Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

DIRAC TYPE CONDITION AND HAMILTONIAN GRAPHS

Kewen Zhao
Communicated by V. Drensky

Abstract

In 1952, Dirac introduced the degree type condition and proved that if G is a connected graph of order $n \geq 3$ such that its minimum degree satisfies $\delta(G) \geq n / 2$, then G is Hamiltonian. In this paper we investigate a further condition and prove that if G is a connected graph of order $n \geq 3$ such that $\delta(G) \geq(n-2) / 2$, then G is Hamiltonian or G belongs to four classes of well-structured exceptional graphs.

1. Introduction. We consider only finite undirected graphs without loops or multiple edges. For a graph G, let $V(G)$ be the vertex set and let $E(G)$ be the edge set of G. The complete graph of order n is denoted by K_{n} and the empty graph of order n is denoted by \bar{K}_{n}. For two vertices u and v, let $d(u, v)$ be the length of the shortest path between vertices u and v in G, i.e., $d(u, v)$ is the distance between u and v. The minimum degree of the graph G is denoted by $\delta(G)$. For a subgraph H of the graph G and a subset S of $V(G)$, let $N_{H}(S)$ be the set of vertices in H that are adjacent to some vertex in S and let the

[^0]cardinality of $N_{H}(S)$ be $d_{H}(S)$. Furthermore, we denote by $G-H$ the subgraph of G induced by $V(G)-V(H)$. For each integer $m \geq 3$, let $C_{m}=x_{1} x_{2} \cdots x_{m} x_{1}$ denote a cycle of order m and let P be a path of a section of C_{m} (if $|V(P)|=m$, then $P=C_{m}$). Define
$$
N_{P}^{+}(u)=\left\{x_{i+1}: x_{i} \in N_{P}(u)\right\}, N_{P}^{-}(u)=\left\{x_{i-1}: x_{i} \in N_{P}(u)\right\}
$$
and define $N_{P}^{ \pm}(u)=N_{P}^{+}(u) \cup N_{P}^{-}(u)$, where subscripts are taken modulo m.
If no ambiguity can arise we sometimes write $N(u)$ instead of $N_{G}(u), \delta$ instead of $\delta(G)$, etc. Other notations can be found in $[1,3]$.

In 1952, Dirac proved the following well-known result on Hamiltonian graphs.

Theorem 1 (Dirac [2]). If G is a connected graph of order $n \geq 3$ and $\delta(G) \geq n / 2$, then G is Hamiltonian.

Recently we also have investigated some Hamiltonian graphs under other sufficient conditions such as neighborhood union conditions $[4,5]$.

In this paper, our purpose is to present the following result, which extends the above Theorem 1.

Theorem 2. If G is a connected graph of order $n \geq 3$ and $\delta(G) \geq$ $(n-2) / 2$, then G is Hamiltonian or G has one of the following four types:

$$
\begin{gathered}
G_{(n-2) / 2} \vee\left(\bar{K}_{(n-2) / 2} \cup K_{2}\right), \quad G_{(n-2) / 2} \vee \bar{K}_{(n+2) / 2} \\
G_{(n-1) / 2} \vee \bar{K}_{(n+1) / 2}, \quad w:\left(K_{h} \cup K_{t}^{-}\right)
\end{gathered}
$$

Here h is an integer, G_{h} denotes an arbitrary graph of order h, and \bar{K}_{h} is the empty graph with h vertices and without edges. The join operator $A \vee B$ of two graphs A and B is the graph constructed from A and B by adding all edges joining the vertices of A and the vertices of B. The graph $A \cup B$ denotes the disjoint union of the graphs A and B. The graph $w:\left(K_{h} \cup K_{t}^{-}\right)$is defined by the properties: K_{t}^{-}is a graph of order t and minimum degree $\delta\left(K_{t}^{-}\right) \geq t-2$, w is a cut vertex which is adjacent to at least $(n-2) / 2$ vertices of the disjoint graphs K_{h} and K_{t}^{-}, $(n-2) / 2 \leq h \leq t \leq n / 2$.

