⊂ IntK−1

m (U) for every m ∈ N,

consequently, K−1(U) =
⋂

m∈N
Int K−1

m (U). �

It is well known (see Lemma 3.5 on page 161) that every uniform home-

omorphism h between Cp -spaces can be extended to a uniform homeomorphism

between the spaces of all real-valued functions. We shall denote this new home-

omorphism also by h.
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Definition 1.6. Fix a point x ∈ X, δ > 0, and a finite subset K ⊂ Y ,

and put

ā(x,K, δ) = sup{|h(g′)(x) − h(g′′)(x)| :

g′, g′′ ∈ RY , |g′(y) − g′′(y)| < δ for all y ∈ K},

ā(x,K, 0) = sup{|h(g′)(x) − h(g′′)(x)| :

g′, g′′ ∈ RY , g′(y) = g′′(y) for all y ∈ K}.

Lemma 1.7. Let h : RY → RX be a uniform homeomorphism such that

h(Cp (Y )) = Cp (X). Then a(x,K, δ) = ā(x,K, δ) for all x ∈ X, any finite set

K ⊂ Y , and δ ≥ 0.

P r o o f. It follows from the definition that a(x,K, δ) ≤ ā(x,K, δ). Let us

prove the reverse inequality. Let δ > 0. Take ε > 0 and two functions g1, g2 ∈ RY

such that

(1.1) | g1(y) − g2(y)| < δ for all y ∈ K.

Since h is a uniform homeomorphism, it follows that there exist a finite

set K ′ ⊂ Y and ∆ > 0 such that for all g′, g′′ ∈ RY wehave the implication

(1.2) (| g′(y) − g′′(y)| < ∆ for all y ∈ K ′) ⇒ |h(g′)(x) − h(g′′)(x)| < ε/2.

There are functions g′0, g
′′
0 ∈ Cp (Y ) such that g′0|K∪K ′ ≡ g1|K∪K ′ and g′′0 |K∪K ′ ≡

g2|K∪K ′. Then | g′0(y) − g′′0 (y)| < δ for all y ∈ K. Observe that from (1.2) it

follows that |h(g1)(x) − h(g′0)(x)| < ε/2 and |h(g2)(x) − h(g′′0 )(x)| < ε/2, and –

by virtue of the triangle inequality – we have a(x,K, δ) ≥ |h(g′0)(x)−h(g′′0 )(x)| >

|h(g1)(x)−h(g2)(x)|−ε. Passing to the supremum over all g1, g2 ∈ RY satisfying

condition (1.1) we obtain inequality a(x,K, δ) ≥ ā(x,K, δ) − ε. Since ε being

an arbitrary positive number, this implies that a(x,K, δ) = ā(x,K, δ). Equality

a(x,K, 0) = ā(x,K, 0) is proved analogously. �

2. Main result.

Theorem 2.1. Let X and Y be u-equivalent, τ a cardinal not less than

the continuum, and l(X) ≤ τ . Then l(Y ) ≤ τ .
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P r o o f. Since any uniform homeomorphism between Cp -spaces can be

extended to a uniform homeomorphism between the spaces of all real-valued

functions, one can assume without loss of generality that there is a uniform

homeomorphism h of RY onto RX satisfying the following conditions:

1. h(Cp(Y )) = Cp(X);

2. h takes zero function 0Y ∈ RY to zero function 0X ∈ RX .

To prove the theorem we shall need some notation.

Let p : X → Y be a set-valued mapping of X to Y and let U ⊂ Y be an

arbitrary set. Put

p∗(U) = {x ∈ X : p(x) ⊂ U} .

By T we shall denote the family of all open subsets of Y . Let U be an open cover

of Y , τ an infinite cardinal. A cover U will be called τ -trivial if it contains a

subcover of cardinality at most τ . Otherwise it will be called τ -nontrivial. This

notion was introduced by A. Bouziad in [1]. Put

[U ]τ =
{⋃

U ′ : U ′ ⊂ U ,
∣∣U ′

∣∣ ≤ τ
}

.

We say that the set A is an Fτ -subset of X if A can be represented as

the union of some family, of cardinality at most τ , of closed subsets of X. The

complements of Fτ -subsets will be called Gτ -subsets. If τ = ℵ0, then we shall

write Fσ and Gδ instead of Fℵ0
and Gℵ0

respectively. The symbol Fτ denotes the

family of all Fτ -subsets of X, Gτ is a family of all Gτ -subsets of X. The family

of all subsets A of X such that l(A) ≤ τ will be denoted by Lτ .

