ASYMPTOTIC BEHAVIOUR OF FUNCTIONAL IDENTITIES∗

A. S. Gordienko

Communicated by P. Koshlukov

ABSTRACT. We calculate the asymptotics of functional codimensions $f_{cn}(A)$ and generalized functional codimensions $gfc_n(A)$ of an arbitrary not necessarily associative algebra A over a field F of any characteristic. Namely,

$$f_{cn}(A) \sim gfc_n(A) \sim \dim(A^2) \cdot (\dim A)^n$$

as $n \to \infty$ for any finite-dimensional algebra A. In particular, codimensions of functional and generalized functional identities satisfy the analogs of Amitsur’s and Regev’s conjectures. Also we precisely evaluate $f_{cn}(UT_2(F)) = gfc_n(UT_2(F)) = 3^{n+1} - 2^{n+1}$.

This article is dedicated to Professor Yuri Bahturin on the occasion of his 65th birthday.

In 1970–80s, a new direction appeared in the theory of polynomial identities. This direction is concerned with the study of numeric characteristics of polynomial identities.

2010 Mathematics Subject Classification: Primary 16R60, Secondary 16R10, 15A03, 15A69.

Key words: Functional identity, generalized functional identity, codimension, growth, algebra, Amitsur’s conjecture, Regev’s conjecture.

∗Supported by post doctoral fellowship from Atlantic Association for Research in Mathematical Sciences (AARMS), Atlantic Algebra Centre (AAC), Memorial University of Newfoundland (MUN), and Natural Sciences and Engineering Research Council of Canada (NSERC).
Let F be a field, $F\langle X \rangle$ be the free associative algebra on the countable set

$$X = \{x_1, x_2, x_3, \ldots\},$$

i.e. $F\langle X \rangle$ is the algebra of all polynomials in the non-commuting variables from X without a constant term. Let A be an associative F-algebra. We say that $f(x_1, \ldots, x_n) \in F\langle X \rangle$ is a polynomial identity of A if $f(a_1, \ldots, a_n) = 0$ for all $a_1, \ldots, a_n \in A$. The set $\text{Id}(A)$ of polynomial identities of A is a two-sided ideal of $F\langle X \rangle$. We say that A is a p.i. algebra if $\text{Id}(A) \neq 0$. Denote by $P_n \subset F\langle X \rangle$ the subspace of multilinear polynomials in x_1, x_2, \ldots, x_n, $n \in \mathbb{N}$. The number $c_n(A) := \dim_{\mathbb{F}} P_n \cap \text{Id}(A)$ is called the nth codimension of ordinary polynomial identities of A.

Conjecture (S.A. Amitsur). Let A be a p.i. algebra over a field of characteristic 0, then there exists $\text{Pl}(A) := \lim_{n \to \infty} \sqrt[n]{c_n(A)} \in \mathbb{Z}_+$.

Conjecture (A. Regev). Let A be a p.i. algebra over a field of characteristic 0, then there exists $C > 0$, $r \in \mathbb{Z}$, $d \in \mathbb{Z}_+$ such that $c_n(A) \sim Cn^{r/2}d^n$ as $n \to \infty$. (We write $f \sim g$ if $\lim_{n \to \infty} \frac{f}{g} = 1$.)

In 1995 M. Brešar [6] introduced functional identities. Functional and generalized functional identities were used by Yu.A. Bahturin, M. Brešar, K.I. Beidar, M.A. Chebotar, M.V. Kotchetov, W.S. Martindale, A.V. Mikhalev, and others [3, 7, 1, 2] to solve a number of open problems in the ring theory. Therefore, a natural question arises as to whether the analogs of Amitsur’s and Regev’s conjectures hold for codimensions of functional identities $\text{fc}_n(A)$ and codimensions of generalized functional identities $\text{gfc}_n(A)$.

In [10] the author proved the analog of Amitsur’s conjecture. In the case when a finite dimensional algebra A satisfies the property $A^2 = AaA + Aa + aA$ for some $a \in A$ the analog of Regev’s conjecture was proved too [10]. Here $A^2 := \langle ab \mid a, b \in A \rangle_F$.

In this paper we provide a criterion for an algebra to satisfy the analogs of Amitsur’s and Regev’s conjectures (Theorem 1). It turns out that for every finite dimensional algebra \(A \) we have

\[
\lim_{n \to \infty} \sqrt[n]{\text{fc}_n(A)} = \lim_{n \to \infty} \sqrt[n]{\text{gfc}_n(A)} = \dim A.
\]

Note that in the case of ordinary polynomial identities we have much more complicated formulas for \(\text{PIexp}(A) \) (see [9, Section 6.2] and [12, Definition 2]).

