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OUTER ENDOMORPHISMS

OF FREE METABELIAN LIE ALGEBRAS
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Abstract. Let Fm be the free metabelian Lie algebra of rank m over
a field K of characteristic 0. We consider the semigroup IE(Fm) of the
endomorphisms of Fm which are identical modulo the commutator ideal of
Fm. We describe the factor semigroup of IE(Fm) modulo the congruence
induced by the group of inner automorphisms.

Introduction. Let Lm be the free Lie algebra of rank m ≥ 2 over a field

K of characteristic 0 and let Fm = Lm/L
′′
m be the free metabelian Lie algebra.

This is the relatively free algebra of rank m in the metabelian (solvable of class

2) variety of Lie algebras A
2 defined by the identity

[[x1, x2], [x3, x4]] = 0.
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The description of the group of automorphisms of free algebras of fi-

nite rank is one of the most interesting problems of modern algebra. In 1964

Cohn [7] proved that automorphisms of finitely generated free Lie algebras are

tame, i.e., the group of automorphisms is generated by the so called elemen-

tary automorphisms. A description of the defining relations between elementary

automorphisms was given in 2006 by Umirbaev [19].

Free metabelian algebras form another interesting class of Lie algebras.

There are many papers devoted to the study of automorphisms of free metabelian

algebras, although many crucial questions are still open. Quite often earlier re-

sults on automorphisms of free metabelian groups serve as a model of the investi-

gations in the Lie case. In 1965 Bachmuth [1] proved that automorphisms of free

metabelian groups of rank 2 are tame and the IA-automorphisms which induce

the identity automorphism in the abelianized group (i.e., modulo the commu-

tator subgroup) are inner. In the 1980’s Bachmuth and Mochizuki established

that the group of automorphisms of the free metabelian group of rank 3 is not

finitely generated and hence contains a lot of wild automorphisms [2]. On the

other hand, all automorphisms of free metabelian groups of rank ≥ 4 are tame

[3]. There are analogues of these results for metabelian Lie algebras. Shmel’kin

[18] proved that all IA-automorphisms (i.e., the automorphisms which induce the

identity map modulo the commutator ideal of Fm), are inner when m = 2. Since

the by the theorem of Cohn [7] the only automorphisms of the free Lie algebra

L2 are the linear ones, this immediately implies that F2 has wild automorphisms.

Bahturin and Nabiyev [5] proved that the inner automorphisms of Fm are wild

for all m ≥ 2. Although wild, inner automorphisms form a very natural class.

Roman’kov [17] established that the algebra F3 has automorphisms which do

not belong to the group generated by the tame and inner automorphisms. He

announced in [16] that for m ≥ 4 all automorphisms of Fm are products of

tame and inner automorphisms. Let us mention also the recent papers by Dani-

yarova, Kazatchkov and Remeslennikov [8, 9, 10] on algebraic geometry of free

metabelian Lie algebra, by Drensky and the author [11, 12] on automorphisms of

free metabelian nilpotent Lie algebras, and Gerritzen [13] and Kurlin [15] on the

Baker-Campbell-Hausdorff formula for free metabelian Lie algebras.

The automorphism group Aut(Fm) is a semidirect product of the normal

subgroup IA(Fm) of IA-automorphisms and the general linear group GLm(K).

Since the group of inner automorphisms Inn(Fm) is a subgroup of IA(Fm), for

the description of the factor group of the outer automorphisms Out(Fm) =

Aut(Fm)/ Inn(Fm) it is sufficient to know only IA(Fm)/ Inn(Fm). In the present
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paper we study the semigroup IE(Fm) of IA-endomorphisms of Fm, i.e., the

endomorphisms which induce the identity automorphisms modulo the commu-

tator ideal of Fm. Our main result describes the factor semigroup of IE(Fm)

modulo the congruence induced by the group of inner automorphisms Inn(Fm)

of the Lie algebra Fm. Since IOut(Fm) = IA(Fm)/ Inn(Fm) is canonically em-

bedded into IE(Fm)/ Inn(Fm), it is natural to work in the semigroup of outer

IA-endomorphisms and then to recognize the automorphisms in Out(Fm).

