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ABSTRACT. Two Tychonoff spaces X and Y are said to be [-equivalent
(u-equivalent) if C}, (X)) and C}, (Y) are linearly (uniformly) homeomorphic.
N. V. Velichko proved that countable Lindel6f number is preserved by the
relation of l-equivalence. A. Bouziad strengthened this result and proved
that any Lindel6f number is preserved by the relation of [-equivalence. In this
paper it has been proved that the Lindel6f number greater than continuum
is preserved by the relation of u-equivalence.

Introduction. Our aim is to prove the following main result of the
paper.
Theorem 0.1. Let the spaces Cp(X) and Cp(Y') be uniformly home-

omorphic and the Lindelof number of X or Y greater than continuum. Then

1(X) = 1(Y).
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For the proof we need some auxiliary concepts. In the first section, we
consider set-valued mappings K and K. of the space X to Y generated by the
uniform homeomorphism of the spaces Cp, (YY) and C, (X), and formulate their
properties. In the second section, we prove the main result. Section 3 is devoted
to the proof of the auxiliary results.

Terminology and notations. In notation and terminology we follow
R. Engelking’s book [2]. The spaces considered in this paper are taken to be
Tychonoff spaces. The symbols X, Y are used only for topological spaces. R
denotes the usual space of real numbers, N = {1,2,...} is the set of natural
numbers. The symbol k,m denotes the set of all natural numbers n such that
k <n <m, where k,m € N, k < m. R¥ is a space of all real-valued functions on
X, Cp(X) is a space of all real-valued continuous functions on X equipped with
the topology of pointwise convergence. Fin F is a family of all finite subsets of a
set F.

The restriction of the mapping f to the subset A is denoted by f|a.
f71(A) is a preimage of the set A under the mapping f. If A is an interval, then
we shall use the symbol f~'A instead of f~!(A). |A| denotes the cardinality of
A, Int A denotes the interior of A. A subset A of X will be called functionally
closed (functionally open) if A = f~1(1) (A = f~1(0,1] respectively) for some
continuous function f: X — [0, 1]. We say that the set A is a Gg-subset of X if A
can be represented as the intersection of some countable family of open subsets
of X.

The cardinal number assigned to the set of all positive integers is denoted
by the symbol Ry, and the cardinal number assigned to the set of all real numbers
is denoted by ¢ (continuum). The symbol 7 denote infinite cardinal only. For any
cardinal number 7 symbol w(7) denotes the initial ordinal number A such that
|A| = 7. The Lindel6f number I(X) of a space X is the smallest infinite cardinal
7 such that any open cover of X contains a subcover of cardinality at most 7.

For a set-valued mapping p : X — Y and sets A C X and B C Y,
the set p(A) = U{p (z): © € A} is called the image of A under p, and the set
p YB)={r € X:p(z)N B # 3} is called the preimage of B under p. A set-
valued mapping p : X — Y is called lower semicontinuous if for every open subset
of Y its preimage under p is open in X, and p is called surjective if for every y € Y’
there exists an z € X such that y € p (z).
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1. Set-valued mappings concerned with uniform homeomor-
phisms of function spaces and their properties.

Definition 1.1. Let h: C,, (Y) — C, (X) be a uniform homeomorphism.
Fiz x € X, 0 >0, and finite subset K CY, and put

a(z, K,8) = sup{|h(g")(z) — h(g")(x)] :
g.9" € Cp(Y), I9'(y) — ¢"(y)| <0 for ally € K}.

This notion was introduced by S. P. Gul’ko in [3]. Next, we define

a(z, K,0) = sup{| h(¢')(z) — h(g")(z)] :
g.9" € Cp(Y), g'(y) = ¢"(y) for all y € K}.

(if the set K is empty, then the supremum is taken over all ¢, ¢" € C, (Y)). It is
obvious that if 0 < é; < d9, then a(z, K,01) < a(z, K,d3), and if K1 C Ky C Y,
then a(x, Ko,9) < a(x, K,0) for all § > 0. It was proved in [3] that for every
x € X there exists a nonempty finite subset K (x) C Y such that

1. a(z, K(x),0) < oo for any § > 0,

2. a(x, K',§) = oo for every proper subset K’ of K(z) and for any 6 > 0,

3. If a(x, K, §) < oo for some finite subset K C Y and § > 0, then K(z) C K.

S. P. Gul’ko also proved that if a(z, K,dy) < oo for some finite subset
K CY and ¢y > 0, then a(z, K,0) < oo for all 6 > 0. We now prove that the set
K (x) has the following property, which is stronger than the property 2.

4. a(z, K',0) = co for every proper subset K’ of K (x).
To prove this statement we need the following

Lemma 1.2. Ifa(z, K,0) < oo, then a(z, K,J) < oo for all § > 0.