In addition, functional and generalized functional codimensions of the algebra \(\text{UT}_2(F) \) (Theorem 2) are precisely calculated. Moreover, in Theorem 3 we obtain that \(\text{fc}_n(M_k(F)) < \text{gfc}_n(M_k(F)) = k^{2(n+1)} \), i.e. functional and generalized functional codimensions do not always coincide. Here \(\text{UT}_2(F) \) and \(M_k(F) \) are the associative algebras of, respectively, upper triangular matrices \(2 \times 2 \) and all matrices \(k \times k \).

1. (Generalized) functional polynomial identities and their codimensions. Now let \(A \) be a not necessarily finite dimensional algebra over a field \(F \) of arbitrary characteristic.

We call an expression

\[
\sum_{i=1}^{n} (G_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)x_i + x_iH_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n))
\]

a multilinear functional polynomial of degree \(n \) with coefficients in \(A \). Here \(G_i, H_i : A^{\otimes(n-1)} \to A \) are arbitrary \(F \)-linear maps, \(n \geq 2 \). Expressions \(cx + xd \), where \(c, d \in A \), we call linear functional polynomials of degree 1.

Denote the vector space of multilinear functional polynomials of degree \(n \) by \(\text{FP}_n(A) \).

Let \(f \in \text{FP}_n(A) \). If \(f(p_1, \ldots, p_n) = 0 \) for \(p_1, \ldots, p_n \in A \), then \(f \) is a functional identity of \(A \). Clearly, the set \(\text{FId}_n(A) \) of multilinear functional identities of degree \(n \in \mathbb{N} \) is a linear subspace of \(\text{FP}_n(A) \). The codimensions \(\text{fc}_n(A) := \frac{\dim \text{FP}_n(A)}{\dim \text{FId}_n(A)} \) of functional identities are called functional codimensions of \(A \).

Example 1. Let \(A \) be an algebra with a center \(Z \). Let \(H : A \to Z \) be a linear map. Then \(H(x)y - yH(x) \in \text{FId}_2(A) \).
Analogously

\[\sum_{i=1}^{n} \sum_{k=1}^{\ell} \left(G_{ik}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)x_ia_{ik} \right. \left. + b_{ik}x_iH_{ik}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \right) \]

is a multilinear generalized functional polynomial of degree \(n \) with coefficients in \(A \). Here \(G_{ik}, H_{ik}: A^{\otimes(n-1)} \to A \) are arbitrary \(F \)-linear maps, \(a_{ik}, b_{ik} \in A \cup \{1\} \), \(n \geq 2, \ell \in \mathbb{N} \). An arbitrary arrangement of brackets is fixed on each monomial.

Linear generalized functional polynomials of degree 1 are expressions \(\sum_{k=1}^{\ell} a_kxb_k + cx + xd \) where \(a_k, b_k, c, d \in A, \ell \in \mathbb{N} \). Denote the space of multilinear generalized functional polynomials of degree \(n \) by \(\text{GFP}_n(A) \). Let \(f \in \text{GFP}_n(A) \). Then \(f \) is generalized functional identity of \(A \) if \(f(p_1, \ldots, p_n) = 0 \) for all \(p_1, \ldots, p_n \in A \).

The set \(\text{GFId}_n(A) \) of multilinear generalized functional identities of degree \(n \in \mathbb{N} \) is a linear subspace of \(\text{GFP}_n(A) \). Codimensions \(\text{gfc}_n(A) := \dim \frac{\text{GFP}_n(A)}{\text{GFId}_n(A)} \) of generalized functional identities are called generalized functional codimensions of \(A \).

Example 2. Let \(A \) be the Grassmann (or exterior) algebra with generators \(e_i, i \in \mathbb{N} \), \(H: A \to (Fe_1) \) be a linear map. Then \(H(x)ye_1 \in \text{GFId}_2(A) \).

Now we can formulate the analogs of Amitsur’s and Regev’s conjectures for functional and generalized functional identities. It turns out that in our case the conjectures can be refined and strengthened.

Conjecture (analog of Amitsur’s conjecture). There exist

\[\lim_{n \to \infty} \frac{n}{\sqrt[n]{\text{fc}_n(A)}} = \lim_{n \to \infty} \frac{n}{\sqrt[n]{\text{gfc}_n(A)}} = \dim A. \]

Conjecture (analog of Regev’s conjecture).

