


Serdica Math. J. 38 (2012), 259–272

ASYMPTOTIC BEHAVIOUR OF FUNCTIONAL
IDENTITIES∗

A. S. Gordienko

Communicated by P. Koshlukov

Abstract. We calculate the asymptotics of functional codimensions fcn(A)
and generalized functional codimensions gfc

n
(A) of an arbitrary not neces-

sarily associative algebra A over a field F of any characteristic. Namely,
fcn(A) ∼ gfc

n
(A) ∼ dim(A2) · (dimA)n as n→ ∞ for any finite-dimensional

algebra A. In particular, codimensions of functional and generalized func-
tional identities satisfy the analogs of Amitsur’s and Regev’s conjectures.
Also we precisely evaluate fcn(UT2(F )) = gfc

n
(UT2(F )) = 3n+1 − 2n+1.
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tities. This direction is concerned with the study of numeric characteristics of
polynomial identities.

2010 Mathematics Subject Classification: Primary 16R60, Secondary 16R10, 15A03, 15A69.
Key words: Functional identity, generalized functional identity, codimension, growth, alge-

bra, Amitsur’s conjecture, Regev’s conjecture.
*Supported by post doctoral fellowship from Atlantic Association for Research in Mathemat-

ical Sciences (AARMS), Atlantic Algebra Centre (AAC), Memorial University of Newfoundland
(MUN), and Natural Sciences and Engineering Research Council of Canada (NSERC).



260 A. S. Gordienko

Let F be a field, F 〈X〉 be the free associative algebra on the countable
set

X = {x1, x2, x3, . . .},

i.e. F 〈X〉 is the algebra of all polynomials in the non-commuting variables from
X without a constant term. Let A be an associative F -algebra. We say that
f(x1, . . . , xn) ∈ F 〈X〉 is a polynomial identity of A if f(a1, . . . , an) = 0 for all
a1, . . . , an ∈ A. The set Id(A) of polynomial identities of A is a two-sided ideal
of F 〈X〉. We say that A is a p.i. algebra if Id(A) 6= 0. Denote by Pn ⊂ F 〈X〉
the subspace of multilinear polynomials in x1, x2, . . . , xn, n ∈ N. The number
cn(A) := dim Pn

Pn∩Id(A) is called the nth codimension of ordinary polynomial iden-
tities of A.

Conjecture (S.A. Amitsur). Let A be a p.i. algebra over a field of
characteristic 0, then there exists PIexp(A) := lim

n→∞

n
√

cn(A) ∈ Z+.

Conjecture (A. Regev). Let A be a p.i. algebra over a field of charac-
teristic 0, then there exists C > 0, r ∈ Z, d ∈ Z+ such that cn(A) ∼ Cn

r
2 dn as

n→ ∞. (We write f ∼ g if lim f
g

= 1.)

Amitsur’s conjecture for ordinary codimensions of associative algebras
was proved by A. Giambruno and M. V. Zaicev [9, Theorem 6.5.2] in 1999. In
2002 M. V. Zaicev proved its analog for finite dimensional Lie algebras [12] and in
2011 A. Giambruno, I. P. Shestakov, and M. V. Zaicev proved its analog for finite
dimensional Jordan and alternative algebras [8]. Regev’s conjecture was proved
by A. Berele and A. Regev in 2008 for all unitary associative algebras [5, 4].
The analogues of Amitsur’s and Regev’s conjectures for generalized polynomial
identities of associative algebras was proved by the author [11] in 2009.

In 1995 M. Brešar [6] introduced functional identities. Functional and gen-
eralized functional identities were used by Yu.A. Bahturin, M. Brešar, K. I. Bei-
dar, M.A. Chebotar, M. V. Kotchetov, W. S. Martindale, A. V. Mikhalev, and
others [3, 7, 1, 2] to solve a number of open problems in the ring theory. There-
fore, a natural question arises as to whether the analogs of Amitsur’s and Regev’s
conjectures hold for codimensions of functional identities fcn(A) and codimensions
of generalized functional identities gfcn(A).