Proof. Fix x € X and finite subset K C Y such that a(z, K,0) < oo.
We prove that the function 6 — a(z, K,J) is continuous at the point 0. Let
¢ > 0. Since h is a uniform homeomorphism, there exist a finite subset K’ C Y
and ¢ > 0 such that for all ¢/, ¢” € C, (Y') we have the implication

(1 (y) —g" ()| <6 forally € K') = | h(g')(x) — h(g")(z)] <e.
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Let ¢',¢" € Cp(Y) and | ¢'(y) — ¢"(y)| < ¢ for ally € K. Since Y is a Tychonoff
space, there is g € C}, (Y) such that

_Jdly) ifyek;
g(y) = { g//(y) if ye K’\K.

Then |g(y) — ¢"(y)| < 6 for all y € K', hence | h(g)(xz) — h(g")(x)| < . Now by
the triangle inequality we obtain

| 1(g') (@) = h(g")(@)| < [h(g")(x)—h(g)(@)|+]| h(g)(x) —h(g")(z)| < a(z, K,0)+e.

Passing to the supremum over all ¢',¢” € C,(Y) such that | ¢'(y) — ¢"(y)| < 0
for all y € K, we have inequality a(z, K, J) < a(z, K,0) + &, which implies that
the function 0 — a(z, K,0) is continuous at the point 0. Therefore there exists
dp > 0 such that a(x, K, dy) < oo, hence a(z, K,d) < oo for all 6 >0. O

For any =z € X we put a(z) = a(z, K(x),0). Using this notation we have
the following simple assertions.

(K1) If ¢, g" € Cp (V) and ¢'|k(2) = 9" [k (a), then [h(g")(z) — h(g")(2)| < a(x).

(K2) For any proper subset K’ C K(z) and any real b there exist functions
d,9" € Cp(Y) such that ¢'|xr = ¢" |k and | h(¢')(z) — h(g")(z)| > b.

Besides, this mapping surjectively maps the space X onto Y (see Lemma
3.2 on page 158), i.e., for any y € Y there exists € X such that y € K(z).

For every x € X and every € > 0 we define nonempty finite set K.(x) C Y
satisfying the following conditions:

(KE1) a(z, Kc(x),0) <&
(KE2) a(z,K’,0) > ¢ for every proper subset K’ of K.(z).

It is easy to check that such a set always exists. Indeed, since h is uni-
formly continuous, it follows that there exist > 0 and a finite set K C Y such
that for all ¢, ¢” € C,, (Y') we have the implication (] ¢'(y) —¢"(y)| < for ally e
K) = |h(¢)(xz) — h(¢")(z)| < e. Then a(z, K,0) < e. Reducing the set K until
it satisfies the condition (KE2), we obtain the set K.(z).

There can be several sets satisfying properties (KE1) and (KE2); then we
denote by K.(z) anyone of them. By the property 3 of K(z) we have K(x) C
K (z) for every £ > 0, and by the property 4 we have K(z) = K,(z) for any
a > a(z). Thus K(z) is the smallest of all sets K.(x).
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The following lemma is analogous to result obtained by O. G. Okunev [4]
for t-equivalence.

Lemma 1.3. Let x9 € X, € > 0, U is an open subset of Y such that
K(x0)NU # @. Then there is an open neighborhood V' of xq such that K. (z)NU #
& for any x € V.

Proof. We can assume that K(xo) NU = {yo}. Put K = K(x0) \ {yo}-
By the property 2 of K(z) there exist functions g1, g2 € Cp (Y') coinciding on K’
such that | h(g1)(x0) — h(g2)(zo)| > € + a(x). Since Y is completely regular, it
follows that there exists a function go € C), (Y) coinciding with g; on Y\ U such

that go(yo) = g2(yo). Then go|k (z0) = 92| K (20) and | R(g0)(z0) —(g2)(70)| < a(z).
By the triangle inequality we obtain that

| h(g1)(z0) — h(go)(zo)| > [ h(g1)(x0) — h(g2)(x0)| — | h(g0)(w0) — h(g2)(w0)| > €.

Let us prove that the set V' defined by the formula V = {z € X: |h(g1)(x) —
h(go)(z)| > €} is the required open neighborhood of . Assume the contrary.
Let # € V be a point such that K.(z) NU = @. Then g; coincides with gy on
K.(x). Therefore [h(g1)(x) — h(go)(x)| < €, a contradiction to the assumption
that z € V. O

The last theorem yields the following corollaries.

Corollary 1.4. Letxg € X, e >0, k € N, and let U be an open subset
of Y such that |K(xg) NU| > k. Then there is an open neighborhood V of xg
such that |K.(z)NU| >k for allz € V.

The proof is trivial.

Corollary 1.5. Let U be an open subset of Y. Then K—1(U) is a Gs-set
n X.

Proof. Let K~ }(U) # @. Since K(x) C K,(z) for all m € N and
there is a natural number n such that K(r) = K, (z), it follows that K~}(U) =
Nimen Kt (U). By Corollary 1.4 we have K—!(U) C Int K,,,}(U) for every m € N,
consequently, K H(U) = ey Int K,,1(U). O

It is well known (see Lemma 3.5 on page 161) that every uniform home-
omorphism h between C),-spaces can be extended to a uniform homeomorphism
between the spaces of all real-valued functions. We shall denote this new home-
omorphism also by h.
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Definition 1.6. Fix a point x € X, § > 0, and a finite subset K C Y,
and put

a(z, K,0) = sup{| h(g")(z) — h(g")(z)]| :
g,9" €RY, |d'(y) — g"(y)| <6 for ally € K},

a(z, K,0) = sup{| h(¢')(z) — h(g")(z)] :
g.9" €RY, g'(y) = g"(y) for ally € K}.