\(\text{fc}_n(A) \sim \text{gfc}_n(A) \sim \dim \left(A^2 \right) \cdot (\dim A)^n \) as \(n \to \infty \).

2. **Main theorem.** The following theorem is the main result of the paper.
Theorem 1. Let A be a not necessary associative algebra over a field F of an arbitrary characteristic.

1. If $A^2 = 0$, then $\text{fc}_n(A) = \text{gfc}_n(A) = 0$ for all $n \in \mathbb{N}$.
2. If $A^2 \neq 0$ and $\dim A = +\infty$, then $\text{fc}_n(A) = \text{gfc}_n(A) = +\infty$ for all $n \geq 2$.
3. If $A^2 \neq 0$ and $\dim A < +\infty$, then $\text{fc}_n(A) \sim \text{gfc}_n(A) \sim \dim (A^2) \cdot (\dim A)^n$ as $n \to \infty$.

Corollary. The analogs of Amitsur’s and Regev’s conjectures hold for codimensions of functional and generalized functional identities.

Corollary. If A contains 1, then $\text{fc}_n(A) \sim \text{gfc}_n(A) \sim (\dim A)^{n+1}$ as $n \to \infty$.

Remark. We can construct an infinite dimensional algebra B, $B^2 \neq 0$, with $\text{fc}_1(B) = \text{gfc}_1(B) < +\infty$. Consider the algebra B with the basis $b, a_1, a_2, \ldots, a_n, \ldots$ and the relations $a_i a_j = b, a_i b = ba_i = b^2 = 0$ for all $i, j \in \mathbb{N}$. Then the factor spaces $\frac{\text{FP}_1(B)}{\text{FId}_1(B)}$ and $\frac{\text{GFP}_1(B)}{\text{GFId}_1(B)}$ equal the linear span of the image of xa_i since $xa_i - xa_j \in \text{FId}_1(B), xa_i - a_i x \in \text{FId}_1(B), bx, xb \in \text{FId}_1(B), a_i xa_j \in \text{GFId}_1(B)$. Therefore, $\text{fc}_1(B) = \text{gfc}_1(B) = 1$. At the same time for the countably generated free algebra $F(Y)$, $Y = \{y_1, y_2, y_3, \ldots\}$, we have $\text{fc}_1(F(Y)) = \text{gfc}_1(F(Y)) = +\infty$, since the functional polynomials xy_i are linearly independent modulo functional identities. (In order to check this it is sufficient to substitute $x = y_1$.)

We first introduce the notation and prove several auxiliary lemmas used in the proof of Theorem 1.

Let $\text{Hom}_F(A^\otimes n; A^2)$ be the space of all n-linear maps from A to A^2. Then we can treat functional and generalized functional polynomials as n-linear maps from A to A^2. The kernel of the corresponding map $\text{FP}_n(A) \to \text{Hom}_F(A^\otimes n; A^2)$ equals $\text{FId}_n(A)$ and the kernel of the corresponding map $\text{GFP}_n(A) \to \text{Hom}_F(A^\otimes n; A^2)$ equals $\text{GFId}_n(A)$. Moreover, all the n-linear maps from A to A^2 that can be defined by functional polynomials, can be defined by generalized functional polynomials too. Thus we have natural embeddings

$$\frac{\text{FP}_n(A)}{\text{FId}_n(A)} \hookrightarrow \frac{\text{GFP}_n(A)}{\text{GFId}_n(A)} \hookrightarrow \text{Hom}_F(A^\otimes n; A^2),$$

which after the identifications become

$$\frac{\text{FP}_n(A)}{\text{FId}_n(A)} \subseteq \frac{\text{GFP}_n(A)}{\text{GFId}_n(A)} \subseteq \text{Hom}_F(A^\otimes n; A^2).$$
Hence

\[(1) \quad fc_n(A) \leq gfc_n(A) \leq \dim \text{Hom}_F(A^\otimes n; A^2) = \dim (A^2) \cdot (\dim A)^n.\]

Lemma 1 (see below) and formula (1) imply that for every finite dimensional algebra A there exist $\lim_{n \to \infty} \sqrt[n]{fc_n(A)} = \lim_{n \to \infty} \sqrt[n]{gfc_n(A)} = \dim A$. Therefore the analog of Amitsur’s conjecture holds for functional and generalized functional codimensions.

Lemma 1. Let $A^2 \neq 0$. Then $\dim A < +\infty$ implies

\[(\dim A)^{n-1} \leq fc_n(A) \leq gfc_n(A).\]

If $\dim A = +\infty$, then $fc_n(A) = gfc_n(A) = +\infty$ for all $n \geq 2$.

