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ON GROUPS WHOSE CONTRANORMAL SUBGROUPS

ARE NORMALLY COMPLEMENTED
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Communicated by V. Drensky

Abstract. Groups in which every contranormal subgroup is normally com-
plemented has been considered. The description of such groups G with the
condition Max-n and such groups having an abelian nilpotent residual sat-
isfying Min-G have been obtained.

J.S. Rose [8] has introduced the notion of a contranormal subgroup. A
subgroup H is contranormal in a group G if its normal closure AG coincides
with G. Contranormal subgroups play a significant role in the investigations
related to generalized nilpotency. Thus in finite groups, the absence of proper
contranormal subgroups is equivalent to nilpotency, while all (finite and infinite)
groups, in which every non-identity subgroup is contranormal are simple groups.
Some useful criteria of generalized nilpotency involving the contranormality have
been obtained for some classes of infinite groups (see, for example, [6]).
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Observe that a contranormal subgroup supplements the derived subgroup
in a group. Recall, that a subgroup F is a supplement to a subgroup D in a
group G if G = FD. In this case, the subgroup D is called supplemented in
G. A partial case of a supplement subgroup is a complement subgroup. This is
a subgroup H such that G = DH and D ∩ H = 〈1〉. Here the subgroup D is
called complemented in G. Groups with some classes of complemented subgroups
have been investigated by the authors. It was initiated by a remarkable theorem
due to P. Hall [3] that characterizes finite soluble groups as the groups whose
Sylow subgroups are complemented. The groups, in which all subgroups are
complemented have been completely described by P. Hall [4] and N. V. Chernikova
[1]. D. I. Zaitsev [11, 12] studied groups with the property that every normal
subgroup is complemented. Many other important results in this area can be
found in the book [2].

A group G is called a C-group if every subgroup of G either is normal or
has a normal complement [10]. In [10], all finite C-groups are described. Since
in every group a contranormal subgroup supplements the derived subgroup (i.e.
the derived subgroup is normally supplemented), the questions about groups in
which all contranormal subgroups are normally complemented looks as a logical
next step. We will denote these groups by CNC-groups. Observe, that C-
groups form a proper subclass of CNC-groups. All groups without contranormal
subgroups (for example, all nilpotent groups) are CNC-groups.

There are many simple examples showing that the class of CNC-groups
is diverse, large and contains many kinds of periodic and non-periodic groups.
For example, let G = Q ⋋ B, where Q is an abelian group having no B-invariant
proper subgroups and B is an abelian group. Any proper contranormal subgroup
C that contains B can be written as C = (Q ∩ C) ⋋ B (see, for example, [2,
Lemma 3.7]), and Q∩C is B-invariant, i.e. Q∩C = 〈1〉 and C = B. Let C � B
be a contranormal in G subgroup. Since QC = G, Q ⊳ G, and Q is abelian, we
conclude that Q ∩ C = M ⊳ G and M is B-invariant. Since Q is an abelian
group having no B-invariant subgroups and C � B, M = 〈1〉, and G = Q ⋋ C,
i.e. C is complemented in G. So G is a CNC-group.

Since every subgroup of a nilpotent group is subnormal (see, for example,
[5, Theorem 16.2.2]), there are no contranormal subgroups in a nilpotent group.
Therefore all nilpotent groups are CNC-groups.

In the current article we consider some classes of CNC-groups. We obtain
a description of such groups G satisfying the condition Max-n and CNC-groups
group having an abelian nilpotent residual satisfying Min-G. Recall that a group
G is called a group satisfied the maximal condition for normal subgroups (the
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condition Max-n) if every ascending series of its normal subgroups is finite. We
say that a subgroup K of a group G satisfies the minimal condition for G-normal
subgroups (the Min-G condition) if every descending series of G-normal subgroups
of K is finite.

Lemma 1. Let G be a CNC-group having an abelian normal subgroup K
satisfying Min-G and defining a nilpotent factor-group G/K. Then the following
conditions hold:

(i) G satisfies the minimal condition for contranormal subgroups; in par-
ticular, every contranormal subgroup of G contains a minimal contranormal sub-
group (a contranormal subgroup containing no proper contranormal subgroups).

(ii) G = A⋋B where A is a nilpotent residual of G, A is an abelian direct
product of a finite number of minimal normal characteristically free subgroups; B
is a nilpotent group.

