Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

SPECIAL COMPOSITIONS IN AFFINELY CONNECTED SPACES WITHOUT A TORSION

Georgi Zlatanov

Communicated by O. Mushkarov

Abstract

Let A_{N} be an affinely connected space without a torsion. With the help of N independent vector fields and their reciprocal covectors is built an affinor which defines a composition $X_{n} \times X_{m}(n+m=N)$. The structure is integrable. New characteristics by the coefficients of the derivative equations are found for special compositions, studied in [1], [3] . Two-dimensional manifolds, named as bridges, which cut the both base manifolds of the composition are introduced. Conditions for the affine deformation tensor of two connections where the composition is simultaneously of the kind (g-g) are found.

1. Preliminary. Let A_{N} be a space with a symmetric affine connection, define by $\Gamma_{\alpha \beta}^{\gamma}$. Consider in the space A_{N} a composition $X_{n} \times X_{m}(n+m=N)$ of two base differential manifolds X_{n} and $X_{m}(n+m=N)$. Two positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ of the base manifolds pass thought any point of the space $A_{N}\left(X_{n} \times X_{m}\right)$.

Key words: Affinely connected spaces, spaces of compositions, affinor of composition, tensor of the affine deformation, integrable structure, projective affinors.

Let in $A_{N}\left(X_{n} \times X_{m}\right)$ be introduced as an arbitrary coordinate system $x^{\alpha}(\alpha=1,2, \ldots, N)$ as well as a coordinate system $\left(u^{i}, u^{\bar{i}}\right)(i=1,2, \ldots, n$; $\bar{i}=n+1, n+2, \ldots, N)$ adapted to the composition [3].

According to [1], [3] any composition is completely defined by the field of the affinor a_{α}^{β}, satisfying the condition

$$
\begin{equation*}
a_{\alpha}^{\sigma} a_{\sigma}^{\beta}=\delta_{\alpha}^{\beta} \tag{1}
\end{equation*}
$$

The affinor a_{α}^{β} is called an affinor of the composition [1]. According to [3], [5] the condition for integrability of the structure is characterized by the equality

$$
\begin{equation*}
a_{\beta}^{\sigma} \nabla_{[\alpha} a_{\sigma]}^{\nu}-a_{\alpha}^{\sigma} \nabla_{[\beta} a_{\sigma]}^{\nu}=0 \tag{2}
\end{equation*}
$$

The projecting affinors $\stackrel{n}{a}{ }_{\alpha}^{\beta},{ }_{a}^{m}{ }_{\alpha}^{\beta}$ are defined by the equalities $\stackrel{n}{a}{ }_{\alpha}^{\beta}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}+a_{\alpha}^{\beta}\right)$, ${ }_{a}^{m}{ }_{\alpha}^{\beta}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}-a_{\alpha}^{\beta}\right)$ [3], [4].

According to [4] for any vector $v^{\alpha} \in A_{N}\left(X_{n} \times X_{m}\right)$ is fullfiled $v^{\alpha}=$ $\stackrel{n}{a}{ }_{\sigma}^{\alpha} v^{\sigma}+\stackrel{m}{a}{ }_{\sigma}^{\alpha} v^{\sigma}=\stackrel{n}{V}{ }^{\alpha}+\stackrel{m}{V}^{\alpha}$, where $\stackrel{n}{V}^{\alpha}=\stackrel{n}{a}{ }_{\sigma}^{\alpha} v^{\sigma} \in P\left(X_{n}\right), \stackrel{m}{V}{ }^{\alpha}=\stackrel{m}{a}{ }_{\sigma}^{\alpha} v^{\sigma} \in P\left(X_{m}\right)$.

The following characteristics for some special compositions are defined in [3]:

The composition of the type $(c-c) \in A_{N}\left(X_{n} \times X_{m}\right)$ for which the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along any line in the space A_{N} is characterized by the condition $\nabla_{\alpha} a_{\beta}^{\sigma}=0$.

The composition of the type $(c h-c h) \in A_{N}\left(X_{n} \times X_{m}\right)$ for which the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along any line of X_{m} and X_{n}, respectively is characterized by the condition $\nabla_{[\alpha} a_{\beta]}^{\sigma}=0$.