Proof. There exist $a, b \in A$, that $ab \neq 0$ since $A^2 \neq 0$. Let $e_j \in A$, $1 \leq j \leq m$, $m \in \mathbb{N}$, be linear independent elements. Let Λ be the set of $(n-1)$-tuples $k = (k_1, \ldots, k_{n-1})$, where $1 \leq k_\ell \leq m$, $1 \leq \ell \leq n-1$. For every $k \in \Lambda$ we define a multilinear map G_k such that

\[G_k(e_{i_1}, \ldots, e_{i_{n-1}}) := \begin{cases} a & \text{if } i_\ell = k_\ell \text{ for all } \ell, \\ 0 & \text{otherwise.} \end{cases}\]

Then functional polynomials $f_k := G_k(x_1, x_2, \ldots, x_{n-1})x_n$, $k \in \Lambda$, are linearly independent modulo functional identities. Indeed, suppose $\sum_{k \in \Lambda} \alpha_k f_k \equiv 0$ for some $\alpha_k \in F$. We fix some $t = (t_1, \ldots, t_{n-1}) \in \Lambda$ and substitute $x_1 = e_{t_1}$, \ldots, $x_{n-1} = e_{t_{n-1}}$, $x_n = b$. Then we obtain that all f_k, except f_t, vanish. Thus $\alpha_t = 0$. Hence $fc_n(A) \geq |\Lambda| = m^{n-1}$. Therefore, $\dim A < +\infty$ implies $fc_n(A) \geq (\dim A)^{n-1}$. If $\dim A = +\infty$, then $fc_n(A) = +\infty$. The assertion concerning $gfc_n(A)$ now follows from (1). \(\square\)

If $A^2 = 0$, then every (generalized) functional polynomial is an identity since the polynomial involves the multiplication. Hence $fc_n(A) = gfc_n(A) = 0$ for all $n \in \mathbb{N}$. This remark and Lemma 1 make the study of the cases $A^2 = 0$ and $\dim A = +\infty$ complete. Without lost of generality we assume further that $\dim A < +\infty$ and $A^2 \neq 0$.

Denote $L_n := \text{Hom}_F(A^\otimes n; A^2)$ and $W_n := \frac{\text{FP}_n(A)}{\text{FId}_n(A)}$. Fix a basis a_1, \ldots, a_m in A. Then we can choose a basis w_1, \ldots, w_l in A^2 consisting of some elements $a_\varphi a_k$. Let A^* be the space of linear functions on A and let $\varphi^1, \ldots, \varphi^m$ be...
the dual to \(a_1, \ldots, a_m\) basis in \(A^*\), i.e. \(\varphi^s(a_k) = \delta_k^s\). Then

\[B_n = \{ \varphi^{i_1}(x_1) \ldots \varphi^{i_n}(x_n) w_j \mid 1 \leq i_s \leq m, 1 \leq s \leq n, 1 \leq j \leq t \} \]

is a natural basis in \(L_n\). We also use the notation

\[\varphi^{i_1}(x_1) \ldots \varphi^{i_n}(x_n) w_j =: \varphi^{i_1} \otimes \ldots \otimes \varphi^{i_n} \otimes w_j =: \varphi^i(T_n) w_j. \]

We introduce the order \(\prec\) as the lexicographic order on \((n+1)\)-tuples \((i_1, i_2, \ldots, i_n, j)\). Let \(H \in L_n\). Then \(\text{lt} H := v\) where \(v \in B_n\) such that \(H = \alpha_v v + \sum_{u \prec v, u \in B_n} \alpha_u u, \alpha_u \in F, \alpha_v \neq 0\). If \(S \subseteq L_n\) is a subset, then \(\text{lt} S := \{ \text{lt} H \mid H \in S \}\).

Also we define the function \(\tilde{\varphi}: B_n \to \mathbb{N}\) by \(\tilde{\varphi}(\varphi^i(T_n) w_j) = j\).

Lemma 2. For any \(1 \leq j \leq t = \dim(A^2)\) there exist \(n(j) \in \mathbb{N}\) and a map \(H_j \in W_{n(j)}\) such that \(\text{im} H_j = \langle w_j \rangle_F\). (Here \(\text{im}\) denotes the image of a linear map.)

Proof. We do not use the ordering on the elements \(w_i\) in this lemma. Hence without lost of generality we may assume that \(j = t\). The basis \((w_i)\) of the space \(A^2\) was chosen in such a way that there exist \(1 \leq s, k \leq m\) such that \(w_t = a_s a_k\).