A result of Shmel’kin [18] states that the free metabelian Lie algebra Fm

can be embedded into the abelian wreath product Am wrBm, where Am and Bm

are m-dimensional abelian Lie algebras with bases {a1, . . . , am} and {b1, . . . , bm},

respectively. The elements of Am wrBm are of the form
m
∑

i=1
aifi(t1, . . . , tm) +

m
∑

i=1
βibi, where fi are polynomials in K[t1, . . . , tm] and βi ∈ K. This allows to

introduce partial derivatives in Fm with values in K[t1, . . . , tm] and the Jacobian

matrix J(φ) of an endomorphism φ of Fm. Restricted on the semigroup IE(Fm),

the map J : φ → J(φ) is a semigroup monomorphism of IE(Fm) into the mul-

tiplicative semigroup of the algebra Mm(K[t1, . . . , tm]) of m ×m matrices with

entries from K[t1, . . . , tm]. We use the explicit form of the Jacobian matrices

of inner automorphisms of Fm and give the coset representatives of the outer

IA-endomorphisms in IE(Fm)/ Inn(Fm).

1. Preliminaries. Let Lm be the free Lie algebra of rank m ≥ 2 over a

field K of characteristic 0 with free generators y1, . . . , ym and let Fm = Lm/L
′′
m

be the free metabelian Lie algebra, where L′
m = [Lm, Lm] and L′′

m = [L′
m, L

′
m]. It

is freely generated by the set X = {x1, . . . , xm}, where xi = yi+L
′′
m, i = 1, . . . ,m.

We use the commutator notation for the Lie multiplication. Our commutators

are left normed:

[u1, . . . , un−1, un] = [[u1, . . . , un−1], un], n = 3, 4, . . . .

It is well known, see e.g. [4], that

[xi1 , xi2 , xiσ(i3)
, . . . , xiσ(k)

] = [xi1 , xi2 , xi3 , . . . , xik ],

where σ is an arbitrary permutation of 3, . . . , k and that F ′
m has a basis consisting

of all

[xi1 , xi2 , xi3 , . . . , xik ], 1 ≤ ij ≤ m, i1 > i2 ≤ i3 ≤ · · · ≤ ik.
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For each v ∈ F ′
m, the linear operator ad v : Fm → Fm defined by

ad v(u) = [u, v], u ∈ Fm,

is a derivation of Fm which is nilpotent and ad2 v = 0 because F ′′
m = 0. Hence

the linear operator

exp(ad v) = 1 +
ad v

1!
+

ad2 v

2!
+ · · · = 1 + ad v

is well defined and is an automorphism of Fm. The set of all such automorphisms

forms a normal subgroup of the group of all automorphisms Aut(Fm) of Fm. This

group is called the inner automorphism group of Fm and is denoted by Inn(Fm).

It is abelian because

exp(ad u) exp(ad v) = exp(ad(u+ v)), u, v ∈ F ′
m.

The set of all endomorphisms End(Fm) of Fm forms a semigroup. Let

IE(Fm) be the subsemigroup of all endomorphisms of Fm which are identical

modulo the commutator ideal F ′
m.

Lemma 1. The set {Inn(Fm)θ | θ ∈ IE(Fm)} is a semigroup with the

multiplication

(Inn(Fm)θ1) · (Inn(Fm)θ2) = Inn(Fm)(θ1θ2).

P r o o f. Since Inn(Fm) is a subgroup of the semigroup IE(Fm), the rela-

tion

σ = {(θ1, θ2) ∈ (IE(Fm), IE(Fm)) | Inn(Fm)θ1 = Inn(Fm)θ2}

is an equivalence and (θ1, θ2) ∈ σ if and only if θ1 = exp(adu)θ2 for some u ∈ F ′
m.

Now let θ, θ1, θ2 ∈ IE(Fm) be such that (θ1, θ2) ∈ σ and θ1 = exp(adu)θ2,

u ∈ F ′
m. Hence

θ1θ = exp(adu)(θ2θ),

we have that (θ1θ, θ2θ) ∈ σ and σ is right compatible. It remains to check that

σ is left compatible. One can easily show that θ exp(ad u) = exp(ad(θ(u)))θ and

θ(u) ∈ F ′
m. Then

θθ1 = θ exp(adu)θ2 = exp(ad(θ(u)))(θθ2)
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which gives that (θθ1, θθ2) ∈ σ. Hence σ is left compatible and σ is a congruence.

For details see e.g. [14]. Consequently the multiplication

(Inn(Fm)θ1) · (Inn(Fm)θ2) = Inn(Fm)(θ1θ2)

is well defined. �

We denote the semigroup defined in Lemma 1 as IE(Fm)/ Inn(Fm). As

we mentioned in the introduction, the IA-component of the outer automor-

phism group of Fm is canonically embedded into the semigroup IE(Fm)/ Inn(Fm).