The composition of the type $(g-g) \in A_{N}\left(X_{n} \times X_{m}\right)$ for which the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along any line of X_{n} and X_{m}, respectively is characterized by the condition $a_{\beta}^{\sigma} \nabla_{\alpha} a_{\sigma}^{\nu}+a_{\alpha}^{\sigma} \nabla_{\sigma} a_{\beta}^{\nu}=0$.

2. Integrability of the structure of the space of the compo-

 sitions $\boldsymbol{A}_{\boldsymbol{N}}\left(\boldsymbol{X}_{\boldsymbol{n}} \times \boldsymbol{X}_{\boldsymbol{m}}\right)$. Let M_{N} be an arbitrary differential manifold and let us assume:$$
\begin{equation*}
\alpha, \beta, \gamma, \sigma, \nu \in\{1,2, \ldots, N\} ; \quad i, j, k, p, q, r, s \in\{1,2, \ldots, n\} \tag{3}
\end{equation*}
$$

$$
\bar{i}, \bar{j}, \bar{k}, \bar{p}, \bar{q}, \bar{r}, \bar{s} \in\{n+1, n+2, \ldots, n+m=N\}
$$

Choose N independent vector fields of directions $\underset{1}{v^{\alpha}}, \underset{2}{v^{\alpha}}, \ldots, \underset{N}{v}$. The reciprocal covector fields $\stackrel{\alpha}{v}_{\sigma}$ are defined by the equalities

$$
\begin{equation*}
v_{\alpha}^{\sigma} \stackrel{\beta}{v}_{\sigma}=\delta_{\alpha}^{\beta} \quad \text { iff } \quad v_{\alpha}^{\sigma} \stackrel{\alpha}{v_{\nu}}=\delta_{\nu}^{\sigma} \tag{4}
\end{equation*}
$$

Following [6], [7] let us consider the affinor

$$
\begin{equation*}
a_{\alpha}^{\beta}=v_{i}^{\beta} \stackrel{i}{v}_{\alpha}-v_{\bar{i}}^{\beta} \stackrel{\bar{i}}{v}_{\alpha} \tag{5}
\end{equation*}
$$

which according to (4) satisfy (1). Now the projective affinors have the following representation $\stackrel{n}{a}{ }_{\alpha}^{\beta}=v_{i}^{\beta} \stackrel{i}{v_{\alpha}}, \stackrel{m}{a}{ }_{\alpha}^{\beta}=\frac{v^{\beta}}{\bar{i}} \stackrel{\bar{i}}{v_{\alpha}}$.

Let an affine connection $\Gamma_{\alpha \beta}^{\sigma}$ without a torsion be given in M_{N} and let us denote the space by A_{N} in this case. The affinor (5) defines a composition $X_{n} \times X_{m}$ in A_{N}.

We chose the independent vector fields v_{β}^{α} as coordinate one and the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ will be called coordinate. Then we have

$$
\begin{array}{llll}
v_{1}^{\alpha}(1,0, \ldots, 0), & v_{2}^{\alpha}(0,1, \ldots, 0), & \ldots, & v_{N}^{\alpha}(0,0, \ldots, 1) \\
& \stackrel{1}{v}_{\alpha}(1,0, \ldots, 0), & v_{\alpha}^{2}(0,1, \ldots, 0), & \ldots, \tag{6}\\
\stackrel{N}{v}_{\alpha}(0,0, \ldots, 1)
\end{array}
$$

The chosen coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ defines adapted with the composition coordinates [1], [3]. That is why as in [3] and here in the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ the matrix $\left(a_{\alpha}^{\beta}\right)$ has the following form

$$
\left(a_{\alpha}^{\beta}\right)=\left(\begin{array}{ll}
\delta_{i}^{j} & 0 \tag{7}\\
0 & -\delta_{\bar{i}}^{\bar{j}}
\end{array}\right)
$$

Theorem 1. The structure defined by the affinor (5) is integrable.
Proof. Let us consider the tensor $N_{\beta \alpha}^{\nu}=a_{\beta}^{\sigma} \nabla_{[\alpha} a_{\sigma]}^{\nu}-a_{\alpha}^{\sigma} \nabla_{[\beta} a_{\sigma]}^{\nu}$. Taking into account (7) and $\Gamma_{\alpha \beta}^{\sigma}=\Gamma_{\beta \alpha}^{\sigma}$, we find for $N_{\beta \alpha}^{\nu}$ in the chosen coordinate net

$$
\begin{equation*}
N_{\beta \alpha}^{\nu}=\frac{1}{2}\left[\Gamma_{\sigma \delta}^{\nu}\left(a_{\beta}^{\delta} a_{\alpha}^{\sigma}-a_{\alpha}^{\delta} a_{\beta}^{\sigma}\right)\right] . \tag{8}
\end{equation*}
$$