Lemma 1.7. Let h: RY — RX be a uniform homeomorphism such that
hCy(Y)) = Cp(X). Then a(z, K,0) = a(z, K,0) for all x € X, any finite set
KcCY,andd > 0.

Proof. It follows from the definition that a(z, K, ) < a(z, K, ). Let us
prove the reverse inequality. Let § > 0. Take ¢ > 0 and two functions g;, g» € RY
such that

(1.1) |g1(y) — g2(y)| < 6 for ally € K.

Since h is a uniform homeomorphism, it follows that there exist a finite
set K/ C Y and A > 0 such that for all ¢/,¢” € RY wehave the implication

(12)  (1d()—g" W)l <A forally e K') = [h(g')(z) — h(g")(z)| < e/2.

There are functions gp, g5 € Cp (Y') such that gy|xkux’ = g1|kuk’ and g |kuk’ =
g2|kuk’. Then |g{(y) — gi(y)| < ¢ for all y € K. Observe that from (1.2) it
follows that | h(g1)(z) — h(g()(z)| < /2 and | h(g2)(x) — h(g))(z)| < €/2, and —
by virtue of the triangle inequality — we have a(z, K,0) > | h(g})(z) —h(g))(x)| >
| h(g1)(z) —h(g2)(z)| — . Passing to the supremum over all g1, go € RY satisfying
condition (1.1) we obtain inequality a(z, K,d) > a(z, K,J) — . Since ¢ being
an arbitrary positive number, this implies that a(z, K, ) = a(z, K, ). Equality
a(xz, K,0) = a(x, K,0) is proved analogously. O

2. Main result.

Theorem 2.1. Let X and Y be u-equivalent, 7 a cardinal not less than
the continuum, and I(X) < 71. Then I(Y) < T.
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Proof. Since any uniform homeomorphism between C),-spaces can be
extended to a uniform homeomorphism between the spaces of all real-valued
functions, one can assume without loss of generality that there is a uniform
homeomorphism h of RY onto R¥ satisfying the following conditions:

L. h(cp(Y)) = Cp(X)§
2. h takes zero function Oy € RY to zero function Ox € R¥.

To prove the theorem we shall need some notation.
Let p: X — Y be a set-valued mapping of X to Y and let U C Y be an
arbitrary set. Put
p*(U)={z € X:px) CU}.

By 7 we shall denote the family of all open subsets of Y. Let i/ be an open cover
of Y, 7 an infinite cardinal. A cover U will be called 7-trivial if it contains a
subcover of cardinality at most 7. Otherwise it will be called T-nontrivial. This
notion was introduced by A. Bouziad in [1]. Put

U, = {Uu’: U cu, |u| < T}.

We say that the set A is an F.-subset of X if A can be represented as
the union of some family, of cardinality at most 7, of closed subsets of X. The
complements of F,-subsets will be called G, -subsets. If 7 = Ny, then we shall
write F,, and G5 instead of Fy, and Gy, respectively. The symbol F, denotes the
family of all Fr-subsets of X, G, is a family of all G.-subsets of X. The family
of all subsets A of X such that [(A) < 7 will be denoted by L.

Let I[(X) < 7, where 7 > ¢. Assume that [(Y) > 7 to obtain a contra-
diction. It means that there exists T-nontrivial open cover U of Y. Without loss
of generality we can assume that I/ is closed under the operation of finite union
and U C B, where B is a base of Y consisting of all functionally open subsets of
Y. It is well known that the family B is also closed under the operation of finite
union (see [2], page 43).

Define a mapping

U:FinF; — U] U=U(F), where F € Fin F;,

T

using set-valued mappings defined in the previous section. For any z € X put
p(x) = | K(x)|. For every set ' C X we define a number

p(F) =min{p(x): x € F},
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which will be called the level of the set F'.

Further, for any U € 7 and any natural numbers k and m put
UM —Int{z e X: | Kp(z)NU| >k}.

Let F = {F,...,F,} C F.. For any nonempty set A C {1,...,n} we
put

Fa=()F, F={Fa:AC{l,....n}, Fa#02}
i€A
Let F € F, m € N and k = p(F). Then the family

uy:]:{ijleeu}

is an open cover of F'. Indeed, since the family i/ is closed under the operation of
finite union, it follows that for every zy € F there is U € U such that K (x¢) C U.
As p(F) = k, it follows that |K (x¢) NU| > k and by Corollary 1.4 there exists an
open neighborhood V of z( such that |K,,(z) NU| > k for all x € V. Then z €
V C U,[,lf], hence L{,[,f] is an open cover of F'. From the condition I(X) < 7 it follows
that F' € L;; therefore the cover UT[S] contains a subcover { T[ff]: Uelrm } of

F, where Up ,,, CU and |Up,p,| < 7. Put

v =1 U (UuEm).