Hence, it is natural to work in the semigroup IE(Fm)/ Inn(Fm) of outer IA-

endomorphisms of Fm in order to derive information for the automorphisms in

Out(Fm).

Now we collect the necessary information about wreath products and

Jacobian matrices. For details and references see e.g. [6]. Let K[t1, . . . , tm] be

the (commutative) polynomial algebra over K freely generated by the variables

t1, . . . , tm and let Am and Bm be abelian Lie algebras with bases {a1, . . . , am}

and {b1, . . . , bm}, respectively. Let Cm be the free rightK[t1, . . . , tm]-module with

free generators a1, . . . , am. We give it the structure of a Lie algebra with trivial

multiplication. The abelian wreath product Am wrBm is equal to the semidirect

sum Cm ⋋Bm. The elements of Am wrBm are of the form

m
∑

i=1

aifi(t1, . . . , tm) +

m
∑

i=1

βibi,

where fi are polynomials in K[t1, . . . , tm] and βi ∈ K. The multiplication in

Am wrBm is defined by

[Cm, Cm] = [Bm, Bm] = 0,

[aifi(t1, . . . , tm), bj ] = aifi(t1, . . . , tm)tj , i, j = 1, . . . ,m.

Hence Am wrBm is a metabelian Lie algebra and every mapping {x1, . . . , xm} →

Am wrBm can be extended to a homomorphism Fm → Am wrBm. As a special

case of the embedding theorem of Shmel’kin [18], the homomorphism ε : Fm →

Am wrBm defined by ε(xi) = ai + bi, i = 1, . . . ,m, is a monomorphism. If

f =
∑

[xi, xj ]fij(ad x1, . . . , adxm), fij(t1, . . . , tm) ∈ K[t1, . . . , tm],

then

ε(f) =
∑

(aitj − ajti)fij(t1, . . . , tm).
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Let us define Tj = {tj, . . . , tm} for each j = 1, . . . ,m. In the sequel we

shall need the following obvious property. If fj(Tj) ∈ K[Tj], 1 ≤ j ≤ m, and

fj(Tj) 6= 0 for some j, then tjfj(Tj) + · · · + tmfm(Tm) 6= 0, because tjfj(Tj) is

the only summand which depends on xj.

The next lemma follows from [18], see also [6].

Lemma 2. The element
m
∑

i=1
aifi(t1, . . . , tm) of Cm belongs to ε(F ′

m) if

and only if
m
∑

i=1
tifi(t1, . . . , tm) = 0.

The embedding of Fm into Am wrBm allows to introduce partial deriva-

tives in Fm with values in K[t1, . . . , tm]. If f ∈ Fm and

ε(f) =
m
∑

i=1

βibi +
m
∑

i=1

aifi(t1, . . . , tm), βi ∈ K, fi ∈ K[t1, . . . , tm],

then
∂f

∂xi

= fi(t1, . . . , tm).

The Jacobian matrix J(φ) of an endomorphism φ of Fm is defined as

J(φ) =

(

∂φ(xj)

∂xi

)

=















∂φ(x1)

∂x1
· · ·

∂φ(xm)

∂x1
...

. . .
...

∂φ(x1)

∂xm

· · ·
∂φ(xm)

∂xm















∈Mm(K[t1, . . . , tm]),

where Mm(K[t1, . . . , tm]) is the associative algebra of m×mmatrices with entries

fromK[t1, . . . , tm]. Let Im be the identity m×mmatrix and let S be the subspace

of Mm(K[t1, . . . , tm]) defined by

S =

{

(fij) ∈Mm(K[t1, . . . , tm]) |
m
∑

i=1

tifij = 0, j = 1, . . . ,m

}

.

Clearly Im+S is a subsemigroup of the multiplicative group ofMm(K[t1, . . . , tm]).

If φ ∈ IE(Fm), then J(φ) = Im +(sij), where (sij) ∈ S. It is easy to check that if

φ,ψ ∈ IE(Fm) then J(φψ) = J(φ)J(ψ). The following proposition is well known,

see e.g. [6].
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Proposition 3. The map J : IE(Fm) → Im + S defined by φ → J(φ) is

an isomorphism of the semigroups IE(Fm) and Im + S.

The following well known lemma gives the Jacobian matrix of the inner

automorphisms of Fm. We include the proof for completeness of the exposition.

