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(2, 3)-GENERATION OF THE GROUPS PSL6(q)

K. Tabakov, K. Tchakerian

Communicated by V. Drensky

Abstract. We prove that the group PSL6(q) is (2, 3)-generated for any q.
In fact, we provide explicit generators x and y of orders 2 and 3, respectively,
for the group SL6(q).

1. Introduction. A group G is called (2, 3)-generated if G = 〈x, y〉
for some elements x and y of orders 2 and 3, respectively. Such groups attract
attention mostly by the fact that a group is (2, 3)-generated if and only if it is
a homomorphic image of the famous modular group PSL2(Z). This generation
property is known to hold for a number of series of finite simple groups. The most
powerful result in this direction is the theorem of Liebeck-Shalev and Lübeck-
Malle which states that all finite simple groups, except the symplectic groups
PSp4(2

m), PSp4(3
m), the Suzuki groups Sz(2m) (m odd), and finitely many

other groups, are (2, 3)-generated (see [11]). Concerning the projective special
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linear groups PSLn(q), (2, 3)-generation has been proved in the cases n = 2, q 6= 9
[8], n = 3, q 6= 4 [4], [1], n = 4, q 6= 2 [12], [13], [9], n = 5, any q [14], n ≥ 5, odd
q 6= 9 [2],[3], and n ≥ 13, any q [10]. The present paper is another contribution
to the problem. We prove the following:

Theorem. The group PSL6(q) is (2, 3)-generated for any q.

We note that our approach is quite different from that of the authors of
[2]. Their approach is based on the classification of finite irreducible linear groups
generated by root subgroups, while we make use of the known list of maximal
subgroups of PSL6(q).

2. Proof of the Theorem. Let G = SL6(q) and G = G/Z(G) =
PSL6(q), where q = pm and p is a prime. Set d = (6, q − 1), also Q = q5 − 1
if q 6= 3, 7 and Q = (q5 − 1)/2 if q = 3 or 7. The group G acts naturally on
a six-dimensional vector space V over the field F = GF (q) and G acts on the
corresponding projective space P (V ). Fix a basis e1, e2, e3, e4, e5, e6 of V .

We shall need the following result.

Lemma 1. Let M be a maximal subgroup of the group G. Then either
M is reducible on the space P (V ) or M has no element of order Q/(d,Q).

P r o o f. The maximal subgroups of PSL6(q) are determined (up to con-
jugacy) in [5]. In particular, this implies that one of the following holds:

(i) M belongs to the family C1 of reducible subgroups of G;

(ii) M is a member of one of the remaining families C2, C3, C4, C5, C8 of (irre-
ducible) geometric subgroups of G;

(iii) M ∼= PSL3(q) if q is odd or M ∼= PSL2(11), A7, M12, PSL3(4)·Z2, PSU4(3),
or PSU4(3) · Z2 for specific values of p and q.

Zsigmondy’s well-known theorem provides a primitive prime divisor of
p5m − 1, i.e., a prime r which divides p5m − 1 but does not divide pi − 1 for
0 < i < 5m. We have r ≥ 11 (as r − 1 is a multiple of 5m) and hence r divides
Q/(d,Q). Now it is easy to verify that in case (ii) the only subgroup of order
divisible by r is M ∼= PSU6(q0) · Z(2,q0+1) if m is even and q = q2

0 (in fact, for
q > 2 this is done in [7], Section 2.4). However, then

|M | = q15
0 (q2

0 − 1)(q3
0 + 1)(q4

0 − 1)(q5
0 + 1)(q6

0 − 1)/(3, q0 + 1)
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and it is not difficult to see that |M | is not divisible by Q/(d,Q). As for the
groups in case (iii), r does not divide |PSL3(q)| = q3(q2 − 1)(q3 − 1)/(3, q − 1)
and the remaining groups have elements of order at most 24 whereas Q/(d,Q) ≥
25 − 1 = 31.

The lemma is proved. �

2.1. We first assume that q 6= 2, 4. Let ω ∈ GF (q5)∗ be of order Q and

f(t) = (t − ω)(t − ωq)(t − ωq2

)(t − ωq3

)(t − ωq4

) = t5 − αt4 + βt3 − γt2 + δt − ε.

Then f(t) ∈ F [t] and the polynomial f(t) is irreducible over F . Note that

ε = ω
q
5
−1

q−1 has order q − 1 if q 6= 3, 7, ε = 1 if q = 3, and ε3 = 1 6= ε if
q = 7.

Now let

x =















−1 0 0 γε−1 0 γ
0 −1 0 βε−1 0 β
0 0 0 αε−1 −1 δ
0 0 0 0 0 ε
0 0 −1 δε−1 0 α
0 0 0 ε−1 0 0















, y =















0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0















.

Then x and y are elements of G of orders 2 and 3, respectively. Denote

z = xy =















0 0 −1 0 γ γε−1

−1 0 0 0 β βε−1

0 0 0 −1 δ αε−1

0 0 0 0 ε 0
0 −1 0 0 α δε−1

0 0 0 0 0 ε−1















.