P r o o f. Since a normal subgroup K satisfies Min-G and defines a nilpo-
tent factor group G/K, we can state that G has a nilpotent residual of G that
is a normal subgroup A which defines a nilpotent factor-group and A is an inter-
section of all normal subgroups with this property. Since G/K is nilpotent, K
contains this residual A. Since K is abelian, A is also abelian.

Let B be a contranormal subgroup of G. Since any nilpotent group con-
tains no contranormal subgroups and A is a nilpotent residual of G, G = AB
and G/A ∼= B/(A ∩ B) is nilpotent. Since G is abelian-by-nilpotent, B is also
abelian-by-nilpotent. If B is non-nilpotent, it has its own nilpotent residual A1.
Indeed, G = KB, K is an abelian subgroup with Min-G. It is easy to see, that
in this case, for any subgroup M of K the condition for M to be normal in G
is equivalent M to be B-invariant. So for K to be Min-G is equivalent to be
Min-B (i.e. the minimal condition on B-invariant subgroups). Since G = AB,
A ≤ B, B/(A∩B) ∼= AB/A is a nilpotent group, and A∩B satisfies Min-B. By
the arguments listed above, B being non-nilpotent has its own nilpotent resid-
ual A1 ≤ A ∩ B ≤ A. Since A is abelian, G = AB and A1 is normal in B, so
A1 is normal in G. Since B is not a minimal contranormal subgroup in G, it
contains its own proper contranormal subgroup B1. By the reasons listed above,
B = A1B1. Since the contranormality is a transitive property, B1 is contranormal
in G. Therefore G = AB1. Since B1 is a proper subgroup of B, A > A1. Indeed,
otherwise A = A1, B = A1B1 = AB1 = G. Repeating this arguments we obtain
that if B1 contains a proper contranormal subgroup B2, then this subgroup has
a nilpotent residual A2, B1 = A2B2. Note that A is abelian and A > A1 ≥ A2,
and A2 E B1. Since G = AB1, A2 E G. Since contranormality is a transitive
property, B2 is contranormal in G. Therefore G = AB2. Since B2 is a proper
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subgroup of B1, using the arguments above we can prove that A > A1 > A2.
Since A satisfies Min-G, this process is finite and we can continue it up to the
step when Bn will not have a proper contranormal subgroups. Without loss of
generality, we can put B = Bn. The condition (i) is proved.

Now we assume that B has no proper contranormal subgroups. By Corol-
lary A2 of [?], B is nilpotent.

Since G is a CNC-group, B is complemented by a normal subgroup D;
that is, G = D ⋋ B. So since G/D ∼= B is a nilpotent group, D ≥ A. As a
contranormal subgroup, B supplements the nilpotent residual A of G, i.e. G =
AB. So G = A ⋋ B.

Let now M be a proper G-normal subgroup of A. Since A > M ,

G/M = (A ⋋ B)/M = A/M ⋋ BM/M ≇ BM/M.

It follows that M ⋋B = B1 is a proper in G contranormal subgroup. Let M1 be a
proper in M G-normal subgroup. Consider the subgroup B2 = M1 ⋋ B. Clearly,
B2 < B1 and B2 is contranormal in G. If M2 is a proper G-normal subgroup of
M1 we can continue this process. Finally we can construct a descending chain
of contranormal in G subgroups B1 > B2 > · · · > Bm. By the proved above
condition (i), this series will be terminated at a finite number m. It means that
the non-identity normal subgroup Mm has no G-normal proper subgroups. Note,
that Mm must to be a characteristically free abelian subgroup.

Let 〈1〉 6= N 6= Mm be another G-normal subgroup of A. It is obvious that
N ∩ Mm = 〈1〉. Using the above procedure, we can find a minimal non-identity
G-normal subgroup Nn ≤ N .

Continuing this process, we can identify all minimal non-identity G-
normal subgroups in A. Since A satisfies Min-G, there is a finite number of
them. It is clear that we can consider a direct product (with a finite amount of
factors) C of these subgroups.

Since C is a G-normal subgroup, we can consider a contranormal subgroup
C ⋋ B. This subgroup is normally complemented in G with the help of some G-
normal subgroup, let say F , i.e. G = F ⋋ (C ⋋ B). Consider F ∩ A = R.
If R 6= 〈1〉, then R contains a minimal G-normal subgroup Rr belonging to the
product of all such subgroups C. Since F ∩(C⋋B) = 〈1〉, F ∩C = 〈1〉. Therefore
Rr = 〈1〉, and F ∩A = R = 〈1〉. Then G = F ⋋ (C ⋋ B) = (F ×C) ⋋ B. Indeed,
if (F × C) ∩ B = X and x ∈ X, then x = fc = b where f ∈ F , c ∈ C, b ∈ B. It
follows that f = c−1b = 1.