Lemma 4. Let u ∈ F ′
m such that

u =
∑

p>q

[xp, xq]hpq(adxq, . . . , adxm).

where hpq(tq, . . . , tm) ∈ K[tq, . . . , tm]. Then

J(exp(adu)) = Im +D, D =

(

∂[xj , u]

∂xi

)

,

More precisely

D =















−t1f1 −t2f1 · · · −tmf1

−t1f2 −t2f2 · · · −tmf2

...
...

. . .
...

−t1fm −t2fm · · · −tmfm















,

where

fi =
∑

p>q

∂ ([xp, xq]hpq(ad xq, . . . , ad xm))

∂xi

=

i−1
∑

q=1

tqhiq(tq, . . . , tm) −

m
∑

p=i+1

tphpi(ti, . . . , tm).

P r o o f. By definition,

exp(ad u)(xj) = xj + [xj , u], j = 1, . . . ,m.

By direct calculations we obtain

u =
∑

p>q

[xp, xq]hpq(adxq, . . . , adxm),

[xj , u] = −

(

∑

p>q

[yp, yq]hpq(adxq, . . . , adxm)

)

adxj ,
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∂[xj , u]

∂xi

= −tj
∑

p>q

∂[xp, xq]

∂xi

hpq(tq, . . . , tm),

∂[xp, xq]

∂xi

=















tq p = i,

−tp q = i,

0 p, q 6= i,

∂[xj , u]

∂xi

= −tjfi(t1, . . . , tm),

fi(t1, . . . , tm) =

i−1
∑

q=1

tqhiq(tq, . . . , tm) −

m
∑

p=i+1

tphpi(ti, . . . , tm)

and in this way we obtain the explicit form of the matrix D. �

2. Main results. In this section we give the explicit form of the

Jacobian matrix of the coset representatives of the outer endomorphisms in

IE(Fm)/ Inn(Fm), i.e., we shall find a set of IA-endomorphisms θ of Fm such

that the factor semigroup IE(Fm)/ Inn(Fm) of the outer IA-endomorphisms of

Fm is presented as the disjoint union of the cosets Inn(Fm)θ.

Recall that the augmentation ideal of the polynomial algebraK[t1, . . . , tm]

consists of the polynomials without constant terms. We denote this ideal as ω.

Theorem 5. Let Θ be the set of endomorphisms θ of Fm with Jacobian

matrix of the form

J(θ) = Im +





















s(t2, . . . , tm) f12 · · · f1m

t1q2(t2, t3, . . . , tm) + r2(t2, . . . , tm) f22 · · · f2m

t1q3(t3, . . . , tm) + r3(t2, . . . , tm) f32 · · · f3m

...
...

. . .
...

t1qm(tm) + rm(t2, . . . , tm) fm2 · · · fmm





















,

where s, ri, fij ∈ ω
2, qi ∈ ω are polynomials satisfying the conditions

s+
m
∑

i=2

tiqi = 0,
m
∑

i=2

tiri = 0,
m
∑

i=1

tifij = 0, j = 2, . . . ,m,
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ri = ri(t2, . . . , tm), i = 2, . . . ,m, does not depend on t1, qi(ti, . . . , tm), i =

2, . . . ,m, does not depend on t1, . . . , ti−1. Then Θ consists of coset represen-

tatives of the subgroup Inn(Fm) of the semigroup IE(Fm) and IE(Fm)/ Inn(Fm)

is a disjoint union of the cosets Inn(Fm)θ, θ ∈ Θ.

P r o o f. Let A = Im + (fij) ∈ Im + S,

f11 = s, fi1 = t1qi + ri, i = 2, . . . ,m,

be an m×m matrix satisfying the conditions of the theorem. The equation

s+
m
∑

i=2

tiqi = 0

implies that

t1s+
m
∑

i=2

ti(t1qi) = 0.

Hence Lemma 2 gives that there exists an f1 in the commutator ideal of Fm such

that
∂f1

∂x1
= s,

∂f1

∂xi

= t1qi, i = 2, . . . ,m.

Similarly, the conditions

m
∑

i=2

tiri = 0,

m
∑

i=1

tifij = 0, j = 2, . . . ,m,

imply that there exist f ′1, fj, j = 2, . . . ,m, in Fm with

∂f ′1
∂x1

= 0,
∂f ′1
∂xi

= ri, i = 2, . . . ,m,

∂fj

∂xi

= fij, i = 1, . . . , j, j = 2, . . . ,m.