Then from (7) and (8) we obtain

$$
\begin{array}{ll}
N_{i j}^{s}=\frac{1}{2}\left(\Gamma_{i j}^{s}-\Gamma_{j i}^{s}\right)=0, \quad N_{\bar{i} j}^{s}=\frac{1}{2}\left(-\Gamma_{\bar{i} j}^{s}+\Gamma_{j \bar{i}}^{s}\right)=0, \\
N_{i \bar{j}}^{s}=\frac{1}{2}\left(-\Gamma_{i \bar{j}}^{s}+\Gamma_{\bar{j} i}^{s}\right)=0, & N_{\bar{i} \bar{j}}^{s}=\frac{1}{2}\left(\Gamma_{\bar{i} \bar{j}}^{s}-\Gamma_{\bar{j} \bar{i}}^{s}\right)=0, \tag{9}\\
N_{i j}^{\bar{s}}=\frac{1}{2}\left(\Gamma_{i j}^{\bar{s}}-\Gamma_{j i}^{\bar{s}}\right)=0, \quad N_{\bar{i} j}^{\bar{s}}=\frac{1}{2}\left(-\Gamma_{\bar{i} j}^{\bar{s}}+\Gamma_{j \bar{i}}^{\bar{s}}\right)=0, \\
N_{i \bar{j}}^{\bar{s}}=\frac{1}{2}\left(-\Gamma_{i \bar{j}}^{\bar{s}}+\Gamma_{\bar{j} i}^{\bar{s}}\right)=0, \quad N_{\bar{i}}^{\bar{s}}=\frac{1}{2}\left(\Gamma_{\bar{i}}^{\bar{s}} \bar{j}-\Gamma_{\bar{j} \bar{i}}^{\bar{s}}\right)=0 .
\end{array}
$$

The equalities (9) means $N_{\alpha \beta}^{\sigma}=0$, i.e. the condition (2) is fulfilled.

3. Other characteristics of the special compositions in $\boldsymbol{A}_{\boldsymbol{N}}$.

 Let the affinor (5) define a composition $X_{n} \times X_{m}$ in A_{N}. Denote by $(\underset{\alpha}{v})$ the lines which are determined by the vector fields v_{α}^{σ}. According to [6] and [8] the following derivative equations are fulfilled$$
\begin{equation*}
\nabla_{\sigma}{\underset{\alpha}{v}}_{v^{\beta}}={\underset{\alpha}{\nu}}_{\sigma}^{\nu}{\underset{\nu}{v}}^{\beta}, \quad \nabla_{\sigma} \stackrel{\alpha}{v}_{\beta}=-\stackrel{\sim}{\nu}_{\sigma} \stackrel{\nu}{v}_{\beta} . \tag{10}
\end{equation*}
$$

From [8] it is known that the vector fields v_{α}^{σ} are parallelly translated along the lines $(\underset{\tau}{v})$ if and only if the coefficients of the derivative equations (10) satisfy the conditions

$$
\begin{equation*}
\stackrel{\beta}{\alpha}_{T_{\sigma}}^{v_{\tau}}{ }^{\sigma}=0, \alpha \neq \beta \tag{11}
\end{equation*}
$$

Proposition 1. The composition $X_{n} \times X_{m}$ is of the kind (ch $-c h$) if and only if the coefficients of the derivative equations (10) satisfy the conditions

$$
\begin{equation*}
\stackrel{\bar{k}}{T_{i}} \sigma \frac{v_{j}^{\sigma}}{v_{j}}=0, \quad \stackrel{k}{\bar{i}} \sigma v_{j}^{v}=0 \tag{12}
\end{equation*}
$$

Proof. Let the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along any line of X_{m} and X_{n}, respectively. Then the equalities (12) follow from (11).