Since G/(F × C) ∼= B is a nilpotent group, F × C contains a nilpotent
residual A. This subgroup A is complemented in F × C by the subgroup B ∩
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(F ×C). Since (F ×C)∩B = 〈1〉, F ×C = A which is a contradiction. Therefore
A = F × C, and hence F = 〈1〉 and A = C. �

Lemma 2. The conditions of Lemma 1 are sufficient.

P r o o f. Let by (ii) G = A⋋B, where A is a nilpotent residual of G, A is
an abelian direct product of a finite number of minimal normal characteristically
free subgroups, B is a nilpotent group. If A = 〈1〉, then G is nilpotent and
everything is clear. So we assume that A 6= 1. Note, that B is a contranormal
in G subgroup. Indeed if R is a proper normal subgroup of G and R ≥ B,
G = AR, and F = A ∩ R � A. Then the group G/F is a direct product of an
abelian subgroup A/F and a nilpotent subgroup R/F . Then G/F is nilpotent
and F > A. This is a contradiction. Since B is nilpotent, it does not contain
contranormal in B (and therefore in G) proper contranormal subgroups. So B is
a minimal contranormal in G subgroup.

If Q is any contranormal subgroup of G, then by (i) without loss of
generality with respect to the notations we can assume that Q ≥ B. Then
Q = (A ∩ Q) ⋋ B. Since A is a completely-factorized group (see [1]), A ∩ Q is

complemented in A with the help of some subgroup T . If A =
n∏

i=1

Ai, where Ai

is a minimal G-normal subgroup, then Ai either entirely belongs to A ∩ Q, or
Ai ∩ Q = 〈1〉. Since we have a finite number n of factors Ai, we can conclude

that A = (A∩Q)×L, L =

k∏

j=1

Aj , where each Aj ∩Q = 〈1〉. Now it is clear, that

G = L ⋋ Q. �

The following theorem is a direct corollary of Lemmas 1 and 2.

Theorem 1. Let G be a group having an abelian normal subgroup K
satisfying Min-G and defining a nilpotent factor-group G/K. Then Gis a CNC-
group if and only if the following conditions hold:

(i) G satisfies the minimal condition for contranormal subgroups; in par-
ticular, every contranormal subgroup of G contains a minimal contranormal sub-
group (that is a contranormal subgroup containing no proper contranormal sub-
groups).

(ii) G = A ⋋ B, where A is a nilpotent residual of G, A is a direct
product of finite number of minimal normal characteristically free subgroups; B
is a nilpotent group.

We proved that the group G from Theorem 1 satisfied the minimal condi-
tion for contranormal subgroups. In this setting it will be interesting to mention
the following assertion.



168 L. A. Kurdachenko, I. Ya. Subbotin

Remark 1. Let G = A⋋ B be a group with Min-cn (i.e. G satisfies the
minimal condition for contranormal subgroups), B is a contranormal subgroup of
G. Then A is a group satisfying the minimal condition for B-normal subgroups
(Min-B-n).

Indeed, let
A = A0 > A1 > A2 > · > An > ·

be a descending series of B-normal subgroups from A. For any Ai, 0 ≤ i, there
is a contranormal subgroup Ai ⋋ B of G. We will show that Ai ⋋ B > Ai+1 ⋋ B.
Let Ai ⋋ B = Ai+1 ⋋ B. Let a ∈ Ai\Ai+1. Then a ∈ Ai+1 ⋋ B, and a = db for
some d ∈ Ai+1, b ∈ B. So b = d−1a ∈ B. But d−1a ∈ Ai and Ai ∩ B = 〈1〉.
Therefore d−1a = 1 and d = a. This is a contradiction. Thus Ai ⋋ B > Ai+1 ⋋ B
for all i ≥ 0. Since G is a group with Min-cn, the above series is finite.

Theorem 2. Let G be a Chernikov group. Then G is a CNC-group if
and only if G = A ⋋ B, where A is a finite group and the nilpotent residual A of
G is a direct product of a finite number of minimal normal characteristically free
subgroups, B is a nilpotent group.