Let l(X) ≤ τ , where τ ≥ c. Assume that l(Y ) > τ to obtain a contra-

diction. It means that there exists τ -nontrivial open cover U of Y . Without loss

of generality we can assume that U is closed under the operation of finite union

and U ⊂ B, where B is a base of Y consisting of all functionally open subsets of

Y . It is well known that the family B is also closed under the operation of finite

union (see [2], page 43).

Define a mapping

U : FinFτ → [U ]τ , U = U(F), where F ∈ FinFτ ,

using set-valued mappings defined in the previous section. For any x ∈ X put

ρ(x) = |K(x)| . For every set F ⊂ X we define a number

ρ(F ) = min {ρ(x) : x ∈ F} ,
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which will be called the level of the set F .

Further, for any U ∈ T and any natural numbers k and m put

U [k]
m = Int {x ∈ X : |Km(x) ∩ U | ≥ k } .

Let F = {F1, . . . , Fn} ⊂ Fτ . For any nonempty set A ⊂ {1, . . . , n} we

put

FA =
⋂

i∈A

Fi, F = {FA : A ⊂ {1, . . . , n}, FA 6= ∅ }.

Let F ∈ F , m ∈ N and k = ρ(F ). Then the family

U [k]
m =

{
U [k]

m : U ∈ U
}

is an open cover of F . Indeed, since the family U is closed under the operation of

finite union, it follows that for every x0 ∈ F there is U ∈ U such that K(x0) ⊂ U .

As ρ(F ) = k, it follows that |K(x0)∩U | ≥ k and by Corollary 1.4 there exists an

open neighborhood V of x0 such that |Km(x) ∩ U | ≥ k for all x ∈ V . Then x0 ∈

V ⊂ U
[k]
m , hence U

[k]
m is an open cover of F . From the condition l(X) ≤ τ it follows

that F ∈ Lτ ; therefore the cover U
[k]
m contains a subcover

{
U

[k]
m : U ∈ UF, m

}
of

F , where UF,m ⊂ U and | UF,m| ≤ τ . Put

U(F) =
⋃

F∈F

⋃

m∈N

(⋃
UF, m

)
.

Obviously, U(F) ∈ [U ]τ , and if F1 ⊂ F2, then U(F1) ⊂ U(F2). The mapping U

we shall call the constructor. A similar construction was used by N. V. Velichko

in [5].

We note one important property of the constructor.

(*) For every F ∈ FinFτ , any F ∈ F , and any x ∈ F the following inequality

holds:

(2.1) |K(x) ∩ U (F)| ≥ ρ(F ).

Indeed, for any x ∈ F there exist a natural number m and a set U ∈ UF, m such

that Km(x) = K(x) and x ∈ U
[k]
m ; hence |K(x) ∩ U (F)| ≥ |K(x) ∩ U | ≥ k =

ρ(F ).

Let us recall some important properties of the set-valued mappings K

and Km defined in the previous section.
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(P1) If g′, g′′ ∈ RY and g′|Km( x) = g′′|Km( x), then |h(g′)(x) − h(g′′)(x)| ≤ m.

In particular, if g′|Km( x) ≡ 0, then |h(g′)(x)| ≤ m.

(P2) If g′, g′′ ∈ RY and g′|K(x) = g′′|K(x), then |h(g′)(x) − h(g′′)(x)| ≤ a(x) <

∞. In particular, if g′|K(x) ≡ 0, then |h(g′)(x)| ≤ a(x) < ∞.

For each V ⊂ Y consider the function eV ∈ RY defined by the formula

eV (y) =

{
0, y ∈ V,
1, y /∈ V.

Denote by C the family of all functionally closed subsets of Y . Every functionally

open set V ⊂ Y admits a decomposition

(2.2) V =
⋃

n∈N

Fn , where Fn ∈ C and Fn ⊂ Fn+1 for all n ∈ N

(see Lemma 3.4 on page 160). Further, by decomposition of functionally open

set V we mean a sequence (Fn)n∈N
satisfying condition (2.2). If there is a de-

composition (Fn)n∈N
of V satisfying the following condition:

(2.3) K∗
1 (V ) \ K∗

1 (Fn) 6= ∅ for all n ∈ N ,

then we say that the set V is adequate. A similar notion was introduced by

A. Bouziad in [1].

For every open set V ∈ T put

G(V ) =

{
x ∈ X : sup

m∈N

|h(meV )(x)| < ∞

}
,

F (V ) =

{
x ∈ X : sup

m∈N

|h(meV )(x)| = ∞

}
.

Analogous mappings were used by A. Bouziad in [1].