Fe FmeN

Obviously, U(F) € U], and if Fy C Fo, then U(Fy) C U(F2). The mapping U
we shall call the constructor. A similar construction was used by N. V. Velichko
in [5].

We note one important property of the constructor.

(*) For every F € FinF,, any F € F, and any = € F the following inequality
holds:

(2.1) |K(@) U (F)| = plF).
Indeed, for any x € F there exist a natural number m and a set U € U ,, such
that K,,(z) = K(z) and z € U#f]; hence | K(z)NU (F)| > | K(z)NU| > k =

p(F).
Let us recall some important properties of the set-valued mappings K
and K, defined in the previous section.
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(P1) If ¢, ¢" € RY and ¢'| k,.(2) = 9" Kpu(a)» then [R(g')(z) = h(g")(z)| < m.

In particular, if ¢'| k,,(z) = 0, then | h(g")(z)| < m.

(P2) If ¢, ¢" € RY and ¢'| k(2) = ¢"| K(a), then |h(g')(z) — h(g")(2)| < a(z) <
co. In particular, if ¢'| x(,) = 0, then | h(g')(z)] < a(z) < oco.

For each V C Y consider the function eyy € RY defined by the formula

0, eV,

Denote by C the family of all functionally closed subsets of Y. Every functionally
open set V' C Y admits a decomposition

(2.2) V=|]J F., where F, €C and F,, C F,,41 foralln € N
neN

(see Lemma 3.4 on page 160). Further, by decomposition of functionally open
set V' we mean a sequence (F},), .y satisfying condition (2.2). If there is a de-
composition (F,), .y of V' satisfying the following condition:

(2.3) KX (V)\ Ki(F,) £ @ foralln e N,

then we say that the set V is adequate. A similar notion was introduced by
A. Bouziad in [1].
For every open set V € 7 put

6(v) = {z € X sup [n(mev )] < |

F() = { e X: sup mev )] = oo |

Analogous mappings were used by A. Bouziad in [1].

Lemma 2.2. The mapping G has the following properties:
(S1) K*(V) Cc G(V) for any V € T;

(S2) For any expanding sequence (Up), cy of the sets U, € T such that
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(2.4) x=JNGwn

keNn>k

the following condition holds:

Y = UUn.

neN

Proof. Let us verify that condition (S1) is satisfied. Take V € 7 and
r € K*(V). Then K(z) C V, hence mey| () = 0 for any natural number m
and by (P2) we have | h(mey )(x)| < a(z) < oo, therefore sup,,cy | h(mey)(z)| <
a(z) < oo, which implies that x € G(V).

Let us show that condition (S2) is fulfilled. Let (U,), cy be an expanding
sequence of the sets U, € 7 such that equality (2.4) is valid. Assume that
Y # UpenUn- Put U = U,enUn- Take y € Y\ U. Choose a finite subset
K' = {zy,...,2,} C X and § > 0 such that for any two functions f’, f’ € RX
the following implication holds:

(If' (@) = f"(xi)| <6 forallie Tp) =A™ (f)y) = (f)y) < L.

Such a choice is possible because the mapping ! is uniformly continuous. Then,
as shown in [3], for any two functions f’, f” € RX and every natural number n
the following implication holds:

([ (zi) = f"(zs)| <nd foralli € T,p) = | R~ (f)(y) =~ (f") ()| < n.
In particular,
(2.5) (]h(g)(:l:z)\ <nd for alliem) =|g(y) <n

for any g € RY.
From equality (2.4) it follows that there is a natural number N such that
z; € G(Uy) for all i € 1,p. Put

M = max sup |h(mey, ) ()]

Obviously, M < oo. Pick a natural number n € N such that n > M/d. Then
| h(neyy )(z;)] < M < néforalli€ 1,p. From this inequality and condition (2.5)
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it follows that | ney, (y)| < n, hence |ey, (y)| < 1, therefore y € Uy C U. Thus
we obtain a contradiction. O

Lemma 2.3. Let {Ui}ter C U and |T| < 7. Then there is a fam-
ily {Vi}ses C U] closed under the operation of finite union and satisfying the
following conditions:

L[S|<7;
2. each set V is adequate;