In [10] the author proved the analog of Amitsur’s conjecture. In the case
when a finite dimensional algebra A satisfies the property A2 = AaA+Aa+ aA
for some a ∈ A the analog of Regev’s conjecture was proved too [10]. Here
A2 := 〈ab | a, b ∈ A〉F .
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In this paper we provide a criterion for an algebra to satisfy the analogs
of Amitsur’s and Regev’s conjectures (Theorem 1). It turns out that for every
finite dimensional algebra A we have

lim
n→∞

n
√

fcn(A) = lim
n→∞

n
√

gfcn(A) = dimA.

Note that in the case of ordinary polynomial identities we have much more com-
plicated formulas for PIexp(A) (see [9, Section 6.2] and [12, Definition 2]).

In addition, functional and generalized functional codimensions of the
algebra UT2(F ) (Theorem 2) are precisely calculated. Moreover, in Theorem 3 we
obtain that fcn(Mk(F )) < gfcn(Mk(F )) = k2(n+1), i.e. functional and generalized
functional codimensions do not always coincide. Here UT2(F ) and Mk(F ) are
the associative algebras of, respectively, upper triangular matrices 2 × 2 and all
matrices k × k.

1. (Generalized) functional polynomial identities and their
codimensions. Now let A be a not necessarily finite dimensional algebra over
a field F of arbitrary characteristic.

We call an expression

n
∑

i=1

(Gi(x1, . . . , xi−1, xi+1, . . . , xn)xi + xiHi(x1, . . . , xi−1, xi+1, . . . , xn))

a multilinear functional polynomial of degree n with coefficients in A. Here
Gi,Hi : A

⊗(n−1) → A are arbitrary F -linear maps, n > 2. Expressions cx + xd,
where c, d ∈ A, we call linear functional polynomials of degree 1.

Denote the vector space of multilinear functional polynomials of degree n
by FPn(A).

Let f ∈ FPn(A). If f(p1, . . . , pn) = 0 for p1, . . . , pn ∈ A, then f is a func-
tional identity of A. Clearly, the set FIdn(A) of multilinear functional identities
of degree n ∈ N is a linear subspace of FPn(A). The codimensions fcn(A) :=

dim
FPn(A)

FIdn(A)
of functional identities are called functional codimensions of A.

Example 1. Let A be an algebra with a center Z. Let H : A → Z be a
linear map. Then H(x)y − yH(x) ∈ FId2(A).
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Analogously

n
∑

i=1

ℓ
∑

k=1

(Gik(x1, . . . , xi−1, xi+1, . . . , xn)xiaik

+bikxiHik(x1, . . . , xi−1, xi+1, . . . , xn))

is a multilinear generalized functional polynomial of degree n with coefficients
in A. Here Gik,Hik : A⊗(n−1) → A are arbitrary F -linear maps, aik, bik ∈ A∪{1},
n > 2, ℓ ∈ N. An arbitrary arrangement of brackets is fixed on each monomial.

Linear generalized functional polynomials of degree 1 are expressions
ℓ

∑

k=1

akxbk +

cx+ xd where ak, bk, c, d ∈ A, ℓ ∈ N. Denote the space of multilinear generalized
functional polynomials of degree n by GFPn(A). Let f ∈ GFPn(A). Then f is
generalized functional identity of A if f(p1, . . . , pn) = 0 for all p1, . . . , pn ∈ A.
The set GFIdn(A) of multilinear generalized functional identities of degree n ∈ N

is a linear subspace of GFPn(A). Codimensions gfcn(A) := dim
GFPn(A)

GFIdn(A)
of

generalized functional identities are called generalized functional codimensions
of A.

Example 2. Let A be the Grassmann (or exterior) algebra with gen-
erators ei, i ∈ N, H : A → (Fe1) be a linear map. Then H(x)ye1 ∈ GFId2(A).

Now we can formulate the analogs of Amitsur’s and Regev’s conjectures
for functional and generalized functional identities. It turns out that in our case
the conjectures can be refined and strengthened.

Conjecture (analog of Amitsur’s conjecture). There exist

lim
n→∞

n
√

fcn(A) = lim
n→∞

n
√

gfcn(A) = dimA.