According to (6), in the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$, (12) accepts the form

$$
\begin{equation*}
\stackrel{\bar{k}}{T}_{i} \bar{j}=0, \quad \stackrel{k}{\underset{i}{T}} j=0 \tag{13}
\end{equation*}
$$

Then from (13) and $\nabla_{\sigma} v_{\alpha}^{\beta}=\partial_{\sigma} v_{\alpha}^{\beta}+\Gamma_{\sigma \nu}^{\beta} \underset{\alpha}{v^{\nu}}={\underset{\alpha}{T}}_{\underset{\nu}{\nu}}^{\underset{\nu}{v^{\beta}}}$ we establish

$$
\begin{equation*}
\stackrel{\beta}{\alpha}_{\sigma}=\Gamma_{\sigma \alpha}^{\beta} \tag{14}
\end{equation*}
$$

Now from (13) and (14) the equalities $\Gamma_{i \bar{j}}^{\bar{k}}=0, \Gamma_{\bar{i} j}^{k}=0$ follow [3].

Proposition 2. The composition $X_{n} \times X_{m}$ is of the kind $(g-g)$ if and only if the coefficients of the derivative equations (10) satisfy the conditions

$$
\begin{equation*}
\stackrel{\bar{k}}{i}_{T_{\sigma}} v_{j}^{\sigma}=0, \quad \stackrel{k}{\bar{i}} \sigma{ }_{\sigma} \frac{v}{j}^{\sigma}=0 \tag{15}
\end{equation*}
$$

Proof. Let the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ be parallelly translated along any line of X_{n} and X_{m}, respectively. Then the equalities (15) follow from (11).

According to (6), in the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$, (15) accepts the form

$$
\begin{align*}
& \bar{k} \tag{16}\\
& {\underset{i}{i}}_{j}=0, \quad \stackrel{k}{T} \bar{j}=0 .
\end{align*}
$$

From (14) and (16) the equalities $\Gamma_{i j}^{\bar{k}}=0, \Gamma_{\bar{i} \bar{j}}^{k}=0$ follow [3].
Proposition 3. The composition $X_{n} \times X_{m}$ is of the kind $(c-c)$ if and only if the coefficients of the derivative equations (10) satisfy the conditions

Proof. Let the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along any line of A_{N}. Then the equalities (17) follow from (11).

According to (6), in the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$, (15) accepts the form

$$
\begin{equation*}
\stackrel{\bar{k}}{T}_{i}=0, \quad \stackrel{k}{\bar{i}} \alpha=0 \tag{18}
\end{equation*}
$$

From (14) and (18) the equalities $\Gamma_{i \alpha}^{\bar{k}}=0, \Gamma_{\bar{i} \alpha}^{k}=0$ follow [3].
Let us denote by $\left(\sum_{s}^{v}\right)$ and $\left(\sum \frac{v}{s}\right)$ the lines defined by vector fields $\underset{1}{v^{\alpha}}+\underset{2}{v^{\alpha}}+\cdots+{\underset{n}{v^{\alpha}}}$ and $\underset{n+1}{v^{\alpha}}+\underset{n+2}{v^{\alpha}}+\cdots+{\underset{N}{v}}^{\alpha}$, respectively. From (11) easily follow

Proposition 4. 4.1 The positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along the lines $\left(\sum \frac{v}{s}\right)$ and $\left(\sum v_{s}\right)$, respectively if and only if the coefficients
of the derivative equations (10) satisfy the equalities

$$
\begin{equation*}
\stackrel{\bar{k}}{s}_{\alpha}^{\alpha}\left(\underset{n+1}{v^{\alpha}}+\underset{n+2}{v^{\alpha}}+\cdots+v_{N}^{\alpha}\right)=0, \quad \stackrel{{ }_{\bar{s}}^{\alpha}}{\alpha}\left(v_{1}^{\alpha}+v_{2}^{\alpha}+\cdots+v_{n}^{\alpha}\right)=0 \tag{19}
\end{equation*}
$$

4.2 The positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along the lines $\left(\sum v_{s}\right)$ and $\left(\sum \frac{v}{s}\right)$, respectively if and only if the coefficients of the derivative equations (10) satisfy the equalities

$$
\begin{equation*}
{\underset{s}{T}}_{\underset{s}{\bar{k}}}^{\alpha}\left(v_{1}^{\alpha}+v_{2}^{\alpha}+\cdots+v_{n}^{\alpha}\right)=0, \quad \stackrel{k}{\frac{k}{s}} \alpha\left(\underset{n+1}{v^{\alpha}}+\underset{n+2}{v^{\alpha}}+\cdots+v_{N}^{v^{\alpha}}\right)=0 \tag{20}
\end{equation*}
$$