3. UteT Uy C UseS Vs.

Proof. Let Vo = (U, Ut. Since the cover U is T-nontrivial, there exists
y1 € Y\ Vo. Choose z1 € X such that y; € Ki(z1), i.e., Ki(z1) € Vo (such
an element exists since the mapping = — K(z) is surjective), and choose a set
Vi € U such that Kj(x1) C Vi (such a set exists since the set Kj(xp) is finite
and the family U is closed under the operation of finite union). Assume that
Z1,...,x and Vi, ..., V} are already chosen, where k € N. The set Y\Uf:0 V; is
nonempty, hence there is an element xj41 € X such that Ky (zy11) € Uf:o V; and
there is a set Vi1 € U such that Kj(xg41) C Viy1. We obtain two sequences
(Zp)nen € X and (Vp)nen C U such that Ki(z,) ¢ U?:_[)l Vi, V,, € U, and
Ki(zn) C V, for any natural number n. Put V = {J,cn Vi Let (Ws)ses be
the family of all finite unions of sets in (Uy)er. For each s € S put Vs =
Ws U V. Clearly, the family (Vi)ses C [U]; is closed under the operation of
finite union, |S| < 7, and U;er Ur C Uzeg Vs. It remains to verify that each
set Vi is adequate. Let s € S. Fix a decomposition (F),cy of the set W, and
decomposition (F,’f)neN of the set Vi, where k € N. The sequence (G7}),cn;
where G$ = FS U F}U...UF", is a required decomposition of the set Vj, since
(Tn)nen C K5(Vy) and 241 ¢ K7 (GE) for allm e N O

Lemma 2.4. Let {Vi}ses be a family of adequate functionally open sub-
sets of Y closed under the operation of finite union |S| < 7. Then F (U,cq Vs)

s an Fr-subset of X.

Proof. Put V= J,cgVs. Let (F};),cn be a decomposition of V; satis-
fying conditions F; € C, F;; C Fj |, and K{(V;) \ K{(F);) # @ for all n € N.
For any natural number n and any s € S we can find a function g € C, (Y') (see
Lemma 3.5 on page 161) such that

Inlps =0, Inlyvv, = 1.
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For any = € Kf(Vs) and k,n € N put

Ui n(z) = {1:/ € X: }h (ngZ+N($78)> (') —h (ngZ+N($78)> (1:)} < kz} ,

where N(z,s) is the smallest natural number N such that Ki(z) C F§. Then
U,in(x) is an open neighborhood of the point  in X. Put

A=NUN U U@, Bi={zeX: K@@)n(V\V)#a},

meNk>m neNze Ky (Vs)

A=()(A;UB,).
seS

Since each set Umer(VS) Uy n(x) is open in X, by Corollary 3.7 on page 161
we have that v Up  (x) is a G-subset of X for any natural
number n, Wh%%zﬁlngﬁ;\] tLﬁ;te Iills(‘;ss) akgisgt. Since By is a Gg-subset of X (see
Lemma 3.8 on page 161), it follows that A is a G.-subset of X. Here we have
used the fact that 7 > ¢. We shall prove that G(V)) = A. Since F(V) = X\G(V),
this will be sufficient to prove the lemma. We first prove that

(2.6) F(V)C X\ A.

Take ' € F(V). Since K(2') is a finite set and the family {V;}scg is closed under
the operation of finite union, there exists s € S such that K(2') NV C V4, ie.,
x' ¢ Bs. It remains to prove that ' ¢ A,. There exists a natural number mg
satisfying the condition K(z') NV C F; . Then

(2.7) evlk@) = evilk (@) = gnlk @)

for any n > mg. Since 2/ € F(V), for any k € N there is a natural number n
such that

(2.8) |h(ngev) ()] > k +a(z’) + 1.

Take an arbitrary natural number k>mg. We verify that 2’ ¢ Uxer(Vs) U (@)

From (2.7) and (P2) it follows that | h (ngey) (2') — h (nggs) (2')] < a(a’)
for any natural numbers n,k > mg and this together with (2.8) gives the in-
equality |h(nggs) (2')] > k+ 1. Take an arbitrary x € K7 (Vs). It remains to
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show that =’ ¢ Uy, (v). Since Jht Nz, 5)’K1(m) = 0, from (P1) it follows that
\h(nkngrN(x’S))(:r)] < 1. Then

’h (nkglf;—s—N(a:,s)) (z') —h <nk92+N(a;7s)> (1:)’

> [n (minenn) @] = b (000 n s ) @) 2 B+ D) =1 = k.

Hence, 2’ ¢ Uy ,, (). Inclusion (2.6) is proved.

Let us prove the reverse inclusion X \ A C F(V). Let 2/ ¢ A. We shall
show that 2’ € F(V'). Choose s € S such that 2/ ¢ A;UBg. Then K(2/)NV C V.
Fix mgo € N such that 2’ ¢ UkZWO Mhen Uxer(Vs) U,in(x) and take an arbitrary
: /
natural number k > mg. Then there is n; € N such that =’ ¢ Ua:er(Vs) Ui, (2)-
Choose ¢ € N such that K(z') NV C F; and an element xq € K{(V}) satisfying
the condition Kj(z9) € F;. Such an element exists because the set V is adequate.
Then N(zg,s) > ¢ and
K@)NV =K @)V, CF;C F 4 N(zo, s):
Put i = k+ N(zo,s). Since 2’ ¢ Uy ,, (w0), we have |h (nyg;) (z') — h (nrg;) (wo)|
> k. Besides, |h(nrg) (xo)| < 1. Hence, by the triangle inequality we obtain
that
}h(nkgf) (ac’)} >k —1.