Conjecture (analog of Regev’s conjecture).

fcn(A) ∼ gfcn(A) ∼ dim
(

A2
)

· (dimA)n as n→ ∞.

2. Main theorem. The following theorem is the main result of the
paper.
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Theorem 1. Let A be a not necessary associative algebra over a field F
of an arbitrary characteristic.

(1) If A2 = 0, then fcn(A) = gfcn(A) = 0 for all n ∈ N.

(2) If A2 6= 0 and dimA = +∞, then fcn(A) = gfcn(A) = +∞ for all n > 2.

(3) If A2 6= 0 and dimA < +∞, then fcn(A) ∼ gfcn(A) ∼ dim
(

A2
)

· (dimA)n

as n→ ∞.

Corollary. The analogs of Amitsur’s and Regev’s conjectures hold for
codimensions of functional and generalized functional identities.

Corollary. If A contains 1, then fcn(A) ∼ gfcn(A) ∼ (dimA)n+1 as
n→ ∞.

Remark. We can construct an infinite dimensional algebra B, B2 6= 0,
with fc1(B) = gfc1(B) < +∞. Consider the algebra B with the basis b, a1, a2, . . . ,
an, . . . and the relations aiaj = b, aib = bai = b2 = 0 for all i, j ∈ N. Then the fac-

tor spaces
FP1(B)

FId1(B)
and

GFP1(B)

GFId1(B)
equal the linear span of the image of xa1 since

xai − xaj ∈ FId1(B), xai − aix ∈ FId1(B), bx, xb ∈ FId1(B), aixaj ∈ GFId1(B).
Therefore, fc1(B) = gfc1(B) = 1. At the same time for the countably generated
free algebra F 〈Y 〉, Y = {y1, y2, y3, . . .}, we have fc1

(

F 〈Y 〉
)

= gfc1

(

F 〈Y 〉
)

= +∞,
since the functional polynomials xyi are linearly independent modulo functional
identities. (In order to check this it is sufficient to substitute x = y1.)

We first introduce the notation and prove several auxiliary lemmas used
in the proof of Theorem 1.

Let HomF (A⊗n;A2) be the space of all n-linear maps from A to A2. Then
we can treat functional and generalized functional polynomials as n-linear maps
from A to A2. The kernel of the corresponding map FPn(A) → HomF (A⊗n;A2)
equals FIdn(A) and the kernel of the corresponding map GFPn(A) → HomF (A⊗n;
A2) equals GFIdn(A). Moreover, all the n-linear maps from A to A2 that can
be defined by functional polynomials, can be defined by generalized functional
polynomials too. Thus we have natural embeddings

FPn(A)

FIdn(A)
→֒

GFPn(A)

GFIdn(A)
→֒ HomF (A⊗n;A2),

which after the identifications become

FPn(A)

FIdn(A)
⊆

GFPn(A)

GFIdn(A)
⊆ HomF (A⊗n;A2).
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Hence

(1) fcn(A) 6 gfcn(A) 6 dim HomF (A⊗n;A2) = dim
(

A2
)

· (dimA)n.

Lemma 1 (see below) and formula (1) imply that for every finite dimen-
sional algebra A there exist lim

n→∞

n
√

fcn(A) = lim
n→∞

n
√

gfcn(A) = dimA. Therefore

the analog of Amitsur’s conjecture holds for functional and generalized functional
codimensions.

Lemma 1. Let A2 6= 0. Then dimA < +∞ implies

(dimA)n−1
6 fcn(A) 6 gfcn(A).

If dimA = +∞, then fcn(A) = gfcn(A) = +∞ for all n > 2.

P r o o f. There exist a, b ∈ A, that ab 6= 0 since A2 6= 0. Let ej ∈ A,
1 6 j 6 m, m ∈ N, be linear independent elements. Let Λ be the set of (n − 1)-
tuples k = (k1, . . . , kn−1), where 1 6 kℓ 6 m, 1 6 ℓ 6 n − 1. For every k ∈ Λ we
define a multilinear map Gk such that

Gk(ei1 , . . . , ein−1) :=

{

a if iℓ = kℓ for all ℓ,

0 otherwise.