4.3 The positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along the lines $\left(\sum v_{s}\right)$ if and only if the coefficients of the derivative equations (10) satisfy the equalities

$$
\begin{equation*}
\left.{\underset{s}{\bar{k}}}_{\underset{s}{\alpha}\left(v_{1}^{\alpha}+v_{2}^{\alpha}\right.}+\cdots+v_{n}^{\alpha}\right)=0, \quad \stackrel{k}{\frac{k}{s}} \alpha\left(\underset{1}{v^{\alpha}}+\underset{2}{v^{\alpha}}+\cdots+\underset{n}{v^{\alpha}}\right)=0 \tag{21}
\end{equation*}
$$

4.4 The positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along the lines $\left(\sum \frac{v}{s}\right)$ if and only if the coefficients of the derivative equations (10) satisfy the equalities

Because of (6) in the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ we can write ${\underset{\beta}{\underset{\beta}{\gamma}}}_{\gamma}^{\gamma}{\underset{\sigma}{v}}^{\alpha}={\underset{\beta}{\gamma}}_{\beta}^{\gamma}$. Then from (14) it follows

Corollary 1. In the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})(19)$, (20), (21), (22) are equivalent to the equalities

$$
\begin{array}{ll}
\Gamma_{s n+1}^{\bar{k}}+\Gamma_{s n+2}^{\bar{k}}+\cdots+\Gamma_{s N}^{\bar{k}}=0, & \Gamma_{\bar{s}}{ }_{1}+\Gamma_{\bar{s} 2}^{k}+\cdots+\Gamma_{\bar{s}}^{k}=0 \\
\Gamma_{s 1}^{\bar{k}}+\Gamma_{s 2}^{\bar{k}}+\cdots+\Gamma_{s n}^{\bar{k}}=0, & \Gamma_{\bar{s} n+1}^{k}+\Gamma_{\bar{s} n+2}^{k}+\cdots+\Gamma_{\bar{s} N}^{k}=0 \\
\Gamma_{s 1}^{\bar{k}}+\Gamma_{s 2}^{\bar{k}}+\cdots+\Gamma_{s n}^{\bar{k}}=0, & \Gamma_{\bar{s}}=\Gamma_{\bar{s} 2}^{k}+\cdots+\Gamma_{\bar{s}}^{k}=0 \\
\Gamma_{s n+1}^{\bar{k}}+\Gamma_{s n+2}^{\bar{k}}+\cdots+\Gamma_{s N}^{\bar{k}}=0, & \Gamma_{\bar{s}{ }_{n+1}}^{k}+\Gamma_{\bar{s} n+2}^{k}+\cdots+\Gamma_{\bar{s}{ }_{N}}^{k}=0
\end{array}
$$

respectively.
4. Bridges of compositions. Let the composition $X_{n} \times X_{m}$ be defined by the affinor (5). According to accepted notations $v_{s}^{\alpha} \in P\left(X_{n}\right)$ and $\frac{v_{s}^{\alpha}}{s} \in P\left(X_{m}\right)$.

Consider all pairs from the vector fields v_{p}^{α} and $\frac{v^{\alpha}}{k}$. These vector fields determine the lines $\underset{p}{v}$ and $\frac{v}{k}$, which form a two-dimensional net $\left(\underset{p}{v}, \frac{v}{k}\right)$.

Definition 1. We will call bridges of the composition $X_{n} \times X_{m}$ the twodimensional manifolds which contain the nets $\left(\underset{p}{v}, \frac{v}{k}\right)$ and let denote them $X_{p} \bar{k}$.

Definition 2. The bridge $X_{p \bar{k}}$ of the composition $X_{n} \times X_{m}$ will be called chebyshevian, geodesic, cartesian and i.e. when its corresponding net $\underset{\sim}{v}, \underset{k}{v})$ is chebyshevian, geodesic, cartesian and i.e., respectively.

With the help of (11) it is easy to prove: All bridges $X_{p \bar{k}}$ of the composition $X_{n} \times X_{m}$ are chebyshevian if and only if the composition $X_{n} \times X_{m}$ is chebyshevian.

