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Abstract. In this paper we establish some comparison theorems for the
oscillation of second order neutral differential equations of mixed type

(a(t)([x(t)+b(t)x(t−σ1)+c(t)x(t+σ2)]
α)′)′+q(t)xβ(t−τ1)+p(t)xγ(t+τ2) = 0

where α, β and γ are ratios of odd positive integers, σ1, σ2, τ1 and τ2 are
non negative integers. Our results are new even if p(t) = 0 or q(t) = 0.
Examples are provided to illustrate the main results.

1. Introduction. In this paper, we shall study the oscillatory behavior
of the second order nonlinear neutral differential equation of mixed type

(1.1)
(

a(t)([x(t) + b(t)x(t − σ1) + c(t)x(t + σ2)]
α)′
)

′

+ q(t)xβ(t − τ1) + p(t)xγ(t + τ2) = 0,

where t ≥ t0. Throughout this paper, we assume without further mention that
the following hypotheses hold:
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(H1) a(t) is a positive and differentiable function for t ≥ t0 with
∫

∞

t0

1

a(t)
dt = ∞;

(H2) b(t) and c(t) ∈ C2([t0,∞), [0,∞)), and there exist b and c such that
b(t) ≤ b, and c(t) ≤ c;

(H3) p(t) and q(t) are nonnegative continuous real valued functions for all t ≥ t0;

(H4) σ1, σ2, τ1 and τ2 are nonnegative integers, and α, β and γ are the ratios
of odd positive integers with α ∈ (0, ∞).

Set z(t) = [x(t)+ b(t)x(t−σ1)+ c(t)x(t+σ2)]
α. By a solution of equation

(1.1), we mean a function x(t) ∈ C1([Tx,∞), R) defined for all t ≥ t0−max(σ1, τ1),
which has the property a(t)z′(t) ∈ C1([Tx,∞), R),and satisfying equation (1.1)
for all t ≥ Tx ≥ t0. A solution of equation (1.1) is called oscillatory if it has
infinitely many zeros on [t0,∞), otherwise, it is called nonoscillatory. Equation
(1.1) is said to be oscillatory if all its solutions are oscillatory.

Neutral functional differential equations have numerous applications in
electric networks. For instance, they are frequently used for the study of distri-
bution networks containing lossless transmission lines which arise in high speed
computers where the lossless transmission lines are used to interconnect switching
circuits; see [13, 15].

In recent years, many results have been obtained on the oscillation of
different classes of functional differential equations, we refer the reader to the
papers [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22] and the
references cited therein. However, there are few results regarding the oscillatory
properties of neutral differential equations with mixed arguments. In [5, 14, 20],
the authors established some oscillation criteria for the following mixed neutral
equation

(1.2) (x(t) + p1x(t − τ1) + p2x(t + τ2))
′′ = q1(t)x(t−σ1)+ q2(t)x(t+σ2), t ≥ t0

with q1 and q2 are nonnegative real valued functions. Grace [11] obtained some
oscillation theorems for the odd order neutral differential equation

(1.3) (x(t) + p1x(t − τ1) + p2x(t + τ2))
(n) = q1x(t − σ1) + q2x(t + σ2), t ≥ t0

where n ≥ 1 is odd. In [1, 12, 23] the authors obtained several sufficient condi-
tions for the oscillation of solutions of higher-order neutral functional differential
equation of the form

(1.4) (x(t) + cx(t − h) + Cx(t + H))(n) + qx(t − g) + Qx(t + G) = 0, t ≥ t0
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where q and Q are nonnegative real constants.
Clearly, equations(1.2), (1.3) and (1.4) with n = 2, and α = β = γ = 1

are special cases of equation (1.1). Motivated by this observation in this paper we
study the oscillatory behavior of equation (1.1) for different values of α, β, and
γ.In section 2, we establish sufficient condition for the oscillation of all solution of
equation (1.1) and in Section 3 we provide some examples to illustrate the main
result.
In the sequel, when we write a functional inequality without specifying its domain
of validity and we assume that it holds for all sufficiently large t.

2. Oscillation results. In this section, we shall establish some new
oscillation criteria for the equation (1.1). Throughout this paper, we shall use
the following notations, without further mention:

Q1(t) = min{q(t), q(t − σ1), q(t + σ2)}, P1(t) = min{p(t), p(t − σ1), p(t + σ2)},

Q∗(t) = Q1(t) + P1(t), and R(t) =
t
∫

t0

1

a(s)
ds.