Corollary 3. If G is a 2-connected graph of order $n \geq 3$ and $\delta(G) \geq$ $(n-2) / 2$, then G is Hamiltonian or

$$
G \in\left\{G_{(n-2) / 2} \vee\left(\bar{K}_{(n-2) / 2} \cup K_{2}\right), G_{(n-2) / 2} \vee \bar{K}_{(n+2) / 2}, G_{(n-1) / 2} \vee \bar{K}_{(n+1) / 2}\right.
$$

2. The proof of main Theorem.

Proof of Theorem 2. Assume that G satisfies the condition of Theorem 2 and it is not Hamiltonian. Then let $C_{m}=x_{1} x_{2} \cdots x_{m} x_{1}$ be the longest cycle of G and let H be a component of $G-C_{m}$. We consider two cases.

Case 1. G is 2-connected.
In this case, there must exist vertices $u, v \in V(H)$ such that $x_{i} \in N_{C_{m}}(u)$ and $x_{j} \in N_{C_{m}}(v)$. (If $|V(H)|=1$, then $u=v$.) Now we claim that $d\left(x_{i+1}\right)+$ $d\left(x_{j+1}\right) \leq n-|V(H)|$. Otherwise, if the claim is false, let P and R denote, respectively, the path $x_{i+1} x_{i+2} \cdots x_{j}$ of C_{m} and the path $x_{j+1} x_{j+2} \cdots x_{i}$ of C_{m}. Then, clearly, none of $N_{P}^{+}\left(x_{j+1}\right) \cup N_{R}^{-}\left(x_{j+1}\right)$ are adjacent to x_{i+1}. (For example, if $x_{k} \in N_{P}^{+}\left(x_{j+1}\right)$ is adjacent to x_{i+1}, let T be a path in H which has two endvertices adjacent to x_{i} and x_{j}, respectively. Then the cycle

$$
x_{i} T x_{j} x_{j-1} \cdots x_{k} x_{k-1} \cdots x_{i+1} x_{k-1} x_{j+1} x_{j+2} \cdots x_{i}
$$

is longer than C_{m}, a contradiction.) Clearly $\left|N_{P}^{+}\left(x_{j+1}\right) \cup N_{R}^{-}\left(x_{j+1}\right)\right|=$ $\left|N_{C_{m}}\left(x_{j+1}\right)\right|-\left|\left\{x_{j+1}\right\}\right|$. Also, none of $N_{G-C_{m}}\left(x_{j+1}\right)$ are adjacent to x_{i+1}, and both x_{i+1}, x_{j+1} are not adjacent to any vertex of $\left\{x_{i+1}\right\} \cup V(H)$. Hence we can check that

$$
\begin{aligned}
& d\left(x_{i+1}\right) \leq|V(G)|-\left|N_{P}^{+}\left(x_{j+1}\right) \cup N_{R}^{-}\left(x_{j+1}\right)\right|-\left|N_{G-C_{m}}\left(x_{j+1}\right)\right|-\left|\left\{x_{i+1}\right\} \cup V(H)\right| \\
& \leq|V(G)|-\left(\left|N_{C_{m}}\left(x_{j+1}\right)\right|-\left|\left\{x_{j+1}\right\}\right|\right)-\left|N_{G-C_{m}}\left(x_{j+1}\right)\right|-\left|\left\{x_{i+1}\right\} \cup V(H)\right| \\
& \leq n-\left(\left|N\left(x_{j+1}\right)\right|-\left|\left\{x_{j+1}\right\}\right|\right)-\left|\left\{x_{i+1}\right\}\right|-|V(H)|,
\end{aligned}
$$

and this implies that

$$
\begin{equation*}
d\left(x_{i+1}\right)+d\left(x_{j+1}\right) \leq n-|V(H)| \tag{1}
\end{equation*}
$$

On the other hand, by the condition of Theorem 2 we have $d\left(x_{i+1}\right)+d\left(x_{j+1}\right) \geq$ $n-2$. Together with the inequality (1), we have $|V(H)| \leq 2$. Now we consider the subcases $|V(H)|=1$ and $|V(H)|=2$.