Then functional polynomials fk := Gk(x1, x2, . . . , xn−1)xn, k ∈ Λ, are linearly
independent modulo functional identities. Indeed, suppose

∑

k∈Λ

αkfk ≡ 0 for

some αk ∈ F . We fix some t = (t1, . . . , tn−1) ∈ Λ and substitute x1 = et1 ,
. . . , xn−1 = etn−1 , xn = b. Then we obtain that all fk, except ft, vanish.
Thus αt = 0. Hence fcn(A) > |Λ| = mn−1. Therefore, dimA < +∞ im-
plies fcn(A) > (dimA)n−1. If dimA = +∞, then fcn(A) = +∞. The assertion
concerning gfcn(A) now follows from (1). �

If A2 = 0, then every (generalized) functional polynomial is an identity
since the polynomial involves the multiplication. Hence fcn(A) = gfcn(A) = 0
for all n ∈ N. This remark and Lemma 1 make the study of the cases A2 =
0 and dimA = +∞ complete. Without lost of generality we assume further
that dimA < +∞ and A2 6= 0.

Denote Ln := HomF (A⊗n;A2) andWn :=
FPn(A)

FIdn(A)
. Fix a basis a1, . . . , am

in A. Then we can choose a basis w1, . . . , wt in A2 consisting of some ele-
ments asak. Let A∗ be the space of linear functions on A and let ϕ1, . . . , ϕm be
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the dual to a1, . . . , am basis in A∗, i.e. ϕs(ak) = δs
k. Then

Bn = {ϕi1(x1) . . . ϕ
in(xn)wj | 1 6 is 6 m, 1 6 s 6 n, 1 6 j 6 t}

is a natural basis in Ln. We also use the notation

ϕi1(x1) . . . ϕ
in(xn)wj =: ϕi1 ⊗ . . . ⊗ ϕin ⊗ wj =: ϕi(xn)wj .

We introduce the order ≺ as the lexicographic order on (n+ 1)-tuples (i1, i2, . . . ,
in, j). Let H ∈ Ln. Then ltH := v where v ∈ Bn such that H = αvv +

∑

u≺v, u∈Bn

αuu, αu ∈ F , αv 6= 0. If S ⊆ Ln is a subset, then ltS := {ltH | H ∈ S}.

Also we define the function ̃ : Bn → N by ̃
(

ϕi(xn)wj

)

= j.

Lemma 2. For any 1 6 j 6 t = dim
(

A2
)

there exist n(j) ∈ N and
a map Hj ∈ Wn(j) such that imHj = 〈wj〉F . (Here im denotes the image of a
linear map.)

P r o o f. We do not use the ordering on the elements wi in this lemma.
Hence without lost of generality we may assume that j = t. The basis (wi) of
the space A2 was chosen in such a way that there exist 1 6 s, k 6 m such that
wt = asak.

Consider the map H(0) ∈W1 defined by H(0)(x) := asx. Then

H(0)(x) = ϕk(x)wt +
∑

16ℓ6m,
ℓ 6=k

ϕℓ(x)uℓ, uℓ ∈ A2.

Rewriting uℓ as linear combinations of wr and grouping the terms with

the same wr, we obtain H(0) =
t

∑

r=1
ψr

(0) ⊗ wr, where ψr
(0) ∈ A∗, ψr

(0)(ak) = δr
t

for all 1 6 r 6 m. In other words, in the presentation of every ψr
(0) as a linear

combination of ϕℓ, the coefficient near ϕk equals 0 for r 6= t and 1 for r = t.

Now by induction on 1 6 γ 6 t − 1, we define the maps H(γ) ∈ Lβ(γ)

where β(γ) ∈ N, β(0) = 1. We claim that H(γ) =
t

∑

r=γ+1
ψr

(γ) ⊗ wr for some

ψr
(γ) ∈ (A∗)⊗β(γ), i.e.

imH(γ) ⊆ 〈wr | γ < r 6 t〉.
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If ψγ
(γ−1) 6= 0, then

H(γ)(x1, . . . , x2n) := H(γ−1)(x1, . . . , xn) · ψγ

(γ−1)
(xn+1, . . . , x2n)

− ψγ
(γ−1)(x1, . . . , xn) ·H(γ−1)(xn+1, . . . , x2n),

β(γ) = 2n where n = β(γ − 1).