Since ev| k() = evi|l k@) = 9|k @), We have |h(ngg?)(2') — h(ngev)(2')] <
a(x’). Then, again applying the triangle inequality we obtain

| h(nkev)(@')] = | h(nkg; ) (2")] = | h(nigy) (2') — h(ngev)(2')| = k —1 — a(a’),

hence, sup,,cy | h(mey ) (2')| = c0. O

Lemmas 2.4 and 2.3 yield the following corollary.

Corollary 2.5. For any U € [U]; there exists V € U], such that U C V
and F (V') is an Fr-subset of X.

We shall now construct an expanding sequence (V;,),cy such that V;, €
[U]. Simultaneously with it we shall construct a sequence (Fy),y such that
Fn € Fin F; and F,y C F,» for any two natural numbers n’ < n”.
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Let Fo = {X}. Choose a set V] € [U], such that
U(fo) cWvi and F(Vl) e F,

(it is possible by Corollary 2.5), and put 71 = {X, F (V1)}. Choose aset V5 € [U]-
such that
ViU U(fl) Cc Vs and F (VQ) e Fr.

Assume that we have already defined the sets V; € [U], and F; € Fin F for every
natural number ¢ < k satisfying the following conditions:

1. F(V)eF.,, 1<i<k

2. V,UU(F;) CVisr, 1<i<k—1, where F; = {X,F(V4),...,F(V})},
1<i<k.

Choose a set Vi1 € [U]; satisfying the following conditions:
(2.9) Vi, UU (fk) C Vi1 and F (Vk+1) e Fr.

Put Frp1 = {X,F(V1),...,F(Vis1)}. The sequences (V;,),cy and
(Fa)pen are defined.
We shall prove by induction with respect to n the following assertion.

Assertion 2.6. For any natural number n and each set {j1,...,jx} C
1,...,n} such that F(V;,)N...NF(V; & the following inequality holds:
J1 Jk

(2.10) p(F(Vi)N...NF (Vi) > k+1.

Proof. We shall show that p (F (V},)) > 2. For any = € X by inequality
(2.1) we have

| K(2) NVy| > | K(2) N Vi| > | K(2) U (Fo)| = p(X) > 1.

Therefore, if p(z) = 1 for some x € X, then K(z) C V,,, hence, by (S1)
we have x ¢ F(V,,). This implies that p (F (V},)) > 2. In particular, this yields
that the assertion is valid for n = 1.

Assume that Assertion 2.6 holds for every natural number n < N. We
shall prove that it holds for n = N + 1. It suffice to show that for each subset
{jl;---vjk‘} C {1,,N} such that F' = F(V}l)ﬂﬁF(%k)ﬂF(VNH) C ]
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the following inequality holds: p(F) > k+2. Put F' = F (V;,)N...NF (V},), then
F = F' N F (Vnt1). By induction hypothesis we have inequality p(F’) > k + 1.
Assume that p(F') = k + 1 to obtain a contradiction.

Take an element x € F such that | K(x)| = k + 1. Since F’ € Fy, we see
that from (2.9) and (2.1) it follows that

| K(2) N Vit > | K(@) N U (Fy)| > p(F') > k + 1.

Hence, K(z) C Vn4+1 and condition (S2) implies that x ¢ F (Vy1). Therefore
x ¢ F. This contradiction completes the proof of Assertion 2.6.

In particular, inequality (2.10) implies that for any x € X there exists a
natural number k such that z ¢ F (V,) for all n > k, i.e., that z € G(V,). In
other words, equality (2.4) holds. By Lemma 2.2 we obtain ¥ = (J,,cy V- Since
Vi, € [U]; for any n € N, we see that the cover U of Y is 7-trivial, a contradiction.
Hence, (V) < 7. O

Corollary 2.7. Let the spaces Cp(X) and Cp(Y) be uniformly homeo-
morphic, and let [(X), [(Y) > c. Then I(X) =1(Y).

Corollary 2.8. Let the spaces Cp(X) and Cp(Y') be uniformly homeo-
morphic. Then I(X) < ¢ if and only if I(Y) < c.
The statement of Theorem 0.1 follows from Corollaries 2.7 and 2.8.

Problem 2.9 Are there spaces X and Y such that I(X) = ¢, (V) < ¢
and Cp(X) is uniformly homeomorphic to Cp(Y')?

3. Auxiliary statements used in the proof.

Theorem 3.1. Let h: Cp,(Y) — Cp(X) be a uniform homeomorphism.
Then there is a uniform homeomorphism h: RY — RX such that h(g) = h(g) for
all g € C,(Y).

Proof. Let K,(z) = U"_, Ky (), K(z) = >, K/ (), where
x € X. For the mapping H = h™!: C,(X) — Cp(Y) we define such mappings
as defined in section 1 for h. For any y € Y, § > 0, and any finite subset L C X
put

by, L,0) = sup{| H(f")(y) = H(f")(y)| :
" e Cp(X), | f/(z) = f'(z)| <6 for all z € L}.
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We also put

b(y, L,0) = sup{| H(f")(y) — H(f")(y)! :
' f" e Cp(X), f(x) = f"(z) for all z € L}.