Denote by $P\left(X_{p} \bar{k}\right)$ the positions of the bridges $X_{p} \bar{k}$. Then from (11) follows

Proposition 5. 5.1 The positions $P\left(X_{p} \bar{k}\right)$ of the bridges $X_{p} \bar{k}$ of the composition $X_{n} \times X_{m}$ are parallelly translated along any line of the X_{n} if and only if the coefficients of the derivative equations (10) satisfy the equalities

$$
\begin{equation*}
{\stackrel{\bar{i}}{T_{p}}}_{\sigma}^{v_{k}^{\sigma}}=0, \quad \stackrel{i}{T_{p}}{ }_{k}^{v^{\sigma}}=0 \tag{23}
\end{equation*}
$$

5.2 The positions $P\left(X_{p \bar{k}}\right)$ of the bridges X_{p} of the composition $X_{n} \times X_{m}$ are parallelly translated along any line of the X_{m} if and only if the coefficients of the derivative equations (10) satisfy the equalities

$$
\begin{equation*}
\stackrel{\bar{i}}{p}_{\sigma} \frac{v}{k}^{\sigma}=0, \quad \stackrel{i}{T_{p}} \sigma \frac{v^{\sigma}}{\sigma}=0 \tag{24}
\end{equation*}
$$

Since in the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ the conditions (23) and (24) accept the form $\underset{p}{\stackrel{i}{T}} k=0, \stackrel{i}{T_{p}} k=0$ and $\underset{p}{\stackrel{\bar{i}}{T} \bar{k}}=0, \stackrel{i}{\underset{p}{T}} \bar{k}=0$, respectively then according to (14) we can formulate

Corollary 2. In the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ the conditions (23) and (24) accept the form $\Gamma_{p k}^{\bar{i}}=0, \Gamma_{\bar{p} k}^{i}=0$ and $\Gamma_{p k}^{\bar{i}}=0, \Gamma_{\bar{p} k}^{i}=0$, respectively.
5. Transformation of connections. Let in the space A_{N} with the connection $\Gamma_{\alpha \beta}^{\sigma}$ be given the composition $X_{n} \times X_{m}$ defined by the affinor (5). Let $G_{\alpha \beta}^{\sigma}$ be a new connection in A_{N} and let the new covariant derivative be denoted by ${ }^{1} \nabla$. According to $[2] T_{\alpha \beta}^{\sigma}=G_{\alpha \beta}^{\sigma}-\Gamma_{\alpha \beta}^{\sigma}$ is the tensor of the affine deformation.

Theorem 2. The composition $X_{n} \times X_{m}$ defined by the affinor (5) is simultaneously of the type $(g-g)$ with respect to the connections $\Gamma_{\alpha \beta}^{\sigma}$ and $G_{\alpha \beta}^{\sigma}$ if and only if the tensor of the affine deformation satisfy the conditions

$$
\begin{equation*}
v_{s}^{\tau} \delta_{\tau}^{[\beta} T_{\sigma \nu}^{\alpha]} v_{s}^{\nu} \underset{k}{v^{\sigma}}=0, \quad \frac{v^{\tau}}{s} \delta_{\tau}^{[\beta} T_{\sigma \nu}^{\alpha]} \frac{v^{\nu}}{s} \frac{v^{\sigma}}{k}=0 \tag{25}
\end{equation*}
$$

Proof. Taking into account the definition of the composition of the type $(g-g)$ and [2] we can conclude that the compositions $X_{n} \times X_{m}$ is simultaneously of the type $(g-g)$ in the connections $\Gamma_{\alpha \beta}^{\sigma}$ and $G_{\alpha \beta}^{\sigma}$ if and only if

$$
\begin{equation*}
\nabla_{\sigma} v_{s}^{\alpha} \underset{k}{v^{\sigma}}=\lambda v_{s}^{\alpha}, \quad{ }^{1} \nabla_{\sigma} v_{s}^{\alpha} v_{k}^{v^{\sigma}}=\mu v_{s}^{\alpha} \tag{26}
\end{equation*}
$$