If ψγ
(γ−1) = 0, then H(γ) := H(γ−1), β(γ) = β(γ − 1).

Clearly, H(γ) ∈ Wβ(γ) since each multiplication by a multilinear function
just changes the multilinear maps, and we again obtain multilinear functional
polynomials. Moreover,

ψr
(γ) = ψr

(γ−1) ⊗ ψγ
(γ−1) − ψγ

(γ−1) ⊗ ψr
(γ−1),

i.e. on the γth step the coefficient near wγ indeed cancels. In order to finish the
proof, it is sufficient to show that in each step ψt

(γ) 6= 0. Note that ϕk occurs in

the decomposition of ψr
(γ) only for r = t. Moreover, ϕk appears in each product

no more than once. Let χ be the greatest term of ψt
(γ−1) with ϕk, and let v be

the greatest term of ψγ

(γ−1)
, both in the lexicographic order. Then the greatest

term of ψt
(γ−1) ⊗ ψγ

(γ−1) − ψγ

(γ−1) ⊗ ψt
(γ−1) containing ϕk equals either χv or vχ.

But χv 6= vχ since ϕk occurs in the first product closer to the beginning, than
in the second one. Hence the greatest term containing ϕk cannot cancel, and we
may put Ht = H(t−1). �

Lemma 3. dimWn = | ltWn|.

P r o o f. We choose a basis Wn in Wn and rewrite the elements of Wn

as linear combinations of elements of Bn. Then we put the components of this
decomposition to the rows of a matrix. Note that for every H ∈ Wn, the first
nonzero element of the corresponding row occurs in the column that corresponds
to ltH. Now we apply the Gauss elimination process to the matrix. After
these transformations, the rows of the matrix contain the components of the
decomposition for the elements of some basis S of the space Wn. Note that
the matrix has the row echelon form. Thus ltS = ltWn since ltG1 6= ltG2 for
all G1, G2 ∈ S, G1 6= G2. Hence dimWn = |S| = | lt S| = | ltWn|. �

P r o o f o f Th e o r e m 1. The case dimA = +∞ has been considered in
Lemma 1. Thus we assume dimA < +∞.
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For every j we choose Hj ∈ Wn(j) form Lemma 2. We define hj :=
(i1, . . . , in(j)) by the formula

ltHj =: ϕi1(x1) . . . ϕ
in(j)(xn(j))wj .

Let N := max
16j6t

n(j). Fix n > N and 1 6 j 6 t := dim
(

A2
)

. Then

Hjn :=

{

ϕs1(x1) . . . ϕ
sℓn(j)(xℓn(j))Hj(xℓn(j)+1, . . . , x(ℓ+1)n(j))·

ϕs(ℓ+1)n(j)+1(x(ℓ+1)n(j)+1) . . . ϕ
sn(xn)

∣

∣

∣

∣

1 6 si 6 m, 0 6 ℓ <

[

n

n(j)

]}

⊆Wn\{0}.

Here we multiply the multilinear maps in Hj by the products of linear
functions. The number of the variables grows, but the expression is still a func-
tional polynomial.

Now we count the number of different leading terms ltH in such poly-
nomials H ∈ Hjn for fixed j and n. This allows us to get the lower bound

for qjn :=
∣

∣

∣
{v ∈ ltWn | ̃(v) = j}

∣

∣

∣
. We present the (n + 1)-tuple (i, j) cor-

responding to ϕi(xn)wj ∈ Bn, i ∈ N
n,as a tuple of smaller tuples: (i, j) =

(u1, . . . , us, us+1, j) where uk ∈ N
n(j) for 1 6 k 6 s :=

[

n
n(j)

]

, us+1 ∈ N
r,

r := n − n(j)s, 0 6 r < n(j). The tuples corresponding to the leading terms of
the functional polynomials H ∈ Hjn have uℓ = hj for at least one 1 6 ℓ 6 s.
The number of tuples (i, j) with uℓ 6= hj for all 1 6 ℓ 6 s, equals (mn(j) − 1)smr

where m = dimA. Since hj is fixed,

| ltHjn| = mn − (mn(j) − 1)s ·mr
> mn − (mn(j) − 1)

n
n(j)mn(j) ∼ mn as n→ ∞.