Lemma 2.2. The mapping G has the following properties:

(S1) K∗(V ) ⊂ G(V ) for any V ∈ T ;

(S2) For any expanding sequence (Un)n∈N
of the sets Un ∈ T such that
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(2.4) X =
⋃

k∈N

⋂

n≥k

G (Un)

the following condition holds:

Y =
⋃

n∈N

Un .

P r o o f. Let us verify that condition (S1) is satisfied. Take V ∈ T and

x ∈ K∗(V ). Then K(x) ⊂ V , hence meV |K(x) ≡ 0 for any natural number m

and by (P2) we have |h(meV )(x)| ≤ a(x) < ∞, therefore supm∈N |h(meV )(x)| ≤

a(x) < ∞, which implies that x ∈ G(V ).

Let us show that condition (S2) is fulfilled. Let (Un)n∈N
be an expanding

sequence of the sets Un ∈ T such that equality (2.4) is valid. Assume that

Y 6=
⋃

n∈N
Un. Put U =

⋃
n∈N

Un. Take y ∈ Y \ U . Choose a finite subset

K ′ = {x1, . . . , xp} ⊂ X and δ > 0 such that for any two functions f ′, f ′′ ∈ RX

the following implication holds:

(
|f ′(xi) − f ′′(xi)| ≤ δ for all i ∈ 1, p

)
⇒ |h−1(f ′)(y) − h−1(f ′′)(y)| < 1.

Such a choice is possible because the mapping h−1 is uniformly continuous. Then,

as shown in [3], for any two functions f ′, f ′′ ∈ RX and every natural number n

the following implication holds:

(
|f ′(xi) − f ′′(xi)| ≤ nδ for all i ∈ 1, p

)
⇒ |h−1(f ′)(y) − h−1(f ′′)(y)| < n.

In particular,

(2.5)
(
|h(g)(xi)| ≤ nδ for all i ∈ 1, p

)
⇒ | g(y)| < n

for any g ∈ RY .

From equality (2.4) it follows that there is a natural number N such that

xi ∈ G (UN ) for all i ∈ 1, p. Put

M = max
i∈1, p

sup
m∈N

|h(meUN
)(xi)|.

Obviously, M < ∞. Pick a natural number n ∈ N such that n ≥ M/δ. Then

|h(neUN
)(xi)| ≤ M ≤ nδ for all i ∈ 1, p . From this inequality and condition (2.5)
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it follows that |neUN
(y)| < n, hence | eUN

(y)| < 1, therefore y ∈ UN ⊂ U . Thus

we obtain a contradiction. �

Lemma 2.3. Let {Ut}t∈T ⊂ U and |T | ≤ τ . Then there is a fam-

ily {Vs}s∈S ⊂ [U ]τ closed under the operation of finite union and satisfying the

following conditions:

1. |S| ≤ τ ;

2. each set Vs is adequate;

3.
⋃

t∈T Ut ⊂
⋃

s∈S Vs.

P r o o f. Let V0 =
⋃

t∈T Ut. Since the cover U is τ -nontrivial, there exists

y1 ∈ Y \ V0. Choose x1 ∈ X such that y1 ∈ K1(x1), i.e., K1(x1) * V0 (such

an element exists since the mapping x 7→ K(x) is surjective), and choose a set

V1 ∈ U such that K1(x1) ⊂ V1 (such a set exists since the set K1(x1) is finite

and the family U is closed under the operation of finite union). Assume that

x1, . . . , xk and V1, . . . , Vk are already chosen, where k ∈ N. The set Y \
⋃k

i=0 Vi is

nonempty, hence there is an element xk+1 ∈ X such that K1(xk+1) *
⋃k

i=0 Vi and

there is a set Vk+1 ∈ U such that K1(xk+1) ⊂ Vk+1. We obtain two sequences

(xn)n∈N ⊂ X and (Vn)n∈N ⊂ U such that K1(xn) *
⋃n−1

i=0 Vi, Vn ∈ U , and

K1(xn) ⊂ Vn for any natural number n. Put V =
⋃

n∈N
Vn. Let (Ws)s∈S be

the family of all finite unions of sets in (Ut)t∈T . For each s ∈ S put Vs =

Ws ∪ V . Clearly, the family (Vs)s∈S ⊂ [U ]τ is closed under the operation of

finite union, |S| ≤ τ , and
⋃

t∈T Ut ⊂
⋃

s∈S Vs. It remains to verify that each

set Vs is adequate. Let s ∈ S. Fix a decomposition (F s
n)n∈N

of the set Ws and

decomposition
(
F k

n

)
n∈N

of the set Vk, where k ∈ N. The sequence (Gs
n)n∈N

,

where Gs
n = F s

n ∪ F 1
n ∪ . . . ∪ Fn

n , is a required decomposition of the set Vs, since

(xn)n∈N ⊂ K∗
1 (Vs) and xn+1 /∈ K∗

1 (Gs
n) for all n ∈ N. �

Lemma 2.4. Let {Vs}s∈S be a family of adequate functionally open sub-

sets of Y closed under the operation of finite union |S| ≤ τ . Then F
(⋃

s∈S Vs

)

is an Fτ -subset of X.