As in the case of the mapping h, for every y € Y there exist finite sets L(y) C X
and L.(y) C X for any £ > 0 satisfying the following conditions:

. b(y, L(y),0) < oo for all 6 > 0;

.b(y,L',5) = oo for all § > 0, where L’ is a proper subset of L(y);

I b(y, L,0) < oo for some finite set L C X and § > 0, then L(y) C L;
by, Le(y),0) < &

. b(y,L',0) > e, where L' is a proper subset of L.(y);

- L(y) C Le(y).

Let zn(y) - Unmzl Ll/m(y)v E(y) - U;j:l Ll/m(y)7 where Yy e Y.
For the proof we need two lemmas.

SOk W

Lemma 3.2. y € UxeL W) K(x) for anyy €Y.

Proof. Let K = e, K (). Assume that y ¢ K to obtain a con-
tradiction. Let § = max{a(z): 1: € L(y)}, b = b(y,L(y),0). Take a function
g € Cp(Y) such that g[x = 0 and g(y) = b+ 1. Since g|g) = 0, we have
|h(g)(z)| < a(z) <6 for any € L(y). Then b+ 1 = |g(y)| < b(y, L(y),0) = b.
This contradiction completes the proof. 0O

We now define a mapping h: RY — RX. Let ¢ € RY and € X. Let
(gn)nen be a sequence of continuous functions on Y such that g,| Ro(e) = 9| ()
for each n > ng, where ng is some natural number. We shall prove that the
sequence (h(gn)(x))nen has a limit. Take e > 0 and put N = max([1/e] + 1, ng),
where [z] denotes the integer part of z. Then gy Rn(z) = Im| R (@) for all n,m >
N, hence, |h(gn)(x) — h(gm)(z)] < 1/N < e. We obtain that the sequence
(h(gn)(z))nen is fundamental (Cauchy sequence), hence it has a limit. We define

a mapping h by the formula
hg)() = Tim_ h(gn)(x).

We have to prove that the definition does not depend on the choice of the sequence
(gn)nen- Let (g),)nen be another sequence of continuous functions on Y such

that ¢/, starting from some ny, and let a = lim,_ o h(gy)(z),

’f(n(x) = g’f(n(:r)
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b = lim,, o h(g),)(z). From the sequences {g,} and {g/,}, we construct another
sequence {g'} defined by the formula

v | gn ifnis odd;
In =\ ¢, ifnis even.

As shown above, there is a limit of the sequence (h(g))(x))nen which we
denote by c¢. Then

c= lim h(gy)(z) = lim h(g3,)(x) = lim h(gs, 1),
n—oo n—oo n—oo
which implies that a = b = ¢. Obviously, if g € C,, (Y), then h(g) = h(g).
We now define a mapping H: R¥ — RY. Let f € RX and y € Y.
Let (fn)nen be a sequence of continuous functions on X such that fn|Zn W =
f ’Zn W) starting from some ng. Similarly, we can prove that there is a limit of
the sequence (h™1(f,)(y))nen. Consider the mapping H defined by the formula

H(f)(y) = limy, oo A~ 1(f)(y). Tt can be proved analogously that the definition
is correct and H(f) = h=1(f) for all f € C,(X).

Lemma 3.3. The mappings h: RY — RX and H: RX — RY are uni-
formly continuous.
Proof. Take x € X and £ > 0. Choose N € N such that N > 4/e. Then

for each natural number n > N we have a(z, K,(z),0) < 1/N < ¢/4. Since the
mapping ¢ — a(z, K, ) is continuous at zero, there exists § > 0 such that

(3.1) a(z, Kn(x),6) <e/2.

Let ¢',g" € RY and |¢'(y) — ¢" (y)| < 6 for any y € Kx(x). We shall consider the
sequences (g}, )neN, (9n)nen C Cp (YY) such that ng(n(:c) = g’];(n(x) and gmf(n(a;) —
g”]f(n(x) for all n € N. Then | h(gly)(z) —h(g;,) ()| < 1/N < e/4 and | h(gy)(x)—
h(gh)(z)] < 1/N < g/4 for all n > N. Tt is clear that lim, o h(g),)(z) =
h(g")(x) and lim,, .o h(g")(x) = h(g")(z). Hence, passing to the limit in the last
inequalities as n — oo, we obtain inequalities | k(g )(z) — h(¢')(z)| < /4 and
| h(gf) (@) = h(g")(x)| < £/4. In addition, | gy (y) — g (y)| < J for all y € Ky (x),
therefore, from (3.1) it follows that | h(gy)(z) — h(gx)(z)| < £/2. Then

| 7(g") () = h(g") ()]
= (h(g")(@) = hlgn)(@)) + (h(gh)(x) — h(gh)()) + (h(gx)(x) — h(g")(x))]
<egl/d+e/24+¢e/d=¢.