Then the characteristic polynomial of z is fz(t) = (t−ε−1)f(t) and the character-
istic roots ε−1, ω, ωq, ωq2

, ωq3

, ωq4

of z are pairwise distinct. Then, in GL6(q
5),

z is conjugate to diag(ε−1, ω, ωq, ωq2

, ωq3

, ωq4

) and hence z is an element of
G of order Q.

Let H = 〈x, y〉, H ≤ G.

Lemma 2. The group H acts irreducibly on the space V .

P r o o f. Assume that W is an H-invariant subspace of V and k = dimW ,
1 ≤ k ≤ 5.
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Let first k = 1 and 0 6= w ∈ W . Then y(w) = λw where λ ∈ F and
λ3 = 1. This yields

w = µ1(e1 + λ2e2 + λe3) + µ2(e4 + λ2e5 + λe6) (µ1, µ2 ∈ F ).

Now x(w) = νw where ν = ±1. This yields consecutively µ2 6= 0, λ = νε−1,
µ1 = µ2(α + νδ − ε−1), and

(1) (ν + 1)(α + νδ − βε − ε−1) = 0,

(2) (ν + 1)(α + νδ − γε−1 − ε−1) = 0.

In particular, we have ε3 = ν and ε6 = 1. This is impossible if q = 5 or
q > 7 since then ε has order q − 1. Thus q = 3 (and ε = 1) or q = 7 (and
ε3 = 1 6= ε). So ν = 1 and (1), (2) produce γ = βε2 and δ = −α + βε + ε2. Then
f(−1) = −(β + 1)(ε2 + ε + 1) = 0 both for q = 3 and q = 7, hence ω = −1, an
impossibility.

Now let 2 ≤ k ≤ 5. Then the characteristic polynomial of z|W has degree
k and must divide fz(t) = (t− ε−1)f(t). The irreducibility of f(t) over F implies
that this polynomial is f(t) and k = 5. Now the subspace U = 〈e1, e2, e3, e4, e5〉
of V is 〈z〉-invariant. If W 6= U then U ∩ W is 〈z〉-invariant and dim(U ∩ W ) =
4 which is impossible. Thus W = U but obviously U is not 〈y〉-invariant, a
contradiction.

The lemma is proved. (Note that the assertion is false for q = 2 or 4.) �

Now, in G, the elements x and y have orders 2 and 3, respectively, and (as
easily seen by the above-mentioned diagonal matrix) z = x ·y has order Q/(d,Q).
So the group H = 〈x, y〉 has an element of order Q/(d,Q) and H is irreducible
on P (V ) as H is irreducible on V by Lemma 2. Then Lemma 1 implies that H
cannot be contained in any maximal subgroup of G. Thus H = G and G = 〈x, y〉
is a (2, 3)-generated group.

2.2. Let now q = 2 or 4. We keep the above element y ∈ G of order three
but this time choose the involution x ∈ G to be

x =















1 0 0 0 0 0
1 1 0 η 0 η2

0 0 0 η 1 η2

0 0 0 0 0 η
0 0 1 η 0 η2

0 0 0 η2 0 0















,
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where η is a generator of F ∗. Now

z = xy =















0 0 1 0 0 0
1 0 1 0 η2 η
0 0 0 1 η2 η
0 0 0 0 η 0
0 1 0 0 η2 η
0 0 0 0 0 η2















.

As in the proof of Lemma 2, one verifies that the group H = 〈x, y〉
acts irreducibly on the space V . Indeed, assume first that W = 〈w〉 is a one-
dimensional H-invariant subspace of V . Then y(w) = λw (λ ∈ F, λ3 = 1) yields
again w = µ1(e1 +λ2e2 +λe3)+µ2(e4 +λ2e5 +λe6) (µ1, µ2 ∈ F ). Now x(w) = w
implies consecutively µ2 6= 0, λ = η−1, µ1 = 0, and η = 0, an impossibility.
And if W is an H-invariant subspace with 2 ≤ dimW ≤ 5 then one reaches a
contradiction just as in the proof of Lemma 2.

The characteristic polynomial of z is fz(t) = (t+η2)g(t) where g(t) = t5+
η2t4+η2t3+η2t2+(η2+η)t+η. If q = 2 then the polynomial g(t) = t5+t4+t3+t2+1
is irreducible over F and hence its roots have order 25 −1 in GF (25)∗. Let q = 4,
then g(t) = t5+η2t4+η2t3+η2t2+t+η, and set g(t) = t5+ηt4+ηt3+ηt2+t+η2.
Now the polynomial h(t) = g(t)g(t) = t10 + t9 + t7 + t6 + t4 + t + 1 is irreducible
over GF (2) and its roots have order 210 − 1 in GF (210)∗ (see [6], Table C). It
follows that both for q = 2 and q = 4 the element z has order q5 − 1 = Q.

Now, in G, the elements x, y, and z have orders 2, 3, and Q/d, respec-
tively. So the group H = 〈x, y〉 has an element of order Q/d and H is irreducible
on P (V ). Again Lemma 1 implies that H = G and G = 〈x, y〉 is a (2, 3)-generated
group.

This completes the proof of the theorem. �
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