Subcase 1.1. $|V(H)|=2$.
In this case, if $u \in V(H)$, then we have $|j-i| \geq 3$ for all pairs $x_{i}, x_{j} \in$ $N_{C_{m}}(H)$ such that $\left\{x_{i+1}, x_{i+2}, \cdots x_{j-1}\right\} \cap N(u)=\emptyset$. (Otherwise, if $|j-i| \leq 2$ for some $x_{i}, x_{j} \in N_{C_{m}}(H)$, by $|V(H)|=2$, it is easy to construct a cycle longer than C_{m}, a contradiction.) Thus, we can check that

$$
|N(u)| \leq\left|V\left(C_{m}\right)\right| / 3+|V(H) \backslash\{u\}| \leq(n-2) / 3+1,
$$

i.e., $d(u) \leq(n-2) / 3+1$. Clearly, $n \geq\left|V\left(C_{m}\right)\right|+|V(H)| \geq 8$, so $d(u) \leq(n-3) / 2$, and this contradicts the assumption of Theorem 2 that $d(u) \geq(n-2) / 2$.

Subcase 1.2. $|V(H)|=1$.
In this case, if $u \in V(H)$, then we have $|j-i| \geq 2$ for all pairs $x_{i}, x_{j} \in$ $N_{C_{m}}(H)$ with $\left\{x_{i+1}, x_{i+2}, \cdots x_{j-1}\right\} \cap N(u)=\emptyset$, so $|N(u)| \leq\left|V\left(C_{m}\right)\right| / 2 \leq(n-$ 1)/2. Together with the assumption of Theorem 2 that $d(u) \geq(n-2) / 2$, we have $(n-2) / 2 \leq d(u) \leq(n-1) / 2$. Then we consider the following subcases.

Subcase 1.2.1. $d(u)=(n-2) / 2$.
Then, since C_{m} is the longest cycle of G, the vertex u is not adjacent to two consecutive x_{i}, x_{i+1} on C_{m}. By $d(u)=(n-2) / 2,\left|V\left(C_{m}\right)\right| \geq 2 d(u) \geq n-2$, so $\left|V\left(G-C_{m}\right)\right| \leq 2$.

First, let $\left|V\left(G-C_{m}\right)\right|=1$. In this case, since G does not have a Hamiltonian cycle C_{n} and $d(u)=(n-2) / 2$, it is easy to obtain $N(u)=\left\{x_{i}, x_{i+3}, x_{i+5}\right.$, $\left.x_{i+7}, \cdots x_{i-2}\right\}$ on C_{m}, i.e., there exists only one pair of consecutive neighbor vertices x_{i}, x_{i+3} of u on C_{n} such that $|(i+3)-i|=3$ and for all other two consecutive neighbor vertices x_{i+k}, x_{i+h} of u with $\left\{x_{i+k+1}, x_{i+k+2}, \cdots x_{i+h-1}\right\} \cap N(u)=\emptyset$, we have $|(i+k)-(i+h)|=2$.

In this case, since G does not have a Hamiltonian cycle C_{n}, we derive that

$$
G \in G_{(n-2) / 2} \vee\left(\bar{K}_{(n-2) / 2} \cup K_{2}\right)
$$

where

$$
\begin{gathered}
V\left(G_{(n-2) / 2}\right)=\left\{x_{i}, x_{i+3}, x_{i+5}, x_{i+7}, \cdots x_{i-2}\right\} \\
\bar{K}_{(n-2) / 2}=\left\{x_{i+4}, x_{i+6}, \cdots x_{i-1}, u\right\}, \quad K_{2}=\left\{x_{i+1}, x_{i+2}\right\} .
\end{gathered}
$$

Now, let $\left|V\left(G-C_{m}\right)\right|=2$ and let $v \in V\left(G-C_{m}-u\right)$. Since G does not have a Hamiltonian cycle C_{n} and $d(u)=(n-2) / 2$, it is easy to obtain $N(u)=N(v)=$ $\left\{x_{i}, x_{i+1}, \cdots x_{i-2}\right\}$. This implies

$$
G \in G_{(n-2) / 2} \vee \bar{K}_{(n+2) / 2}
$$

where

$$
V\left(G_{(n-2) / 2}\right)=\left\{x_{i}, x_{i+2}, \cdots x_{i-2}\right\}, \bar{K}_{(n+2) / 2}=\left\{x_{i+1}, x_{i+3}, \cdots x_{i-1}, u, v\right\}
$$

