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ABSTRACT. We prove that the group PSLg(q) is (2, 3)-generated for any q.
In fact, we provide explicit generators x and y of orders 2 and 3, respectively,
for the group SLg(q).

1. Introduction. A group G is called (2,3)-generated if G = (z,y)
for some elements z and y of orders 2 and 3, respectively. Such groups attract
attention mostly by the fact that a group is (2, 3)-generated if and only if it is
a homomorphic image of the famous modular group PSLy(Z). This generation
property is known to hold for a number of series of finite simple groups. The most
powerful result in this direction is the theorem of Liebeck-Shalev and Liibeck-
Malle which states that all finite simple groups, except the symplectic groups
PSpy(2™), PSpa(3™), the Suzuki groups Sz(2™) (m odd), and finitely many
other groups, are (2,3)-generated (see [11]). Concerning the projective special
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linear groups PSL,(q), (2,3)-generation has been proved in the casesn = 2,q # 9
B, n=3,q #4[4], [1], n = 4,q # 2 [12], [13], [9], n = 5, any ¢ [14], n > 5, odd
qg #9 [2],[3], and n > 13, any ¢ [10]. The present paper is another contribution
to the problem. We prove the following:

Theorem. The group PSLg(q) is (2,3)-generated for any q.

We note that our approach is quite different from that of the authors of
[2]. Their approach is based on the classification of finite irreducible linear groups
generated by root subgroups, while we make use of the known list of maximal
subgroups of PSLg(q).

2. Proof of the Theorem. Let G = SLg(q) and G = G/Z(G) =
PSLg(q), where ¢ = p™ and p is a prime. Set d = (6,¢ — 1), also Q = ¢°> — 1
if ¢ #3,7and Q = (¢° —1)/2 if ¢ = 3 or 7. The group G acts naturally on
a six-dimensional vector space V over the field F = GF(q) and G acts on the
corresponding projective space P(V). Fix a basis ey, ea, €3, €4, €5, €6 of V.

We shall need the following result.

Lemma 1. Let M be a mazimal subgroup of the group G. Then either
M is reducible on the space P(V) or M has no element of order Q/(d, Q).

Proof. The maximal subgroups of PSLg(q) are determined (up to con-
jugacy) in [5]. In particular, this implies that one of the following holds:

(i) M belongs to the family C; of reducible subgroups of G;

(ii) M is a member of one of the remaining families Cy, C3, Cy, C5, Cg of (irre-
ducible) geometric subgroups of G;

(iii) M = PSL3(q)ifqisoddor M = PSLy(11), A7, Mya, PSL3(4)-Zy, PSU4(3),
or PSU4(3) - Zy for specific values of p and gq.

Zsigmondy’s well-known theorem provides a primitive prime divisor of
p®™ — 1, i.e., a prime r which divides p?™ — 1 but does not divide p* — 1 for
0 < i< b5m. We have r > 11 (as r — 1 is a multiple of 5m) and hence r divides
Q/(d,Q). Now it is easy to verify that in case (ii) the only subgroup of order
divisible by 7 is M = PSUg(qo) - Z(2,40+1) if m is even and q = g3 (in fact, for
q > 2 this is done in [7], Section 2.4). However, then

M| = q5° (a5 — 1) (a5 + 1) (g — 1)(af + 1)(af — 1)/(3,q0 + 1)
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and it is not difficult to see that |M] is not divisible by Q/(d,Q). As for the
groups in case (iii), 7 does not divide |PSL3(q)| = ¢*(¢> — 1)(¢®> — 1)/(3,q — 1)
and the remaining groups have elements of order at most 24 whereas Q/(d, Q) >
2°—1=3L

The lemma is proved. O

2.1. We first assume that ¢ # 2,4. Let w € GF(¢°)* be of order Q and
FO) =t —w)t —w)(t —w?)(t —w®)(t—w?) =15 — at* + B3 — 412 + 6t — .

Then f(t) € F[t] and the polynomial f(t) is irreducible over F. Note that

q5—1

€ = wae?! hasorder ¢ — 1if ¢ # 3,7, e = 1if ¢ = 3, and &3 = 1 # ¢ if
q="T.

Now let
-1 0 0 ~v 1 0 ~ 001000
0 -1 0 Bt 0 3 100000
=] 0 0 0 ac' 134 y=| 010000
0O 0 0 0 0 |’ 000001
0 0 -1 61 0 « 000100
0 0 0 ' 0 0 000010

Then x and y are elements of G of orders 2 and 3, respectively. Denote

0 0 —1 0 ~ et
-1 0 0 0 B pet
smay=| 0 0 0 -1 ae!
0 0 0 0 ¢ O
0 -1 0 0 a 6!
0 0 0 0 0 &!