Consider the map \(H_{(0)} \in W_1\) defined by \(H_{(0)}(x) := a_s x\). Then

\[H_{(0)}(x) = \varphi^k(x) w_t + \sum_{1 \leq \ell \leq m, \ell \neq k} \varphi^\ell(x) u_\ell, \quad u_\ell \in A^2. \]

Rewriting \(u_\ell\) as linear combinations of \(w_r\) and grouping the terms with the same \(w_r\), we obtain \(H_{(0)} = \sum_{r=1}^t \psi^r(0) \otimes w_r\), where \(\psi^r(0) \in A^*, \psi^r(0)(a_k) = \delta_k^r\) for all \(1 \leq r \leq m\). In other words, in the presentation of every \(\psi^r(0)\) as a linear combination of \(\varphi^\ell\), the coefficient near \(\varphi^k\) equals 0 for \(r \neq t\) and 1 for \(r = t\).

Now by induction on \(1 \leq \gamma \leq t - 1\), we define the maps \(H_{(\gamma)} \in L_{\beta(\gamma)}\) where \(\beta(\gamma) \in \mathbb{N}, \beta(0) = 1\). We claim that \(H_{(\gamma)} = \sum_{r=\gamma+1}^t \psi^r_{(\gamma)} \otimes w_r\) for some \(\psi^r_{(\gamma)} \in (A^*)^{\otimes \beta(\gamma)}\), i.e.

\[\text{im} H_{(\gamma)} \subseteq \langle w_r \mid \gamma < r \leq t \rangle. \]
If $\psi_{(\gamma-1)}^\gamma \neq 0$, then

$$H_{(\gamma)}(x_1, \ldots, x_{2n}) := H_{(\gamma-1)}(x_1, \ldots, x_n) \cdot \psi_{(\gamma-1)}^\gamma (x_{n+1}, \ldots, x_{2n})$$

$$- \psi_{(\gamma-1)}^\gamma (x_1, \ldots, x_n) \cdot H_{(\gamma-1)}(x_{n+1}, \ldots, x_{2n}),$$

$\beta(\gamma) = 2n$ where $n = \beta(\gamma - 1)$.

If $\psi_{(\gamma-1)}^\gamma = 0$, then $H_{(\gamma)} := H_{(\gamma-1)}$, $\beta(\gamma) = \beta(\gamma - 1)$.

Clearly, $H_{(\gamma)} \in W_{\beta(\gamma)}$ since each multiplication by a multilinear function just changes the multilinear maps, and we again obtain multilinear functional polynomials. Moreover,

$$\psi_{(\gamma)}^r = \psi_{(\gamma-1)}^r \otimes \psi_{(\gamma-1)}^\gamma - \psi_{(\gamma-1)}^\gamma \otimes \psi_{(\gamma-1)}^r,$$

i.e. on the γth step the coefficient near w_{γ} indeed cancels. In order to finish the proof, it is sufficient to show that in each step $\psi_{(\gamma)}^r \neq 0$. Note that φ^k occurs in the decomposition of $\psi_{(\gamma)}^r$ only for $r = t$. Moreover, φ^k appears in each product no more than once. Let χ be the greatest term of $\psi_{(\gamma-1)}^t$ with φ^k, and let v be the greatest term of $\psi_{(\gamma-1)}^\gamma$, both in the lexicographic order. Then the greatest term of $\psi_{(\gamma-1)}^t \otimes \psi_{(\gamma-1)}^\gamma - \psi_{(\gamma-1)}^\gamma \otimes \psi_{(\gamma-1)}^t$ containing φ^k equals either χv or $v \chi$. But $\chi v \neq v \chi$ since φ^k occurs in the first product closer to the beginning, than in the second one. Hence the greatest term containing φ^k cannot cancel, and we may put $H_t = H_{(t-1)}$. \(\Box\)

Lemma 3. $\dim W_n = |\text{lt } W_n|$.

Proof. We choose a basis W_n in W_n and rewrite the elements of W_n as linear combinations of elements of B_n. Then we put the components of this decomposition to the rows of a matrix. Note that for every $H \in W_n$, the first nonzero element of the corresponding row occurs in the column that corresponds to $\text{lt } H$. Now we apply the Gauss elimination process to the matrix. After these transformations, the rows of the matrix contain the components of the decomposition for the elements of some basis S of the space W_n. Note that the matrix has the row echelon form. Thus $\text{lt } S = \text{lt } W_n$ since $\text{lt } G_1 \neq \text{lt } G_2$ for all $G_1, G_2 \in S, G_1 \neq G_2$. Hence $\dim W_n = |S| = |\text{lt } S| = |\text{lt } W_n|$. \(\Box\)

Proof of Theorem 1. The case $\dim A = +\infty$ has been considered in Lemma 1. Thus we assume $\dim A < +\infty$.