Furthermore,

qjn 6

∣

∣

∣
{v ∈ Bn | ̃(v) = j}

∣

∣

∣
= mn.

Together with qjn > | ltHjn|, this implies qjn ∼ mn = (dimA)n. Applying
Lemma 3, we have

(2) fcn(A) = dimWn =

t
∑

j=1

qjn ∼ dim
(

A2
)

· (dimA)n as n→ ∞.

The assertion, concerning the asymptotics of gfcn(A), follows from (1) and (2). �
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3. Functional codimensions of matrix algebras. In Theorem 1
we have calculated the asymptotics of functional and generalized functional codi-
mensions. In Theorem 2 we evaluate these codimensions for UT2(F ) precisely.
In Theorem 3 we show that functional and generalized functional codimensions
do not always coincide.

Theorem 2. Let F be any field. Then

(3) fcn(UT2(F )) = gfcn(UT2(F )) = 3n+1 − 2n+1 for all n ∈ N.

Theorem 3. Let F be any field, k > 2. Then

fcn(Mk(F )) < gfcn(Mk(F )) = k2(n+1)

for all n ∈ N.

Let eij be the matrix units of Mk(F ). Denote the basis of Mk(F )∗ dual
to (eij) by (ϕmℓ). In other words, ϕmℓ(eij) = δm

i δ
ℓ
j . We keep the same notation

in the case of UT2(F ).

P r o o f o f Th e o r e m 2. Consider the natural basis
(

ϕi1j1(x1) . . . ϕ
injn(xn)emℓ

)

of the space HomF (UT2(F )⊗n; UT2(F )). Note that

dimHomF (UT2(F )⊗n; UT2(F )) = (dim UT2(F ))n+1 = 3n+1

and the number of functions

ψ1(x1)ψ
2(x2) . . . ψ

n(xn)e11 where ψi ∈ {ϕ12, ϕ22},

and

µ1(x1)µ
2(x2) . . . µ

n(xn)e22 where µi ∈ {ϕ11, ϕ12},

equals 2n+1. We claim that any non-trivial combination H of these functions

does not belong to
GFPn(UT2(F ))

GFIdn(UT2(F ))
.

Indeed, if we substitute

x1 = x2 = . . . = xn = e12,
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the functions from
GFPn(UT2(F ))

GFIdn(UT2(F ))
take values in the ideal 〈e12〉. At the same

time, H(e12, . . . , e12) ∈ 〈e11, e22〉. Thus the coefficients inH near ϕ12(x1)ϕ
12(x2) . . .

ϕ12(xn)e11 and ϕ12(x1)ϕ
12(x2) . . . ϕ

12(xn)e22 equal zero.

If we substitute at least one e11 and maybe some e12, then the func-

tions from
GFPn(UT2(F ))

GFIdn(UT2(F ))
take values in the ideal 〈e11, e12〉. The image of

the same elements under H belongs to 〈e22〉. Thus the coefficients in H near
µ1(x1)µ

2(x2) . . . µ
n(xn)e22 where µi ∈ {ϕ11, ϕ12}, equal zero.

If we substitute at least one e22 and maybe some e12, then the func-

tions from
GFPn(UT2(F ))

GFIdn(UT2(F ))
take values in the ideal 〈e12, e22〉. The image of

the same elements under H belongs to 〈e11〉. Thus the coefficients in H near
ψ1(x1)ψ

2(x2) . . . ψ
n(xn)e11 where ψi ∈ {ϕ12, ϕ22}, equal zero.

In order to finish the proof, it sufficient to show that all the other basis

elements of HomF (UT2(F )⊗n; UT2(F )) belong to
FPn(UT2(F ))

FIdn(UT2(F ))
.