To prove our main results we need the following lemmas.

Lemma 2.1. Let A ≥ 0, B ≥ 0 and δ ≥ 1. Then

(A + B)δ ≤ 2δ−1(Aδ + Bδ).

Lemma 2.2. Assume that A ≥ 0, B ≥ 0 and 0 < δ ≤ 1. Then

(A + B)δ ≤ Aδ + Bδ.

The proofs of Lemmas 2.1 and 2.2 may be found in [14, 20].

Theorem 2.3. Assume that γ = β ≥ 1, and

(2.1) u′(t) +
Q∗(t)Rβ/α(t − τ1)

4β−1

(

1 + bβ +
cβ

2β−1

)β/α
uβ/α(t + σ1 − τ1) ≤ 0

has no positive solution for all sufficiently large t ≥ t0. Then every solution of

equation (1.1) is oscillatory.

P r o o f. Let x(t) be a nonoscillatory solution of equation (1.1). Without
loss of generality, we may assume that there exists t1 ≥ t0 such that x(t) >
0, x(t − τ1) > 0 and x(t − σ1) > 0 for all t ≥ t1. Then z(t) > 0 for all t ≥ t1.



4 Ethiraju Thandapani, Renu Rama

In view of equation (1.1), we obtain

(2.2) (a(t)z′(t))′ = −q(t)xβ(t − τ1) − p(t)xβ(t + τ2) ≤ 0, t ≥ t1.

Thus a(t)z′(t) is nonincreasing. Then it is easy to conclude that either z′(t) > 0
or z′(t) < 0 for all t ≥ t1. If there exists a t2 ≥ t1 such that z′(t2) < 0, then from
(2.2), we see that

a(t)z′(t) ≤ a(t2)z
′(t2) < 0, t ≥ t2.

Integrating the last inequality from t2 to t, we obtain

z(t) ≤ z(t2) + a(t2)z
′(t2)

t
∫

t2

1

a(s)
ds.

Letting t → ∞, we obtain z(t) → −∞ due to (H1), which is a contradiction.
Thus, there exists t2 ≥ t1 such that

(2.3) z′(t) > 0

for all t ≥ t2. From the equation (1.1), for sufficiently large t, we have

(2.4)

(a(t)z′(t))′ + q(t)xβ(t − τ1) + p(t)xβ(t + τ2) + bβ(a(t − σ1)z
′(t − σ1))

′+

bβq(t − σ1)x
β(t − τ1 − σ1) + bβp(t − σ1)x

β(t + τ2 − σ1)+

cβ

2β−1
(a(t + σ2)z

′(t + σ2))
′ +

cβ

2β−1
q(t + σ2)x

β(t − τ1 + σ2)+

cβ

2β−1
p(t + σ2)x

β(t + τ2 + σ2) = 0.

By using Lemma 2.1, the equation (2.4) becomes

(2.5) (a(t)z′(t))′ + bβ(a(t − σ1)z
′(t − σ1))

′ +
cβ

2β−1
(a(t + σ2)z

′(t + σ2))
′

+
Q1(t)

4β−1
zβ/α(t − τ1) +

P1(t)

4β−1
zβ/α(t + τ2) ≤ 0.

Since z(t) is increasing, we have z(t + τ2) ≥ z(t − τ1), and therefore from (2.5),
we obtain

(2.6) (a(t)z′(t))′ + bβ(a(t − σ1)z
′(t − σ1))

′

+
cβ

2β−1
(a(t + σ2)z

′(t + σ2))
′ +

Q∗(t)

4β−1
zβ/α(t − τ1) ≤ 0.
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It follows from (2.2) that

(2.7) z(t) = z(t2) +

t
∫

t2

a(s)z′(s)

a(s)
ds ≥ a(t)z′(t)R(t).

Set y(t) = a(t)z′(t). Then y(t) > 0 and nonincreasing. From (2.6) and (2.7), we
obtain

(2.8)

(

y(t) + bβy(t − σ1) +
cβ

2β−1
y(t + σ2)

)′

+
Q∗(t)

4β−1
Rβ/α(t−τ1)y

β/α(t−τ1) ≤ 0.