For every \(j \) we choose \(H_j \in W_{n(j)} \) form Lemma 2. We define \(h_j := (i_1, \ldots, i_{n(j)}) \) by the formula

\[
\text{lt } H_j =: \varphi^{i_1}(x_1) \cdots \varphi^{i_{n(j)}}(x_{n(j)}) w_j.
\]

Let \(N := \max_{1 \leq j \leq t} n(j) \). Fix \(n \geq N \) and \(1 \leq j \leq t := \dim (A^2) \). Then

\[
H_{jn} := \left\{ \varphi^{s_1}(x_1) \cdots \varphi^{s_{n(j)}}(x_{n(j)}) H_j(x_{\ell n(j)+1}, \ldots, x_{(\ell+1)n(j)}) : \right. \left. \sum_{1 \leq s_i \leq m, 0 \leq \ell < \left[\frac{n}{n(j)} \right]} \varphi^{s_1}(x_1) \cdots \varphi^{s_{n(j)}}(x_{n(j)}) \right\} \subseteq W_n \setminus \{0\}.
\]

Here we multiply the multilinear maps in \(H_j \) by the products of linear functions. The number of the variables grows, but the expression is still a functional polynomial.

Now we count the number of different leading terms \(\text{lt } H \) in such polynomials \(H \in H_{jn} \) for fixed \(j \) and \(n \). This allows us to get the lower bound for \(q_{jn} := \left| \{ v \in \text{lt } W_n \mid j(v) = j \} \right| \). We present the \((n+1)\)-tuple \((i, j)\) corresponding to \(\varphi^i(x_n) w_j \in \mathcal{B}_n, i \in \mathbb{N}^n \) as a tuple of smaller tuples: \((i, j) = (u_1, \ldots, u_s, u_{s+1}, j)\) where \(u_k \in \mathbb{N}^{n(j)} \) for \(1 \leq k \leq s := \left[\frac{n}{n(j)} \right] \), \(u_{s+1} \in \mathbb{N}^r \), \(r := n - n(j)s, 0 \leq r < n(j) \). The tuples corresponding to the leading terms of the functional polynomials \(H \in H_{jn} \) have \(u_\ell = h_j \) for at least one \(1 \leq \ell \leq s \). The number of tuples \((i, j)\) with \(u_\ell \neq h_j \) for all \(1 \leq \ell \leq s \), equals \((m^{n(j)} - 1)^s m^r\) where \(m = \dim A \). Since \(h_j \) is fixed,

\[
|\text{lt } H_{jn}| = m^n - (m^{n(j)} - 1)^s m^r \geq m^n - (m^{n(j)} - 1)^{\frac{n}{n(j)} m^{n(j)}} \sim m^n \quad \text{as } n \to \infty.
\]

Furthermore,

\[
q_{jn} \leq \left| \{ v \in \mathcal{B}_n \mid j(v) = j \} \right| = m^n.
\]

Together with \(q_{jn} \geq |\text{lt } H_{jn}| \), this implies \(q_{jn} \sim m^n = (\dim A)^n \). Applying Lemma 3, we have

\[
f_{c_n}(A) = \dim W_n = \sum_{j=1}^{t} q_{jn} \sim \dim (A^2) \cdot (\dim A)^n \quad \text{as } n \to \infty.
\]

The assertion, concerning the asymptotics of \(g_{c_n}(A) \), follows from (1) and (2). \(\square \)
3. Functional codimensions of matrix algebras. In Theorem 1 we have calculated the asymptotics of functional and generalized functional codimensions. In Theorem 2 we evaluate these codimensions for $\text{UT}_2(F)$ precisely. In Theorem 3 we show that functional and generalized functional codimensions do not always coincide.

Theorem 2. Let F be any field. Then

\[\text{fc}_n(\text{UT}_2(F)) = \text{gfc}_n(\text{UT}_2(F)) = 3^{n+1} - 2^{n+1} \text{ for all } n \in \mathbb{N}. \]

Theorem 3. Let F be any field, $k \geq 2$. Then

\[\text{fc}_n(M_k(F)) < \text{gfc}_n(M_k(F)) = k^{2(n+1)} \]

for all $n \in \mathbb{N}$.