P r o o f. The proof of the theorem is very similar to the proof of Theorem
1. Note that since contranormality is a transitive property, every contranormal in
a Chernikov group G subgroup H contains a minimal contranormal in G subgroup
B. Note that B has no contranormal subgroups, and therefore in our case by
Corollary A2 of [7], B is nilpotent. If G is a CNC-group, B is complemented by
a normal subgroup A, that is, G = A ⋋ B.

Since G is a Chernikov group, G has a nilpotent residual R. In particular,
A contains this residual R. As a contranormal subgroup, B supplements this
residual. So A is a nilpotent residual of G and G = A ⋋ B.

Repeating step by step the proof of Theorem 1 and taking into account
that being a Chernikov group A cannot contains an infinite characteristically free
subgroup, we come to the theorem statement. �

Lemma 3. If G is a CNC-group with the maximal condition on nor-
mal subgroups (Max-n), then G satisfies the minimal condition on contranormal
subgroups (Min-cn).

P r o o f. If G has no proper contranormal subgroups then everything is
clear.

Let B1 be a proper contranormal subgroup in G. Let B2 be a proper
contranormal subgroup of B1. Since the contranormality is a transitive relation,
B2 is contranormal in G. The CNC-group G contains G-normal subgroups X1

and X2 such that the following decompositions hold: G = X1 ⋋ B1 and G =
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X2 ⋋B2. Since B2 is complemented in G with the help of X2, and B2 is a proper
subgroup in B1, then by a well known result (see, for example, [2, Lemma 3.7]),
B1 = (X2 ∩ B1) ⋋ B2 . Consider the subgroup Y = X1 ⋋ (X2 ∩ B1). Since
G = X1 ⋋ B1 = X1 ⋋ ((X2 ∩ B1) ⋋ B2), the subgroup Y = X1 ⋋ (X2 ∩ B1) is
normal in G = Y B2.

Let b ∈ Y ∩ B2. Since Y = X1 ⋋ (X2 ∩ B1), we can write b = xb1 where
x ∈ X1, b1 ∈ X2 ∩ B1, b ∈ Y ∩ B2 ≤ B1. So, x = b−1

1
b. Since x ∈ X1, b−1

1
b ∈ B1,

and X1 ∩ B1 = 〈1〉, we can conclude that x = b−1

1
b = 1 and b = b1 ∈ X2 ∩ B1.

Hence, Y ∩B2 ≤ X2 ∩B1. The decomposition B1 = (X2 ∩B1) ⋋ B2 implies that
(X2 ∩ B1) ∩ B2 = 〈1〉, and therefore Y ∩ B2 = 〈1〉.

It follows from the arguments above that G = Y ⋋ B2, and Y > X1.
Without lost of generality we can assume that Y = X2 and G = X2 ⋋ B2,
X2 > X1. If B2 has no proper contranormal subgroups, then everything is clear.
If B2 contains a proper contranormal subgroup B3, then repeating word by word
the above arguments, we come to the existence of a normal subgroup X3 such
that G = X3⋋B3, and X3 > X2 > X1. Since G satisfies Max-n, this process must
stop at a finite number of steps n for which Bn does not have any contranormal
subgroup. �

The following theorem gives a general description of CNC-groups satis-
fying Max-n.

Theorem 3. Let a group G satisfying Max-n be a CNC-group. Then
every contranormal subgroup of G contains a minimal contranormal subgroup B
of G, and for each such subgroup B, there is a decomposition G = A ⋋ B, where
A is a direct product of a finite number of minimal B-normal subgroups.

P r o o f. In fact by Lemma 3, every contranormal in G subgroup H con-
tains a minimal contranormal in G subgroup B. Since G is a CNC-group, B is
complemented by a normal subgroup A, that is, G = A ⋋ B. Let M be a proper
in A G-normal subgroup. Since A > M ,

G/M = (A ⋋ B)/M = A/M ⋋ BM/M ≇ BM/M.

It follows that M ⋋B = B1 is a proper in G contranormal subgroup. Let M1 be a
proper in M G-normal subgroup. Consider the subgroup B2 = M1 ⋋ B. Clearly,
B2 < B1 and B2 is contranormal in G. If M2 is a proper G-normal subgroup of M1

we can continue this process and construct a descending chain of contranormal
in G subgroups B1 > B2 > · · · > Bf that by Proposition 1, will be terminated
at a finite number m. It means that the normal subgroup Mm has no G-normal
proper subgroups. Since the subgroup Bm = Mm ⋋ B is contranormal in G, it
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is complemented in G by some normal subgroup N . Repeating the arguments
above and operating with the contranormal subgroup Bm instead of B, we will
come to the contranormal subgroup Bn = Nn ⋋ Bm = Nn ⋋ (Mm ⋋ B). Note,
that since Nn and Mm are G-normal subgroups, we can write Bn = (Nn×Mm)⋋

B. Continuing this process, we will construct an ascending chain of G-normal
subgroups Mm < Nn ×Mm < · · · < Kk × · · · ×Nn ×Mm < · · · . Since G satisfies
Max-n, this process will be terminated after finite numbers of steps, and we will
have G = (Kk×· · ·×Nn×Mm)⋋B where Mm, Nn, . . . ,Kk are minimal G-normal
subgroups.