160 A. V. Arbit

The proof for H is analogous. 0O

We now prove that H = h™!. Let g € RY, y € Y. We shall show that
H(h(9))(y) = g(y). For any natural numbers n, m put

2€Ln(y)

Take a sequence (fn)nen C Cp (X) such that fp|z W = h(g)|+ L.(y) for every nat-
ural number n. Put g, = h=(f,) € Cp(Y). Then H(ﬁ( ) (y ) = hmnHOO gn(y).
Since the mapping 0 — b(y, L, ) is continuous at zero, for any natural number
n there is §,, > 0 such that for any two functions ¢’,¢"” € C,(Y") the following
implication holds:

(3:2) (Ih(g)(@) = h(g")(@)] < & for allw € Lu(y)) = |g'(y) = 9" W)] < 2/n.

Take a sequence (gy,)men C Cp(Y) such that g, [z ) = 9z, ) for all

m(y
natural number m. Then for each x € L(y) there is natural number m, such that

for any m > m, we have g;n’f(m(m) = g\f(m(m); hence, lim,, .o h(g},)(x) = h(g)(x)
for each z € E(y) Therefore, for any natural number n there is m, € N such
that | h(g), )(x) — h(g)(x)| < &, for each x € L, (y); hence,

| (g, ) (@) = hlgn)(@)] = [ hlgp, ) (@) = ful@)] = [ Algp, ) (2) — h(g)(2)] < dn

for each 2 € Ly(y). From (3.2) it follows that | 9, (1) — gn(y)| < 2/n. Since
Y€ I~(17 1(y) by Lemma 3.2, we obtain the equality ¢/, (y) = g(y) for every natural
number m, which implies that | g(y) — gn(y)| < 2/n. Passing to the limit in this
inequality as n — oo, we obtain that g(y) = H(h(g))(y). It can be proved
analogously that h(H(f))) = f for any f € RX, which implies that H = h~".
This completes the proof of Theorem 3.1. O

Lemma 3.4. Let U be a functionally open subset of X. Then there
is an expanding sequence (Fy)nen of functionally closed subset of X such that
U=U,en F

Proof. Let f: X — [0,1] be a continuous function such that U =

f740,1]. Put F,, = f_l(1 1] for every n € N. It is easy to verify that each set

F,, is functionally closed and U = {J,,cy Fr- O
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Lemma 3.5. Let U and V be functionally closed subset of X. Then there
is a continuous function f: X — [0,1] such that f~1(0) =U, f~1(1) = V.
Proof. See [2], page 43.

Lemma 3.6. Let S and T be nonempty sets and let {Xs t}(s,1)e sx be
a family of subsets of X. Then

UNxei= N UXser

seSteT feTs seS

PI‘OOf. Put A = USGS ﬂtETX87t7 B = ﬂfeTS USESXSaf(S)'
Let z € A. Then there is s9 € S such that € X, ; for all ¢ € T". Let

f e TS Then zx € X, f(s0)> hence x € (J,cq Xy, f(s), Which implies that = € B,
ie., that A C B.

Let © ¢ A. Then for each s € S there is t = f(s) € T such that
& X, p(s); hence v ¢ U ,e5 X p(s) and z ¢ B,ie., BC A O

The previous lemma implies the following corollary.

Corollary 3.7. If in the condition of the previous lemma we require that
S and T should be countable and each set X ¢ should be open in X, then the set
Uses Nier Xs,t s a Ge-subset of X.

Lemma 3.8. The set By ={z € X: K(x) N (V \V;) # @} is a G5-subset

of X.
Proof. Let (F}),cy be a decomposition of Vi satisfying the following

n
conditions:

F, eCand F;, C F,;,; foralln € N.

Put U, = V\F;. Then V\V; = (,,cyy Un, where each U, is open and U,, D Uy 11
for all n € N. Let Cs = [,y K=Y (U,). We shall show that B, = Cs. The
inclusion Bs C Cj is obvious. Let x € Cs. Since K (z) is finite, there is y € K(z)
such that y € U, for all n in some infinite subset of N. Hence, y € ), Un
and x € B,. By Corollary 1.5 on page 147, the set K~1(U,) is a Gs-subset of X
for all n € N. This implies that B, as a countable intersection of Ggs-sets, is a
Gs-set. O



162 A. V. Arbit

REFERENCES

[1] A. BouziaD. Le degré de Lindeldf est l-invariant. Proc. Amer. Math. Soc.
129 (2001), 3, 913-919.

[2] R. ENGELKING. General topology, revised and completed edition. Helder-
mann Verlag, Berlin, 1989.

[3] S. P. GuL’k0. On uniform homeomorphisms of spaces of continuous func-
tions. Proc. Steklov Instit. Math. 3 (1993), 87-93.

[4] O. OKUNEV. Homeomorphisms of function spaces and hereditary cardinal
invariants. Topology Appl. 80 (1997), 177-188.

[5] N.V. VELICHKO. The Lindeléf property is l-invariant. Topology Appl. 89
(1998), 277-283.

Department of Physics and Mathematics

Tomsk State Pedagogical University

75, Prospect Komsomolsky

63404 Tomsk, Russia

e-mail: arbit@mail.tsu.ru Received June 14, 2011