P r o o f. Put V =
⋃

s∈S Vs. Let (F s
n)n∈N

be a decomposition of Vs satis-

fying conditions F s
n ∈ C, F s

n ⊂ F s
n+1, and K∗

1 (Vs) \ K∗
1 (F s

n) 6= ∅ for all n ∈ N.

For any natural number n and any s ∈ S we can find a function gs
n ∈ Cp (Y ) (see

Lemma 3.5 on page 161) such that

gs
n|F s

n
≡ 0 , gs

n|Y \Vs
≡ 1.
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For any x ∈ K∗
1 (Vs) and k, n ∈ N put

U s
k, n(x) =

{
x′ ∈ X :

∣∣∣h
(
ngs

k+N(x, s)

)
(x′) − h

(
ngs

k+N(x, s)

)
(x)

∣∣∣ < k
}

,

where N(x, s) is the smallest natural number N such that K1(x) ⊂ F s
N . Then

U s
k, n(x) is an open neighborhood of the point x in X. Put

As =
⋂

m∈N

⋃

k≥m

⋂

n∈N

⋃

x∈K∗

1
(Vs)

U s
k, n(x) , Bs = {x ∈ X : K(x) ∩ (V \ Vs) 6= ∅} ,

A =
⋂

s∈S

(As ∪ Bs).

Since each set
⋃

x∈K∗

1
(Vs) U s

k, n(x) is open in X, by Corollary 3.7 on page 161

we have that
⋃

k≥m

⋂
n∈N

⋃
x∈K∗

1
(Vs) U s

k,n(x) is a Gc-subset of X for any natural

number n, which implies that As is a Gc-set. Since Bs is a Gδ-subset of X (see

Lemma 3.8 on page 161), it follows that A is a Gτ -subset of X. Here we have

used the fact that τ ≥ c. We shall prove that G(V ) = A. Since F (V ) = X \G(V ),

this will be sufficient to prove the lemma. We first prove that

(2.6) F (V ) ⊂ X \ A.

Take x′ ∈ F (V ). Since K(x′) is a finite set and the family {Vs}s∈S is closed under

the operation of finite union, there exists s ∈ S such that K(x′) ∩ V ⊂ Vs, i.e.,

x′ /∈ Bs. It remains to prove that x′ /∈ As. There exists a natural number m0

satisfying the condition K(x′) ∩ V ⊂ F s
m0

. Then

(2.7) eV |K(x′) = eVs |K(x′) = gs
n|K(x′)

for any n ≥ m0. Since x′ ∈ F (V ), for any k ∈ N there is a natural number nk

such that

(2.8)
∣∣h (nkeV ) (x′)

∣∣ ≥ k + a(x′) + 1.

Take an arbitrary natural number k≥m0. We verify that x′ /∈
⋃

x∈K∗

1
(Vs) U s

k,nk
(x).

From (2.7) and (P2) it follows that | h (nkeV ) (x′) − h (nkg
s
n) (x′)| ≤ a(x′)

for any natural numbers n, k ≥ m0 and this together with (2.8) gives the in-

equality |h (nkg
s
n) (x′)| ≥ k + 1. Take an arbitrary x ∈ K∗

1 (Vs). It remains to
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show that x′ /∈ U s
k, nk

(x). Since gs
k+N(x, s)|K1(x) ≡ 0, from (P1) it follows that

|h(nkg
s
k+N(x, s))(x)| ≤ 1. Then

∣∣∣h
(
nkg

s
k+N(x, s)

)
(x′) − h

(
nkg

s
k+N(x, s)

)
(x)

∣∣∣

≥
∣∣∣h

(
nkg

s
k+N(x, s)

)
(x′)

∣∣∣ −
∣∣∣h

(
nkg

s
k+N(x, s)

)
(x)

∣∣∣ ≥ (k + 1) − 1 = k.

Hence, x′ /∈ U s
k, nk

(x). Inclusion (2.6) is proved.

Let us prove the reverse inclusion X \ A ⊂ F (V ). Let x′ /∈ A. We shall

show that x′ ∈ F (V ). Choose s ∈ S such that x′ /∈ As∪Bs. Then K(x′)∩V ⊂ Vs.