Assume that one of these minimal G-normal subgroups Mm, Nn, . . . ,Kk,
let say Mm, is not a minimal B-normal subgroup. Let F < Mm be a B-normal
subgroup. Consider the subgroup R = F ⋋ B. Since G is a CNC-group, R is
normally complemented in G. It means that there is a G-normal subgroup L, such
that G = L⋋ (F ⋋B). It follows that the subgroup R is normally complemented
in Mm ⋋ B, and Mm ⋋ B = (L∩Mm) ⋋ R. Since both Mm and L are G-normal,
1 6= L∩Mm ⊳ G and Mm 6= L∩Mm. This ontradiction completes the proof. �

Theorem 4. If G is a group, in which every contranormal subgroup
contains a minimal contranormal in G subgroup, and for each such subgroup B
there is a decomposition G = A⋋B, where A is a direct product of a finite number
of minimal G-normal subgroups, then G is a CNC-group.

P r o o f. If K is a contranormal subgroup in G, K includes a minimal
contranormal subgroup B such that G = A ⋋ B = (X1 × X2 × · · · × Xn) ⋋ B,
A = X1×X2×· · ·×Xn, all Xi, i = 1, 2, 3, . . . , n, are minimal G-normal subgroups.
Then B is complemented in K by R = A ∩ K ⊳ K, so that, R is G-normal and
R ≤ A. Since every Xi is a minimal B-normal subgroup, the intersection Xi ∩R
is equal either to Xi itself or to 〈1〉 for any i = 1, 2, 3, . . . , n. Let for some
i1 Xi1 ∩ R = 〈1〉. Consider the subgroup R1 = Xi1 × R. If R1 = A, then
G = A ⋋ B = (Xi1 × R) ⋋ B = Xi1 ⋋ (R ⋋ B), and everything is clear.

Let now R1 6= A. This means that there is Xi2 ∈ {Xn,Xn−1, . . . ,X1}
such that Xi2 � R1. Since Xi2 is minimal G-normal, Xi2 ∩ R1 = 〈1〉. Consider
the subgroup R2 = Xi2 × R1. If R2 = A, then

G = A ⋋ B = (Xi2 × R1) ⋋ B = (Xi2 × Xi1 × R) ⋋ B

= (Xi2 × Xi1) ⋋ (R ⋋ B) = (Xi2 × Xi1) ⋋ K,

and everything is clear.

If R2 6= A , we can chose Xi3 ∈ {Xn,Xn−1, . . . ,X1} such that Xi3 � R2,
Xi3 ∩ R2 = 〈1〉, and consider the subgroup R3 = Xi3 × R2.
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Continuing this process we will come to a number k ≤ n, such that Rk = A
and G = A ⋋ B = (Xi2 × Xi1 × · · · × Xik) ⋋ K. �

Observe, that by the MacLane’s theorem (see, for example, [9, 12.1.7]),
any locally nilpotent group with Max-n is nilpotent and finitely generated. So,
we come to the following simple result.

Proposition 1. All locally nilpotent groups with Max-n are CNC-
groups.

However, a locally nilpotent group and even a hypercentral group could
have a proper non-identity contranormal subgroup. The following simple example
supports this statement: G = P ⋋ 〈b〉, where P is a Pruefer 2-group, b2 = 1, and
xb = x−1. Observe, that every subgroup of G containing 〈b〉 is contranormal.

Note, that a periodic soluble group G with Max-n is finite. The following
proposition is a direct corollary from Theorems 1 and 2. It provides us with a
descriptions of the finite CNC-groups. This description is a generalization of
some of the main results from [10].

Corollary 1. A finite group G is a CNC-group if and only if for every
nilpotent contranormal subgroup B there is a decomposition G = A⋋B, where A
is a direct product of minimal G-normal proper subgroups.
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