Let e_{ij} be the matrix units of $M_k(F)$. Denote the basis of $M_k(F)^*$ dual to (e_{ij}) by $(\varphi_{m\ell})$. In other words, $\varphi^{m\ell}(e_{ij}) = \delta^m_i \delta^\ell_j$. We keep the same notation in the case of $\text{UT}_2(F)$.

Proof of Theorem 2. Consider the natural basis

\[(\varphi^{i_1j_1}(x_1) \ldots \varphi^{i_nj_n}(x_n)e_{m\ell}) \]

of the space $\text{Hom}_F(\text{UT}_2(F)^\otimes n; \text{UT}_2(F))$. Note that

\[\dim \text{Hom}_F(\text{UT}_2(F)^\otimes n; \text{UT}_2(F)) = (\dim \text{UT}_2(F))^{n+1} = 3^{n+1} \]

and the number of functions

\[\psi^1(x_1)\psi^2(x_2) \ldots \psi^n(x_n)e_{11} \text{ where } \psi^i \in \{\varphi^{12}, \varphi^{22}\}, \]

and

\[\mu^1(x_1)\mu^2(x_2) \ldots \mu^n(x_n)e_{22} \text{ where } \mu^i \in \{\varphi^{11}, \varphi^{12}\}, \]

equals 2^{n+1}. We claim that any non-trivial combination H of these functions does not belong to $\text{GFP}_n(\text{UT}_2(F))$. Indeed, if we substitute

\[x_1 = x_2 = \ldots = x_n = e_{12}, \]
Depending on the elements of Hom$_F$ polynomials: the same elements under tions from GFP the same elements under ϕ the same elements under H belongs to ⟨e$_{11}$⟩. Thus the coefficients in H near $\varphi^{11}(x_1)\varphi^{12}(x_2)\ldots \varphi^{12}(x_n)e_{11}$ and $\varphi^{12}(x_1)\varphi^{12}(x_2)\ldots \varphi^{12}(x_n)e_{22}$ equal zero.

If we substitute at least one e_{11} and maybe some e_{12}, then the functions from $\text{GFP}_n(UT_2(F))$, take values in the ideal ⟨e$_{11}, e_{12}$⟩. The image of the functions from GFP$_n(UT_2(F))$, take values in the ideal ⟨e$_{11}, e_{12}$⟩. The image of the functions from GFP$_n(HT_2(F))$, take values in the ideal ⟨e$_{11}, e_{12}$⟩. The image of the same elements under H belongs to ⟨e$_{22}$⟩. Thus the coefficients in H near $\mu^1(x_1)\mu^2(x_2)\ldots \mu^n(x_n)e_{22}$ where $\mu^i \in \{\varphi^{11}, \varphi^{12}\}$, equal zero.

If we substitute at least one e_{22} and maybe some e_{12}, then the functions from $\text{GFP}_n(UT_2(F))$, take values in the ideal ⟨e$_{11}, e_{12}$⟩. The image of the functions from GFP$_n(UT_2(F))$, take values in the ideal ⟨e$_{11}, e_{22}$⟩. The image of the functions from GFP$_n(UT_2(F))$, take values in the ideal ⟨e$_{11}, e_{22}$⟩. The image of the same elements under H belongs to ⟨e$_{11}$⟩. Thus the coefficients in H near $\psi^1(x_1)\psi^2(x_2)\ldots \psi^n(x_n)e_{11}$ where $\psi^i \in \{\varphi^{12}, \varphi^{22}\}$, equal zero.

In order to finish the proof, it sufficient to show that all the other basis elements of Hom$_F(UT_2(F)^{\otimes n}; UT_2(F))$ belong to $\text{FP}_n(UT_2(F))$.

First, consider a map $\psi^1(x_1)\ldots \psi^n(x_n)e_{12}$ where $\psi^j \in \{\varphi^{11}, \varphi^{12}, \varphi^{22}\}$. Depending on ψ^1, it can be defined by one of the following three functional polynomials:

$$\varphi^{11}(x_1)\big(\psi^2(x_2)\ldots \psi^n(x_n)\big)e_{12} = x_1\big(\psi^2(x_2)\ldots \psi^n(x_n)e_{12}\big),$$

$$\varphi^{12}(x_1)\big(\psi^2(x_2)\ldots \psi^n(x_n)\big)e_{12} = \big(\psi^2(x_2)\ldots \psi^n(x_n)e_{11}\big)x_1 - x_1\big(\psi^2(x_2)\ldots \psi^n(x_n)e_{11}\big),$$

$$\varphi^{22}(x_1)\big(\psi^2(x_2)\ldots \psi^n(x_n)\big)e_{12} = \big(\psi^2(x_2)\ldots \psi^n(x_n)e_{12}\big)x_1.$$