Subcase 1.2.2. $d(u)=(n-1) / 2$.
In this case, since C_{m} is the longest cycle of G, the vertex u is not adjacent to two consecutive x_{i}, x_{i+1} on C_{m}, so $\left|V\left(C_{m}\right)\right| \geq 2 d(u) \geq n-1$. This implies
$\left|V\left(G-C_{m}\right)\right|=1$. In this case, it is easy to obtain $N(u)=\left\{x_{i}, x_{i+2}, \cdots x_{i-2}\right\}$ on C_{m}, so we have

$$
G \in G_{(n-1) / 2} \vee \bar{K}_{(n+1) / 2},
$$

where

$$
V\left(G_{(n-1) / 2}\right)=\left\{x_{i}, x_{i+2}, \cdots x_{i-2}\right\}, \bar{K}_{(n+1) / 2}=\left\{x_{i+1}, x_{i+3}, \cdots x_{i-1}, u\right\}
$$

Case 2. The connectivity of G is 1 .
In this case, let w be a cut vertex of G. Then, since $d(x) \geq(n-2) / 2$ for each vertex x in G, we have that $G-w$ has two components. (Otherwise, let $G-w$ have at least three components H_{1}, H_{2} and H_{3}, and let $\left|V\left(H_{1}\right)\right|=$ $\min \left\{\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|,\left|V\left(H_{3}\right)\right|\right\}$. Then we have $d(y) \leq n / 3-|\{y\}|+|\{w\}|<$ $(n-2) / 2$ for each vertex y in H_{1}, a contradiction.) Let H_{1}, H_{2} be the components of $G-w$, i.e., $G-w=H_{1} \cup H_{2}$. We denote G by $w:\left(H_{1} \cup H_{2}\right)$. Clearly, we have

$$
(n-2) / 2 \leq \min \left\{\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right\} \leq \max \left\{\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right\} \leq n / 2
$$

Without loss of generality we may assume that

$$
\begin{aligned}
& \left|V\left(H_{1}\right)\right|=h=\min \left\{\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right\} \\
& \left|V\left(H_{2}\right)\right|=t=\max \left\{\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right\} .
\end{aligned}
$$

(i) When $h=(n-2) / 2$, then H_{1} is the complete subgraph K_{h}, the vertex w is adjacent to all vertices of H_{1}, and each vertex of H_{2} is not adjacent to at least one vertex of H_{2}. (ii) When $h=(n-1) / 2$, then H_{1} and H_{2} are both complete subgraphs. However, we can write $w:\left(H_{1} \cup H_{2}\right)=w:\left(K_{h} \cup K_{t}^{-}\right)$, where $(n-2) / 2 \leq h \leq t \leq n / 2$, and each vertex of K_{t}^{-}is not adjacent to at least one vertex of K_{t}^{-}.

Therefore, the proof is complete.
Acknowledgements. The author is very grateful to the anonymous referee for the helpful comments and suggestions.

REFERENCES

[1] J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. American Elsevier, New York, 1976.
[2] G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc. (3) 2, (1952), 69-81.
[3] R. J. Gould. Updating the Hamiltonian problem. - A survey. J. Graph Theory 15, 2 (1991), 121-157.
[4] K. Zhao, R. J. Gould. A note on the Song-Zhang theorem for Hamiltonian graphs. Colloq. Math. 120, 1 (2010), 63-75.
[5] K. Zhao, H.-J. Lai, Y. Shao. New sufficient condition for Hamiltonian graphs. Appl. Math. Letters 20, 1 (2007), 166-122.

Department of Mathematics
Qiongzhou University
Sanya, Hainan
572022, P. R. China Received November 18, 2010
e-mail: kwzqzu@yahoo.cn
Revised September 26, 2011

[^0]: 2010 Mathematics Subject Classification: 05C38, 05C45.
 Key words: Dirac type condition, sufficient condition, Hamiltonian graph.