Because of ${ }^{1} \nabla_{\sigma} v_{s}^{\alpha}-\nabla_{\sigma} v_{s}^{\alpha}=T_{\sigma \nu}^{\alpha}{\underset{s}{v}}_{\nu}, \quad{ }^{1} \nabla_{\sigma} \frac{v}{s}^{\alpha}-\nabla_{\sigma} \frac{v}{s}^{\alpha}=T_{\sigma \nu}^{\alpha} \frac{v}{s}^{\nu} \quad$ [2] we can write

$$
\begin{equation*}
{ }^{1} \nabla_{\sigma} v_{s}^{\alpha} v_{k}^{\sigma}-\nabla_{\sigma} v_{s}^{\alpha} v_{k}^{v^{\sigma}}=T_{\sigma \nu}^{\alpha}{\underset{s}{v}}_{v^{\nu}}^{v_{k}^{\sigma}}, \quad{ }^{1} \nabla_{\sigma} \frac{v}{s}_{\alpha}^{\frac{v^{\sigma}}{k}}-\nabla_{\sigma} \frac{v^{\alpha}}{} \frac{v}{k}^{\sigma}=T_{\sigma \nu}^{\alpha} \frac{v^{\nu}}{\nu} \frac{v^{\sigma}}{k} . \tag{27}
\end{equation*}
$$

Now from (26) it follows that the equalities (27) are equivalent to the following ones $\lambda v_{s}^{\alpha}=T_{\sigma \nu}^{\alpha} \underset{s}{v^{\nu}}{\underset{k}{v}}_{\sigma}^{\sigma}, ~ \lambda \frac{v_{s}}{\alpha}=T_{\sigma \nu}^{\alpha} \frac{v}{s}_{\nu}^{v} \frac{v^{\sigma}}{\sigma}$. From the last equalities we obtain $\lambda v_{s}^{[\beta} v_{s}^{\alpha]}=v_{s}^{[\beta} T_{\sigma \nu}^{\alpha]}{\underset{s}{\nu}}_{v^{\nu}}^{v^{\sigma}}=0, \lambda \frac{v_{s}}{[\beta} \frac{v^{\alpha}}{\alpha]}=\frac{v^{\prime}}{[\beta} T_{\sigma \nu}^{\alpha]} \frac{v^{\nu}}{s} \frac{v^{\sigma}}{k}=0$, from where it follows (25).

Corollary 3. In the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ the conditions (25) accept the form

$$
\begin{equation*}
T_{p k}^{\bar{i}}=T_{p k}^{i}=0, \quad T_{\bar{p} \bar{s}}^{i}=T_{\bar{p}}^{\bar{i}}=0 \tag{28}
\end{equation*}
$$

Proof. Let the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ be chosen as a coordinate one. Then (25) accept the form $\delta_{s}^{[\beta} T_{p s}^{\alpha]}=0, \delta_{\bar{s}}^{[\beta} T_{\bar{p} \bar{s}}^{\alpha]}=0$ or $\delta_{s}^{\beta} T_{p s}^{\alpha}-\delta_{s}^{\alpha} T_{p s}^{\beta}=0, \delta_{\bar{s}}^{\beta} T_{\bar{p} \bar{s}}^{\alpha}-\delta_{\bar{s}}^{\alpha} T_{\bar{p} \bar{s}}^{\beta}=0$. It is easy to verify:

1. When $\alpha=i, \beta=j$ then $T_{p s}^{i}=0$.
2. When $\alpha=i, \beta=\bar{j}$ then $T_{p s}^{\bar{j}}=0, T_{\bar{p} \bar{s}}^{i}=0$.
3. When $\alpha=\bar{i}, \beta=j$ then $T_{p s}^{\bar{i}}=0, T_{\bar{p} \bar{s}}^{i}=0$.
4. When $\alpha=\bar{i}, \beta=\bar{j}$ then $T_{\bar{p}}^{\bar{i}}=0$.

Theorem 3. The bridges $X s \bar{p}$ of the composition $X_{n} \times X_{m}$ defined by the affinor (5) is simultaneously geodesic with respect to the connections $\Gamma_{\alpha \beta}^{\sigma}$ and $G_{\alpha \beta}^{\sigma}$ if and only if the tensor of the affine deformation satisfies the conditions

$$
\begin{equation*}
v_{s}^{\tau} \delta_{\tau}^{[\beta} T_{\sigma \nu}^{\alpha]} v_{s}^{\nu} v_{s}^{\sigma}=0, \quad \frac{v^{\tau}}{s} \delta_{\tau}^{[\beta} T_{\sigma \nu}^{\alpha]} \frac{v^{\nu}}{s} \frac{v}{s}^{\sigma}=0 . \tag{29}
\end{equation*}
$$