Fix m0 ∈ N such that x′ /∈
⋃

k≥m0

⋂
n∈N

⋃
x∈K∗

1
(Vs) U s

k, n(x) and take an arbitrary

natural number k ≥ m0. Then there is nk ∈ N such that x′ /∈
⋃

x∈K∗

1
(Vs) U s

k, nk
(x).

Choose q ∈ N such that K(x′) ∩ V ⊂ F s
q and an element x0 ∈ K∗

1 (Vs) satisfying

the condition K1(x0) * F s
q . Such an element exists because the set Vs is adequate.

Then N(x0, s) > q and

K(x′) ∩ V = K1(x
′) ∩ Vs ⊂ F s

q ⊂ F s
k+N(x0, s).

Put i = k+N(x0, s). Since x′ /∈ U s
k, nk

(x0), we have |h (nkg
s
i ) (x′) − h (nkg

s
i ) (x0)|

≥ k. Besides, |h (nkg
s
i ) (x0)| ≤ 1. Hence, by the triangle inequality we obtain

that ∣∣h (nkg
s
i ) (x′)

∣∣ ≥ k − 1.

Since eV |K(x′) = eVs |K(x′) = gs
i |K(x′), we have |h(nkg

s
i )(x

′) − h(nkeV )(x′)| ≤

a(x′). Then, again applying the triangle inequality we obtain

|h(nkeV )(x′)| ≥ |h(nkgs
i )(x

′)| − |h(nkg
s
i )(x

′) − h(nkeV )(x′)| ≥ k − 1 − a(x′),

hence, supm∈N |h(meV )(x′)| = ∞. �

Lemmas 2.4 and 2.3 yield the following corollary.

Corollary 2.5. For any U ∈ [U ]τ there exists V ∈ [U ]τ such that U ⊂ V

and F (V ) is an Fτ -subset of X.

We shall now construct an expanding sequence (Vn)n∈N
such that Vn ∈

[U ]τ . Simultaneously with it we shall construct a sequence (Fn)n∈N
such that

Fn ∈ FinFτ and Fn′ ⊂ Fn′′ for any two natural numbers n′ < n′′.
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Let F0 = {X}. Choose a set V1 ∈ [U ]τ such that

U(F0) ⊂ V1 and F (V1) ∈ Fτ

(it is possible by Corollary 2.5), and putF1 = {X, F (V1)}. Choose a set V2 ∈ [U ]τ
such that

V1 ∪ U (F1) ⊂ V2 and F (V2) ∈ Fτ .

Assume that we have already defined the sets Vi ∈ [U ]τ and Fi ∈ FinFτ for every

natural number i ≤ k satisfying the following conditions:

1. F (Vi) ∈ Fτ , 1 ≤ i ≤ k;

2. Vi ∪ U (Fi) ⊂ Vi+1, 1 ≤ i ≤ k − 1, where Fi = {X,F (V1) , . . . , F (Vi)},

1 ≤ i ≤ k.

Choose a set Vk+1 ∈ [U ]τ satisfying the following conditions:

(2.9) Vk ∪ U (Fk) ⊂ Vk+1 and F (Vk+1) ∈ Fτ .

Put Fk+1 = {X,F (V1) , . . . , F (Vk+1)}. The sequences (Vn)n∈N
and

(Fn)n∈N
are defined.

We shall prove by induction with respect to n the following assertion.

Assertion 2.6. For any natural number n and each set {j1, . . . , jk} ⊂

{1, . . . , n} such that F (Vj1) ∩ . . . ∩ F (Vjk
) 6= ∅ the following inequality holds:

(2.10) ρ (F (Vj1) ∩ . . . ∩ F (Vjk
)) ≥ k + 1.

P r o o f. We shall show that ρ (F (Vn)) ≥ 2. For any x ∈ X by inequality

(2.1) we have

|K(x) ∩ Vn| ≥ |K(x) ∩ V1| ≥ |K(x) ∩ U (F0)| ≥ ρ(X) ≥ 1.

Therefore, if ρ(x) = 1 for some x ∈ X, then K(x) ⊂ Vn, hence, by (S1)

we have x /∈ F (Vn). This implies that ρ (F (Vn)) ≥ 2. In particular, this yields

that the assertion is valid for n = 1.

Assume that Assertion 2.6 holds for every natural number n ≤ N . We

shall prove that it holds for n = N + 1. It suffice to show that for each subset

{j1, . . . , jk} ⊂ {1, . . . , N} such that F = F (Vj1) ∩ . . . ∩ F (Vjk
) ∩ F (VN+1) 6= ∅
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the following inequality holds: ρ(F ) ≥ k+2. Put F ′ = F (Vj1)∩. . .∩F (Vjk
), then

F = F ′ ∩ F (VN+1). By induction hypothesis we have inequality ρ(F ′) ≥ k + 1.