If $\psi^j \in \{\varphi^{11}, \varphi^{12}, \varphi^{22}\}$ for all $1 \leq j \leq n$ but the inclusion $\psi^i \in \{\varphi^{12}, \varphi^{22}\}$ is false for at least one i, then we have $\psi^i = \varphi^{11}$, and $\psi^1(x_1)\ldots \psi^n(x_n)e_{11}$ can be defined by

$$\big(\psi^1(x_1)\ldots \psi^{i-1}(x_{i-1})\big)\varphi^{11}(x_i)\big(\psi^{i+1}(x_{i+1})\ldots \psi^n(x_n)\big)e_{11} = x_i\big(\psi^1(x_1)\ldots \psi^{i-1}(x_{i-1})\psi^{i+1}(x_{i+1})\ldots \psi^n(x_n)e_{11}\big).$$
If \(\psi^j \in \{ \varphi^{11}, \varphi^{12}, \varphi^{22} \} \) for all \(1 \leq j \leq n \) but the inclusion \(\psi^i \in \{ \varphi^{11}, \varphi^{12} \} \) is false for at least one \(i \), then we have \(\psi^i = \varphi^{22} \), and \(\psi^1(x_1) \cdots \psi^n(x_n)e_{22} \) can be defined by
\[
\left(\psi^1(x_1) \cdots \psi^{i-1}(x_{i-1}) \right) \varphi^{22}(x_i) \left(\psi^{i+1}(x_{i+1}) \cdots \psi^n(x_n) \right) e_{22} = \left(\psi^1(x_1) \cdots \psi^{i-1}(x_{i-1}) \psi^{i+1}(x_{i+1}) \cdots \psi^n(x_n)e_{22} \right) x_i.
\]
Again, we have a functional polynomial in the right side of the equality. \(\Box \)

Proof of Theorem 3. Note that for every \(1 \leq i_r, j_r, m, \ell \leq k \) the expression
\[
(e_{m_1} x_1 e_{j_1} e_{j_2} x_2 e_{j_2} e_{j_3} x_3 \cdots e_{j_{n-1}} e_{i_n} x_n e_{j_n}) x_n e_{j_n \ell}
\]
can be considered as a generalized functional monomial since the multiplication is multilinear. Its image in \(\text{Hom}_F(M_k(F)^{\otimes n}; M_k(F)) \) equals \(\varphi^{i_1 j_1}(x_1)\varphi^{i_2 j_2}(x_2) \cdots \varphi^{i_n j_n}(x_n)e_{m \ell} \). In other words, we can obtain an arbitrary element of the natural basis in \(\text{Hom}_F(M_k(F)^{\otimes n}; M_k(F)) \). Hence
\[
\frac{\text{GFP}_n(M_k(F))}{\text{GFId}_n(M_k(F))} = \text{Hom}_F(M_k(F)^{\otimes n}; M_k(F))
\]
for all \(k, n \in \mathbb{N} \), i.e. \(\text{gfc}_n(M_k(F)) = \dim \text{Hom}_F(M_k(F)^{\otimes n}; M_k(F)) = k^{2(n+1)}. \)
However
\[
\varphi^{11}(x_1)\varphi^{11}(x_2) \cdots \varphi^{11}(x_n)e_{22} \notin \frac{\text{FP}_n(M_k(F))}{\text{FId}_n(M_k(F))}.
\]
Indeed, let \(H \in \text{Hom}_F(M_k(F)^{\otimes (n-1)}; M_k(F)) \) be an arbitrary map. If we substitute \(x_1 = x_2 = \ldots = x_n = e_{11} \), then the values of
\[
H(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)x_i
\]
and
\[
x_i H(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)
\]
belong to \(\langle e_{1j}, e_{j1} \mid 1 \leq j \leq k \rangle \not\subseteq e_{22} \), i.e. there is no linear combination of functional polynomials that takes the value \(e_{22} \). Thus
\[
\frac{\text{FP}_n(M_k(F))}{\text{FId}_n(M_k(F))} \neq \text{Hom}_F(M_k(F)^{\otimes n}; M_k(F))
\]
and
\[fc_n(M_k(F)) < \dim \text{Hom}_F(M_k(F)^{\otimes n}; M_k(F)) = gfc_n(M_k(F)). \]

Acknowledgements. I am grateful to the referee for the useful remarks.

REFERENCES

Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John’s, NL, A1C5S7, Canada
e-mail: asgordienko@mun.ca

Received February 3, 2012