Proof. According to [2], [8] we can write the equalities ${ }^{1} \nabla_{\sigma} v_{s}^{\alpha} v_{s}^{\sigma}-$ $\nabla_{\sigma} v_{s}^{\alpha} v_{s}^{\sigma}=T_{\sigma \nu}^{\alpha} v_{s}^{\nu} v_{s}^{\sigma},{ }^{1} \nabla_{\sigma} \frac{v}{s}^{\alpha} \frac{v}{s}^{\sigma}-\nabla_{\sigma} \frac{v}{s}^{\alpha} \frac{v}{s}^{\sigma}=T_{\sigma \nu}^{\alpha} \frac{v^{\nu}}{s} \frac{v}{s}^{\sigma}$, which are equivalent to $\lambda v_{s}^{\alpha}=T_{\sigma \nu}^{\alpha} v_{s}^{\nu} v_{s}^{\sigma}, \lambda v^{\alpha}=T_{\sigma \nu}^{\alpha} \frac{v}{s}_{\nu}^{\nu} \frac{v}{s}^{\sigma}$ since the vector fields v_{s}^{α} and $\frac{v^{\sigma}}{\sigma}$ are simultaneously geodesic with respect to the connections $\Gamma_{\alpha \beta}^{\sigma}$ and $G_{\alpha \beta}^{\sigma}$. But the last equal-
 from where it follows (29).

Corollary 4. In the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ the conditions (25) accept the form

$$
\begin{equation*}
T_{s s}^{\bar{i}}=T_{s s}^{i}=0, \quad T_{\bar{s} \bar{s}}^{i}=T_{\bar{s}}^{\bar{i}}=0 \tag{30}
\end{equation*}
$$

Proof. Let the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ be chosen as a coordinate one. Then (25) accept the form $\delta_{s}^{[\beta} T_{s s}^{\alpha]}=0, \delta_{\bar{s}}^{[\beta} T_{\bar{s} \bar{s}}^{\alpha]}=0$ or $\delta_{s}^{\beta} T_{s s}^{\alpha}-\delta_{s}^{\alpha} T_{s s}^{\beta}=0, \delta_{\bar{s}}^{\beta} T_{\bar{s}{ }_{\bar{s}}}^{\alpha}-\delta_{\bar{s}}^{\alpha} T_{\bar{s} \bar{s}}^{\beta}=0$. It is easy to verify:

1. When $\alpha=i, \beta=j$ then $T_{s s}^{i}=0$.
2. When $\alpha=i, \beta=\bar{j}$ then $T_{s s}^{\bar{j}}=0, T_{\bar{s}}^{i}=0$.
3. When $\alpha=\bar{i}, \beta=j$ then $T_{s s}^{\bar{i}}=0, T_{\bar{s} \bar{s}}^{j}=0$.
4. When $\alpha=\bar{i}, \beta=\bar{j}$ then $T_{\bar{s}}^{\bar{i}}=0$.

REFERENCES

[1] A. Norden. Spaces of Cartesian composition. Izv. Vyssh. Uchebn. Zaved., Mat. (1963), No 4(35), 117-128 (in Russian).
[2] A. Norden. Spaces with Affine Connection. 2nd ed., rev., Moscow, Nauka, 1976, 432 p. (in Russian).
[3] A. Norden, G. Timofeev. Invariant criteria for special compositions of multidimensional spaces. Izv. Vyssh. Uchebn. Zaved., Mat. (1972), No 8(123) 81-89 (in Russian).
[4] G. Timofeev. Invariant criteria of special compositions in Weyl spaces. Izv. Vyssh. Uchebn. Zaved., Mat. (1976) No 1(164), 87-99 (in Russian).
[5] T. Willmore. Connexions for systems of parallel distributions. Quart. J. Math. Oxford Ser. (2) 7, 1 (1956), 269-276.
[6] G. Zlatanov. Compositions, generated by special nets in affinely connected spaces. Serdica Math. J. 28, 3 (2002), 189-200.
[7] G. Zlatanov, B. Tzareva. Conjugate compositions in even-dimensional affinely connected spaces without a torsion. Proceedings of the Anniversary International Conference REMIA, 10-12 Decembre, 2010, Plovdiv, Bulgaria, 225-231.
[8] G. Zlatanov, B. Tzareva. Geometry of the nets in equiaffine spaces. J. Geom. 55, 1-2 (1996), 192-201.

University of Plovdiv "Paissii Hilendarski"
Faculty of Mathematics and Informatics
24, Tsar Assen Str.
4000 Plovdiv, Bulgaria
e-mail: zlatanov@uni-plovdiv.bg
Received May 26, 2011