Assume that ρ(F ) = k + 1 to obtain a contradiction.

Take an element x ∈ F such that |K(x)| = k + 1. Since F ′ ∈ FN , we see

that from (2.9) and (2.1) it follows that

|K(x) ∩ VN+1| ≥ |K(x) ∩ U (FN )| ≥ ρ(F ′) ≥ k + 1.

Hence, K(x) ⊂ VN+1 and condition (S2) implies that x /∈ F (VN+1). Therefore

x /∈ F . This contradiction completes the proof of Assertion 2.6.

In particular, inequality (2.10) implies that for any x ∈ X there exists a

natural number k such that x /∈ F (Vn) for all n > k, i.e., that x ∈ G (Vn). In

other words, equality (2.4) holds. By Lemma 2.2 we obtain Y =
⋃

n∈N
Vn. Since

Vn ∈ [U ]τ for any n ∈ N, we see that the cover U of Y is τ -trivial, a contradiction.

Hence, l(Y ) ≤ τ . �

Corollary 2.7. Let the spaces Cp(X) and Cp(Y ) be uniformly homeo-

morphic, and let l(X), l(Y ) ≥ c. Then l(X) = l(Y ).

Corollary 2.8. Let the spaces Cp(X) and Cp(Y ) be uniformly homeo-

morphic. Then l(X) ≤ c if and only if l(Y ) ≤ c.

The statement of Theorem 0.1 follows from Corollaries 2.7 and 2.8.

Problem 2.9 Are there spaces X and Y such that l(X) = c, l(Y ) < c

and Cp(X) is uniformly homeomorphic to Cp(Y )?

3. Auxiliary statements used in the proof.

Theorem 3.1. Let h : Cp(Y ) → Cp(X) be a uniform homeomorphism.

Then there is a uniform homeomorphism h̄ : RY → RX such that h̄(g) = h(g) for

all g ∈ Cp (Y ).

P r o o f. Let K̃n(x) =
⋃n

m=1 K1/m(x), K̃(x) =
⋃∞

m=1 K1/m(x), where

x ∈ X. For the mapping H = h−1 : Cp (X) → Cp (Y ) we define such mappings

as defined in section 1 for h. For any y ∈ Y , δ > 0, and any finite subset L ⊂ X

put

b(y, L, δ) = sup{|H(f ′)(y) − H(f ′′)(y)| :

f ′, f ′′ ∈ Cp (X), |f ′(x) − f ′′(x)| < δ for all x ∈ L}.
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We also put

b(y, L, 0) = sup{|H(f ′)(y) − H(f ′′)(y)| :

f ′, f ′′ ∈ Cp (X), f ′(x) = f ′′(x) for all x ∈ L}.

As in the case of the mapping h, for every y ∈ Y there exist finite sets L(y) ⊂ X

and Lε(y) ⊂ X for any ε > 0 satisfying the following conditions:

1. b(y, L(y), δ) < ∞ for all δ ≥ 0;

2. b(y, L′, δ) = ∞ for all δ ≥ 0, where L′ is a proper subset of L(y);

3. If b(y, L, δ) < ∞ for some finite set L ⊂ X and δ ≥ 0, then L(y) ⊂ L;

4. b(y, Lε(y), 0) ≤ ε;

5. b(y, L′, 0) > ε, where L′ is a proper subset of Lε(y);

6. L(y) ⊂ Lε(y).

Let L̃n(y) =
⋃n

m=1 L1/m(y), L̃(y) =
⋃∞

m=1 L1/m(y), where y ∈ Y .

For the proof we need two lemmas.

Lemma 3.2. y ∈
⋃

x∈L(y) K(x) for any y ∈ Y .

P r o o f. Let K =
⋃

x∈L(y) K(x). Assume that y /∈ K to obtain a con-

tradiction. Let δ = max{a(x) : x ∈ L(y)}, b = b(y, L(y), δ). Take a function

g ∈ Cp (Y ) such that g|K ≡ 0 and g(y) = b + 1. Since g|K(x) ≡ 0, we have

|h(g)(x)| ≤ a(x) ≤ δ for any x ∈ L(y). Then b + 1 = |g(y)| ≤ b(y, L(y), δ) = b.