Then the characterlstlc polynomlal of zis f,(t) = (t—e1)f(t) and the character-
istic roots e, w, w9, W, W, W' of z are pa1rw1se distinct. Then, in GLg(g%),
z is conjugate to dlag( -1
G of order Q.

Let H = (z,y), H <G.

, w, wi, W , W’ , wd' ) and hence z is an element of

Lemma 2. The group H acts irreducibly on the space V.

Proof. Assume that W is an H-invariant subspace of V and k = dim W,
1<k<5.



368 K. Tabakov, K. Tchakerian

Let first Kk = 1 and 0 # w € W. Then y(w) = Aw where A € F and
A3 = 1. This yields

w = i (er + Nea + Nes) + pa(es + Nes + Aeg) (1, po € F).

Now x(w) = vw where v = +1. This yields consecutively ps # 0, A\ = ve™ 1,

p = pz(a+ v —e ), and

(1) (v+1D(a+vs—pe—ec 1) =0,

(2) (v+1D)(a+vs—qet—e =0

In particular, we have €3 = v and €5 = 1. This is impossible if ¢ = 5 or

q > 7 since then ¢ has order ¢ — 1. Thus ¢ = 3 (and € = 1) or ¢ = 7 (and
e3=1#¢). Sov=1and (1), (2) produce v = B¢ and § = —a + B¢ + 2. Then
f(=1) = —(B+1)(e?+ e+ 1) = 0 both for ¢ = 3 and ¢ = 7, hence w = —1, an
impossibility.

Now let 2 < k < 5. Then the characteristic polynomial of z|y has degree
k and must divide f,(t) = (t —e~!)f(t). The irreducibility of f(t) over F implies
that this polynomial is f(¢) and & = 5. Now the subspace U = (e1, ea, €3, €4, €5)
of V' is (z)-invariant. If W # U then U N W is (z)-invariant and dim(U NW) =
4 which is impossible. Thus W = U but obviously U is not (y)-invariant, a
contradiction.

The lemma is proved. (Note that the assertion is false for ¢ = 2 or 4.) O

Now, in G, the elements T and 7 have orders 2 and 3, respectively, and (as
easily seen by the above-mentioned diagonal matrix) Z = Z-7 has order Q/(d, Q).
So the group H = (Z,7) has an element of order Q/(d,Q) and H is irreducible
on P(V) as H is irreducible on V by Lemma 2. Then Lemma 1 implies that H
cannot be contained in any maximal subgroup of G. Thus H = G and G = (%, 7)
is a (2, 3)-generated group.

2.2. Let now ¢ = 2 or 4. We keep the above element y € G of order three
but this time choose the involution x € G to be

100000
1107 0n?

. 000 n 172
00000 |’
001 n 0n?
0007200
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where 7 is a generator of F*. Now

00100 0
101070 7
|l ooo0o1n g
T T 10000 0 0
0100 n 7
0000 0 7

As in the proof of Lemma 2, one verifies that the group H = (x,y)
acts irreducibly on the space V. Indeed, assume first that W = (w) is a one-
dimensional H-invariant subspace of V. Then y(w) = Aw (A € F, \* = 1) yields
again w = py(e1 + M2eg + Ae3) + pa(eq + N2es + Aeg) (1, 2 € F). Now z(w) = w
implies consecutively po # 0, A = 7%, u1 = 0, and n = 0, an impossibility.
And if W is an H-invariant subspace with 2 < dim W < 5 then one reaches a
contradiction just as in the proof of Lemma 2.

The characteristic polynomial of z is f.(t) = (t+n?)g(t) where g(t) = t°+
4?3 40224 (n?4-n)t+n. If ¢ = 2 then the polynomial g(t) = ¢>+t*+134-42+1
is irreducible over F and hence its roots have order 2° — 1 in GF(2%)*. Let q = 4,
then g(t) = t°+n*t* + 2> +n?t2 +-t+n, and set G(t) = t° +nt* +nt3 +nt? +t+n2.
Now the polynomial h(t) = g(t)g(t) = t10 +1° +¢7 + 1% +t* + ¢t + 1 is irreducible
over GF(2) and its roots have order 2! — 1 in GF(2!°)* (see [6], Table C). It
follows that both for ¢ = 2 and ¢ = 4 the element z has order ¢° — 1 = Q.

Now, in G, the elements T, ¥, and z have orders 2, 3, and Q/d, respec-
tively. So the group H = (Z,7) has an element of order Q/d and H is irreducible
on P(V). Again Lemma 1 implies that H = G and G = (%, %) is a (2, 3)-generated
group.

This completes the proof of the theorem. O
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