First, consider a map ψ1(x1) . . . ψ
n(xn)e12 where ψj ∈ {ϕ11, ϕ12, ϕ22}.

Depending on ψ1, it can be defined by one of the following three functional
polynomials:

ϕ11(x1)
(

ψ2(x2) . . . ψ
n(xn)

)

e12 = x1

(

ψ2(x2) . . . ψ
n(xn)e12

)

,

ϕ12(x1)
(

ψ2(x2) . . . ψ
n(xn)

)

e12

=
(

ψ2(x2) . . . ψ
n(xn)e11

)

x1 − x1

(

ψ2(x2) . . . ψ
n(xn)e11

)

,

ϕ22(x1)
(

ψ2(x2) . . . ψ
n(xn)

)

e12 =
(

ψ2(x2) . . . ψ
n(xn)e12

)

x1.

If ψj ∈ {ϕ11, ϕ12, ϕ22} for all 1 6 j 6 n but the inclusion ψi ∈ {ϕ12, ϕ22}
is false for at least one i, then we have ψi = ϕ11, and ψ1(x1) . . . ψ

n(xn)e11 can be
defined by

(

ψ1(x1) . . . ψ
i−1(xi−1)

)

ϕ11(xi)
(

ψi+1(xi+1) . . . ψ
n(xn)

)

e11

= xi

(

ψ1(x1) . . . ψ
i−1(xi−1)ψ

i+1(xi+1) . . . ψ
n(xn)e11

)

.
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If ψj ∈ {ϕ11, ϕ12, ϕ22} for all 1 6 j 6 n but the inclusion ψi ∈ {ϕ11, ϕ12}
is false for at least one i, then we have ψi = ϕ22, and ψ1(x1) . . . ψ

n(xn)e22 can be
defined by

(

ψ1(x1) . . . ψ
i−1(xi−1)

)

ϕ22(xi)
(

ψi+1(xi+1) . . . ψ
n(xn)

)

e22

=
(

ψ1(x1) . . . ψ
i−1(xi−1)ψ

i+1(xi+1) . . . ψ
n(xn)e22

)

xi.

Again, we have a functional polynomial in the right side of the equality. �

P r o o f o f T h e o r e m 3. Note that for every 1 6 ir, jr,m, ℓ 6 k the
expression

(emi1 x1 ej1i2 x2 ej2i3 x3 . . . ejn−1in)xn ejnℓ

can be considered as a generalized functional monomial since the multiplication
is multilinear. Its image in HomF (Mk(F )⊗n;Mk(F )) equals ϕi1j1(x1)ϕ

i2j2(x2) . . .
ϕinjn(xn)emℓ. In other words, we can obtain an arbitrary element of the natural
basis in HomF (Mk(F )⊗n;Mk(F )). Hence

GFPn(Mk(F ))

GFIdn(Mk(F ))
= HomF (Mk(F )⊗n;Mk(F ))

for all k, n ∈ N, i.e. gfcn(Mk(F )) = dim HomF (Mk(F )⊗n;Mk(F )) = k2(n+1).
However

ϕ11(x1)ϕ
11(x2) . . . ϕ

11(xn)e22 /∈
FPn(Mk(F ))

FIdn(Mk(F ))
.

Indeed, let H ∈ HomF (Mk(F )⊗(n−1);Mk(F )) be an arbitrary map. If we substi-
tute x1 = x2 = . . . = xn = e11, then the values of

H(x1, . . . , xi−1, xi+1, . . . , xn)xi

and

xiH(x1, . . . , xi−1, xi+1, . . . , xn)

belong to 〈e1j , ej1 | 1 6 j 6 k〉 6∋ e22, i.e. there is no linear combination of
functional polynomials that takes the value e22. Thus

FPn(Mk(F ))

FIdn(Mk(F ))
6= HomF (Mk(F )⊗n;Mk(F ))
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and

fcn(Mk(F )) < dim HomF (Mk(F )⊗n;Mk(F )) = gfcn(Mk(F )). 2

Acknowledgements. I am grateful to the referee for the useful re-
marks.
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