This contradiction completes the proof. �

We now define a mapping h̄ : RY → RX . Let g ∈ RY and x ∈ X. Let

(gn)n∈N be a sequence of continuous functions on Y such that gn| eKn(x) = g| eKn(x)

for each n ≥ n0, where n0 is some natural number. We shall prove that the

sequence (h(gn)(x))n∈N has a limit. Take ε > 0 and put N = max([1/ε] + 1, n0),

where [x] denotes the integer part of x. Then gn| eKN (x) = gm| eKN (x) for all n,m ≥

N , hence, |h(gn)(x) − h(gm)(x)| ≤ 1/N < ε. We obtain that the sequence

(h(gn)(x))n∈N is fundamental (Cauchy sequence), hence it has a limit. We define

a mapping h̄ by the formula

h̄(g)(x) = lim
n→∞

h(gn)(x).

We have to prove that the definition does not depend on the choice of the sequence

(gn)n∈N. Let (g′n)n∈N be another sequence of continuous functions on Y such

that g′n| eKn(x)
= g| eKn(x)

starting from some n1, and let a = limn→∞ h(gn)(x),
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b = limn→∞ h(g′n)(x). From the sequences {gn} and {g′n}, we construct another

sequence {g′′n} defined by the formula

g′′n =

{
gn if n is odd;
g′n if n is even.

As shown above, there is a limit of the sequence (h(g′′n)(x))n∈N which we

denote by c. Then

c = lim
n→∞

h(g′′n)(x) = lim
n→∞

h(g′′2n)(x) = lim
n→∞

h(g′′2n−1),

which implies that a = b = c. Obviously, if g ∈ Cp (Y ), then h̄(g) = h(g).

We now define a mapping H̄ : RX → RY . Let f ∈ RX and y ∈ Y .

Let (fn)n∈N be a sequence of continuous functions on X such that fn|eLn(y) =

f |eLn(y)
starting from some n0. Similarly, we can prove that there is a limit of

the sequence (h−1(fn)(y))n∈N. Consider the mapping H defined by the formula

H̄(f)(y) = limn→∞ h−1(fn)(y). It can be proved analogously that the definition

is correct and H̄(f) = h−1(f) for all f ∈ Cp (X).

Lemma 3.3. The mappings h̄ : RY → RX and H̄ : RX → RY are uni-

formly continuous.

P r o o f. Take x ∈ X and ε > 0. Choose N ∈ N such that N > 4/ε. Then

for each natural number n ≥ N we have a(x, K̃n(x), 0) ≤ 1/N < ε/4. Since the

mapping δ 7→ a(x,K, δ) is continuous at zero, there exists δ > 0 such that

(3.1) a(x, K̃N (x), δ) < ε/2 .

Let g′, g′′ ∈ RY and |g′(y)− g′′(y)| < δ for any y ∈ K̃N (x). We shall consider the

sequences (g′n)n∈N, (g′′n)n∈N ⊂ Cp (Y ) such that g′n| eKn(x) = g′| eKn(x) and g′′n| eKn(x) =

g′′| eKn(x) for all n ∈ N. Then |h(g′N )(x)−h(g′n)(x)| ≤ 1/N < ε/4 and |h(g′′N )(x)−

h(g′′n)(x)| ≤ 1/N < ε/4 for all n ≥ N . It is clear that limn→∞ h(g′n)(x) =

h̄(g′)(x) and limn→∞ h(g′′n)(x) = h̄(g′′)(x). Hence, passing to the limit in the last

inequalities as n → ∞, we obtain inequalities |h(g′N )(x) − h̄(g′)(x)| < ε/4 and

|h(g′′N )(x)− h̄(g′′)(x)| < ε/4. In addition, | g′N (y)− g′′N (y)| < δ for all y ∈ K̃N (x),

therefore, from (3.1) it follows that |h(g′N )(x) − h(g′′N )(x)| < ε/2. Then

| h̄(g′)(x) − h̄(g′′)(x)|

= | (h̄(g′)(x) − h(g′N )(x)) + (h(g′N )(x) − h(g′′N )(x)) + (h(g′′N )(x) − h̄(g′′)(x))|

< ε/4 + ε/2 + ε/4 = ε.
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The proof for H̄ is analogous. �

We now prove that H̄ = h̄−1. Let g ∈ RY , y ∈ Y . We shall show that

H̄(h̄(g))(y) = g(y). For any natural numbers n,m put

K̃n, m(y) =
⋃

x∈eLn(y)

K̃m(x).

Take a sequence (fn)n∈N ⊂ Cp (X) such that fn|eLn(y)
= h̄(g)|eLn(y)

for every nat-

ural number n. Put gn = h−1(fn) ∈ Cp (Y ). Then H̄(h̄(g))(y) = limn→∞ gn(y).