This means that A is the Jacobian matrix of a certain IA-endomorphism of Fm.

Now we shall show that for any ψ ∈ IE(Fm) there exists an inner au-

tomorphism φ = exp(ad u) ∈ Inn(Fm) and an endomorphism θ in Θ such that

ψ = exp(adu) · θ. Let ψ be an arbitrary element of IE(Fm) and let

ψ(x1) = x1 +
∑

k>l

[xk, xl]fkl(ad xl, . . . , ad xm),
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ψ(x2) = x2 +
∑

k>l

[xk, xl]gkl(adxl, . . . , adxm),

where fkl = fkl(tl, . . . , tm), gkl = gkl(tl, . . . , tm) ∈ K[t1, . . . , tm].

Let us denote the m×2 matrix consisting of the first two columns of J(ψ)

by J(ψ)2. Then J(ψ)2 is of the form

J(ψ)2 =





















1 − t2f21 − t3f31 − · · · − tmfm1 −t2g21 − t3g31 − · · · − tmgm1

t1f21 − t3f32 − · · · − tmfm2 1 + t1g21 − t3g32 − · · · − tmgm2

t1f31 + t2f32 − · · · − tmfm3 ∗

...
...

t1fm1 + · · · + t(m−1)fm(m−1) ∗





















,

where we have denoted by ∗ the corresponding entries of the second column of

the Jacobian matrix of ψ. We can rewrite J(ψ)2 as

J(ψ)2 =





















1 + t1s1(t1, . . . , tm) + s2(t2, . . . , tm) ∗

t21p2(t1, . . . , tm) + t1q2(t2, . . . , tm) + r2(t2, . . . , tm) ∗

t21p3(t1, . . . , tm) + t1q3(t2, . . . , tm) + r3(t2, . . . , tm) ∗

...
...

t21pm(t1, . . . , tm) + t1qm(t2, . . . , tm) + rm(t2, . . . , tm) ∗





















,

where we have collected the components t21pi divisible by t21, the components t1qi
divisible by t1 only (but not by t21) and finally the components ri which do not

depend on t1, i = 2, . . . ,m. By Lemma 2 we obtain

t21(s1 + t2p2 + · · · + tmpm) = 0,

t1(s2 + t2q2 + · · · + tmqm) = 0,

t2r2 + · · · + tmrm = 0.

Recalling the fact that Ts = {ts, . . . , tm}, we can rewrite J(ψ)2 as

J(ψ)2 =





















1 − t1t2p2 − · · · − t1tmpm − t2q2 − · · · − tmqm ∗

t21p2 + t1q2(T2) + r2(T2) ∗

t21p3 + t1q3(T2) + r3(T2) ∗

...
...

t21pm + t1qm(T2) + rm(T2) ∗





















,
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Now we define

φ1 = exp(adu1), u1 =
m
∑

i=2

[xi, x1]pi(adx1, . . . , ad xm).

The Jacobian matrix of φ1 has the form

J(φ1) = Im +

















t1
∑

i6=1

tipi t2
∑

i6=1

tipi · · · tm
∑

i6=1

tipi

−t21p2 −t1t2p2 · · · −t1tmp2

...
...

. . .
...

−t21pm −t1t2pm · · · −t1tmpm

















.

The element u1 belongs to the commutator ideal of Fm and the linear operator

adu1 acts trivially on F ′
m. Hence exp(adu1) is the identity map restricted on

F ′
m. Since the endomorphism ψ is IA, we obtain that

ψ(xj) ≡ xj (mod F ′
m), φ1ψ(xj) = ψ(xj) + xj adu1.

Easy calculations give that

J(φ1ψ)2 =





















1 − t2p2 − · · · − tmpm ∗

t1q2(T2) + r2(T2) ∗

t1q3(T2) + r3(T2) ∗

...
...

t1qm(T2) + rm(T2) ∗





















.

Now we write qi(T2) in the form

qi(T2) = t2q
′
i(T2) + q′′i (T3), i = 3, . . . ,m,

and define

φ2 = exp(ad u2), u2 =
m
∑

i=3

[xi, x2]q
′
i(ad x2, . . . , adxm).
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Then we obtain that

J(φ2φ1ψ)2 =





















1 − t2p2 − · · · − tmpm ∗

t1Q2(T2) + r2(T2) ∗

t1q
′′
3(T3) + r3(T2) ∗

...
...

t1q
′′
m(T3) + rm(T2) ∗





















,

Q2(T2) = q2(T2) −
m
∑

i=3

tiq
′
i(T2).