Define u(t) by

u(t) = y(t) + bβy(t − σ1) +
cβ

2β−1
y(t + σ2).

Then u(t) > 0. Since y(t) is nonincreasing, we have

u(t) ≤

(

1 + bβ +
cβ

2β−1

)

y(t − σ1).

Substituting the above inequality in (2.8), we see that u(t) is a positive solution
of the inequality (2.1), which is a contradiction. This completes the proof. �

Corollary 2.4. Assume that α = β = γ and σ1 − τ1 < 0 hold. If

(2.9) lim inf
t→∞

t
∫

t+σ1−τ1

Q∗(s)R(s − τ1)ds >
4β−1

e

(

1 + bβ +
cβ

2β−1

)

,

then every solution of equation (1.1) is oscillatory.

P r o o f. The proof follows from Theorem 2.3and [13, Theorem 2.3.1]. �

Corollary 2.5. Assume that γ = β < α and σ1 − τ1 < 0 hold. If

(2.10)

∞
∫

t0

Q∗(s)Rβ/α(s − τ1)ds = ∞,

then every solution of equation (1.1) is oscillatory.

P r o o f. The proof follows from Theorem 2.3 and [21]. �
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Corollary 2.6. Assume that β = γ > α and τ1 − σ1 > 0 hold. If there

exists λ >
1

τ1 − σ1
log (β/α) such that

(2.11) lim inf
t→∞

[

Q∗(t)Rβ/α(t − τ1) exp(−eλt)
]

> 0,

then every solution of equation (1.1) is oscillatory.

P r o o f. The proof follows from Theorem 2.3 and [21]. �

Theorem 2.7. Assume that γ = β ≥ 1 and σ1 − τ1 > 0 hold. If

(2.12) w′(t)−
Q∗(t + σ1)

4β−1

(

1 + bβ +
cβ

2β−1

)





t+σ1
∫

t1

1

a(s − σ1)
ds



wβ/α(t+σ1− τ1) ≥ 0

has no positive solution for sufficiently large t1 ≥ t0, then every solution of equa-

tion (1.1) is oscillatory.

P r o o f. Proceeding as in the proof of Theorem 2.3, we obtain (2.2)−(2.6)
for all t ≥ t2 ≥ t1. Integrating (2.6) from t to ∞ yields

(2.13) a(t)z′(t) + bβa(t − σ1)z
′(t − σ1) +

cβ

2β−1
a(t + σ2)z

′(t + σ2)

≥

∞
∫

t

Q∗(s)

4β−1
zβ/α(s − τ1)ds.

Since a(t)z′(t) > 0 and nonincreasing, we have

(2.14) a(t)z′(t) + bβa(t − σ1)z
′(t − σ1) +

cβ

2β−1
a(t + σ2)z

′(t + σ2)

≤

(

1 + bβ +
cβ

2β−1

)

a(t − σ1)z
′(t − σ1).

In view of (2.13) and (2.14), we have

(2.15) z′(t − σ1) ≥
1

(

1 + bβ +
cβ

2β−1

)

a(t − σ1)

∞
∫

t

Q∗(s)

4β−1
zβ/α(s − τ1)ds.
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Integrating (2.15) from t2 to t, we see that

z(t − σ1) ≥

t
∫

t2

1
(

1 + bβ +
cβ

2β−1

)

a(s − σ1)





∞
∫

s

Q∗(v)

4β−1
zβ/α(v − τ1)dv



 ds

≥
1

4β−1

(

1 + bβ +
cβ

2β−1

)

t
∫

t2

Q∗(s)zβ/α(s − τ1)





s
∫

t2

1

a(v − σ1)
dv



 ds.

Thus

z(t) ≥
1

4β−1

(

1 + bβ +
cβ

2β−1

)

t+σ1
∫

t2

Q∗(s)zβ/α(s − τ1)





s
∫

t2

1

a(v − σ1)
dv



 ds.

Let

w(t) =
1

4β−1

(

1 + bβ +
cβ

2β−1

)

t+σ1
∫

t2

Q∗(s)zβ/α(s − τ1)





s
∫

t2

1

a(v − σ1)
dv



 ds > 0.

Then

w′(t) =
1

4β−1

(

1 + bβ +
cβ

2β−1

)Q∗(t + σ1)z
β/α(t + σ1 − τ1)

t+σ1
∫

t2

1

a(v − σ1)
dv.