Since the mapping δ 7→ b(y, L, δ) is continuous at zero, for any natural number

n there is δn > 0 such that for any two functions g′, g′′ ∈ Cp (Y ) the following

implication holds:

(3.2)
(
|h(g′)(x) − h(g′′)(x)| < δn for all x ∈ L̃n(y)

)
⇒ | g′(y) − g′′(y)| < 2/n .

Take a sequence (g′m)m∈N ⊂ Cp (Y ) such that g′m| eKm, m(y) = g| eKm, m(y) for all

natural number m. Then for each x ∈ L̃(y) there is natural number mx such that

for any m ≥ mx we have g′m| eKm(x) = g| eKm(x); hence, limm→∞ h(g′m)(x) = h̄(g)(x)

for each x ∈ L̃(y). Therefore, for any natural number n there is mn ∈ N such

that |h(g′mn
)(x) − h̄(g)(x)| < δn for each x ∈ L̃n(y); hence,

|h(g′mn
)(x) − h(gn)(x)| = |h(g′mn

)(x) − fn(x)| = |h(g′mn
)(x) − h̄(g)(x)| < δn

for each x ∈ L̃n(y). From (3.2) it follows that | g′mn
(y) − gn(y)| < 2/n. Since

y ∈ K̃1, 1(y) by Lemma 3.2, we obtain the equality g′m(y) = g(y) for every natural

number m, which implies that | g(y) − gn(y)| < 2/n. Passing to the limit in this

inequality as n → ∞, we obtain that g(y) = H̄(h̄(g))(y). It can be proved

analogously that h̄(H̄(f))) = f for any f ∈ RX , which implies that H̄ = h̄−1.

This completes the proof of Theorem 3.1. �

Lemma 3.4. Let U be a functionally open subset of X. Then there

is an expanding sequence (Fn)n∈N of functionally closed subset of X such that

U =
⋃

n∈N
Fn.

P r o o f. Let f : X → [0, 1] be a continuous function such that U =

f−1(0, 1]. Put Fn = f−1( 1
n , 1] for every n ∈ N. It is easy to verify that each set

Fn is functionally closed and U =
⋃

n∈N
Fn. �
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Lemma 3.5. Let U and V be functionally closed subset of X. Then there

is a continuous function f : X → [0, 1] such that f−1(0) = U , f−1(1) = V .

P r o o f. See [2], page 43.

Lemma 3.6. Let S and T be nonempty sets and let {Xs, t}(s, t)∈S×T be

a family of subsets of X. Then

⋃

s∈S

⋂

t∈T

Xs, t =
⋂

f∈T S

⋃

s∈S

Xs, f(s).

P r o o f. Put A =
⋃

s∈S

⋂
t∈T Xs, t, B =

⋂
f∈T S

⋃
s∈S Xs, f(s).

Let x ∈ A. Then there is s0 ∈ S such that x ∈ Xs0, t for all t ∈ T . Let

f ∈ T S. Then x ∈ Xs0, f(s0), hence x ∈
⋃

s∈S Xs, f(s), which implies that x ∈ B,

i.e., that A ⊂ B.

Let x /∈ A. Then for each s ∈ S there is t = f(s) ∈ T such that

x /∈ Xs, f(s); hence x /∈
⋃

s∈S Xs, f(s) and x /∈ B, i.e., B ⊂ A. �

The previous lemma implies the following corollary.

Corollary 3.7. If in the condition of the previous lemma we require that

S and T should be countable and each set Xs, t should be open in X, then the set⋃
s∈S

⋂
t∈T Xs, t is a Gc-subset of X.

Lemma 3.8. The set Bs = {x ∈ X : K(x) ∩ (V \ Vs) 6= ∅} is a Gδ-subset

of X.

P r o o f. Let (F s
n)n∈N

be a decomposition of Vs satisfying the following

conditions:

F s
n ∈ C and F s

n ⊂ F s
n+1 for all n ∈ N.

Put Un = V \F s
n. Then V \Vs =

⋂
n∈N

Un, where each Un is open and Un ⊃ Un+1

for all n ∈ N. Let Cs =
⋂

n∈N
K−1(Un). We shall show that Bs = Cs. The

inclusion Bs ⊂ Cs is obvious. Let x ∈ Cs. Since K(x) is finite, there is y ∈ K(x)

such that y ∈ Un for all n in some infinite subset of N. Hence, y ∈
⋂

n∈N
Un

and x ∈ Bs. By Corollary 1.5 on page 147, the set K−1(Un) is a Gδ-subset of X

for all n ∈ N. This implies that Bs, as a countable intersection of Gδ-sets, is a

Gδ-set. �
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