Repeating this process we construct inner automorphisms φ3, . . . , φm−1 such that

θ = φm−1 · · ·φ2φ1φ0ψ,

J(φm−1 · · · φ2φ1ψ)2 =





















1 + s(T2) ∗

t1Q2(T2) + r2(T2) ∗

t1Q3(T3) + r3(T2) ∗

...
...

t1Qm(Tm) + rm(T2) ∗





















,

s(T2) = −t2p2(T2) − · · · − tmpm(T2).

Hence, starting from an arbitrary coset of IA-endomorphisms Inn(Fm)ψ, we have

found that it contains an endomorphism θ ∈ Θ with Jacobian matrix prescribed

in the theorem. Now, let θ1 and θ2 be two different endomorphisms in Θ with

Inn(Fm)θ1 = Inn(Fm)θ2. Hence, there exists a nonzero element u ∈ F ′
m such that

θ1 = exp(ad u)θ2. Since θ2(x1) ≡ x1 modulo F ′
m, as above we obtain

θ1(x1) = exp(adu)θ2(x1) = θ2(x1) + x1 adu.

Hence

J(ad u)2 = J(θ1)2 − J(θ2)2.

If u is of the form

u =
∑

p>q

[xp, xq]hpq(ad xq, . . . , ad xm)
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then, by Lemma 4, J(ad u)2 is of the form

J(ad u)2 =





















+t1t2h21 + t1t3h31 + · · · + t1tmhm1 ∗

−t21h21 + t1t3h32 + · · · + t1tmhm2 ∗

−t21h31 − t1t2h32 + · · · + t1tmhm3 ∗

...
...

−t21hm1 − t1t2hm2 − · · · − t1tm−1hm,m−1 ∗





















,

hpq = hpq(Tq) ∈ K[Tq] = K[tq, . . . , tm], p > q.

On the other hand, J(θ1)2 − J(θ2)2 is of the form

J(θ1)2 − J(θ2)2 =





















s(t2, . . . , tm) ∗

t1q2(t2, t3, . . . , tm) + r2(t2, . . . , tm) ∗

t1q3(t3, . . . , tm) + r3(t2, . . . , tm) ∗

...
...

t1qm(tm) + rm(t2, . . . , tm) ∗





















,

where the polynomials s, ri, fij , qi satisfy the conditions in the statement of the

theorem. Comparing the degrees of t1 in the monomials of the entries of the first

columns of both matrices we derive that

s = 0, hp1 = 0, rp = 0, p = 2, . . . ,m.

By similar arguments we conclude that hpq = 0 for all p > q which implies that

u = 0 and θ1 = θ2. �

Example 6. When m = 2 the results of Lemma 4 and Theorem 5 have

the following simple form. If

u = [x2, x1]h(ad x1, adx2), h = h(t1, t2) ∈ K[t1, t2],

then the Jacobian matrix of the inner automorphism exp(adu) is

J(exp(adu)) = I2 +

(

t1t2h t22h
−t21h −t1t2h

)

.
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The Jacobian matrix of the outer IA-endomorphism θ ∈ Θ is

J(θ) =

(

1 + t2f1(t2) t2f2(t1, t2)
−t1f1(t2) 1 − t1f2(t1, t2)

)

, f1(0, 0) = f2(0, 0) = 0.

This allows to show easily the result of Shmel’kin [18] that IA(F2) = Inn(F2). If

θ ∈ Θ is an IA-automorphism, then its Jacobian matrix

J(θ) =

(

1 + t2f1(t2) t2f2(t1, t2)

−t1f1(t2) 1 − t1f2(t1, t2)

)

is invertible and

det(J(θ)) = (1 + t2f1(t2))(1 − t1f2(t1, t2)) + (t1f1(t2))(t2f2(t1, t2)) = 1

which gives t2f1(t2) = t1f2(t1, t2) and hence f1(t2) = f2(t1, t2) = 0. Therefore θ

is the identity automorphism which means that all IA-automorphisms of F2 are

inner.

Finally, we want to raise the following natural problem.

Problem 7. Describe the group IOut(Fm) = IA(Fm)/ Inn(Fm), m ≥ 3,

of outer IA-automorphisms of Fm. This would give immediately the description

of the group Out(Fm) = Aut(Fm)/ Inn(Fm) of outer automorphisms of Fm.
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