Thus z(t) > w(t), and

w′(t) ≥
Q∗(t + σ1)

4β−1

(

1 + bβ +
cβ

2β−1

)





t+σ1
∫

t2

1

a(v − σ1)
dv



wβ/α(t + σ1 − τ1).

Hence we find w(t) is a positive solution of (2.12). This contradiction completes
the proof. �

From Theorem 2.7 and Theorem 2.3.4 of [13], we obtain the following
corollary.
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Corollary 2.8. Assume that γ = β = α and σ1 − τ1 > 0 and

lim inf
t→∞

t+σ1−τ1
∫

t

Q∗(s + σ1)





s+σ1
∫

t1

1

a(v − σ1)
dv



 ds

>
4β−1

e

(

1 + bβ +
cβ

2β−1

)

(2.16)

for all sufficiently large t1 ≥ t0. Then every solution of equation (1.1) is oscilla-

tory.

Next we present oscillation criteria for equation (1.1) when 0 < β < 1.

Theorem 2.9. Assume that 0 < γ = β < 1, and

(2.17) u′(t) + Q∗(t)Rβ/α(t − τ1)u
β/α(t + σ1 − τ1) ≤ 0

has no positive solution for all sufficiently large t ≥ t0. Then every solution of

equation (1.1) is oscillatory.

P r o o f. The proof is similar to that of Theorem 2.3, except we use Lemma
2.2 instead of Lemma 2.1, and hence the details are omitted. �

Similar to Corollaries 2.4 to 2.6, we have the following Corollaries 2.10 to
2.12.

Corollary 2.10. Assume that α = β = γ and σ1 − τ1 < 0 hold. If

(2.18) lim inf
t→∞

t
∫

t+σ1−τ1

Q∗(s)R(s − τ1)ds >
1

e
,

then every solution of equation (1.1) is oscillatory.

Corollary 2.11. Assume that 1 > γ = β > α, and σ1 − τ1 < 0 hold. If

(2.19)

∞
∫

t0

Q∗(s)Rβ/α(s − τ1)ds = ∞,

then every solution of equation (1.1) is oscillatory.

Corollary 2.12. Assume that 1 > γ = β > α and σ1 − τ1 < 0 holds. If

there exists a λ >
1

τ1 − σ1
log (β/α) such that

(2.20) lim inf
t→∞

[

Q∗(t)Rβ/α(t − τ1) exp(−eλt)
]

> 0,
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then every solution of equation (1.1) is oscillatory.

Theorem 2.13. Assume that 0 < γ = β < 1 and σ1 − τ1 > 0 hold. If

(2.21) w′(t) −
Q∗(t + σ1)

(1 + bβ + cβ)





t+σ1
∫

t1

1

a(s − σ1)
ds



wβ/α(t + σ1 − τ1) ≥ 0

has no positive solution for sufficiently large t ≥ t0, then every solution of equation

(1.1) is oscillatory.

P r o o f. The proof is similar to that of Theorem 2.7 and hence the details
are omitted. �

Similar to Corollary 2.8, we obtain the following corollary.

Corollary 2.14. Assume that 0 < β = γ = α < 1 and σ1 − τ1 > 0 hold.

If

lim inf
t→∞

t+σ1−τ1
∫

t

Q∗(s + σ1)





s+σ1
∫

t1

1

a(v − σ1)
dv



 ds >
(1 + bβ + cβ)

e
,

for all sufficiently large t1 ≥ t0, then every solution of equation (1.1) is oscillatory.

Next we discuss the oscillation of equation (1.1) when a(t) ≡ 1.

Theorem 2.15. Assume that a(t) ≡ 1, 0 < β < 1, γ > 1 with
γ

α
> 1 >

β

α
, b ≤ 1, c ≤ 1 and τi > σi for i = 1, 2. If the differential inequality

(2.22) y′′(t) +
η−η1

1 η−η2

2

1 + bβ + cβ

(

P2(t)

4γ−1

)η1

Qη2

2 (t)y(t − τ − σ2) ≤ 0

where η1 =
α − β

γ − β
, η2 =

γ − α

γ − β
, and τ = max{τ1, τ2} has no positive increasing

solution, then every solution of equation (1.1) is oscillatory.

P r o o f. Let x(t) be a nonoscillatory solution of equation (1.1). Without
loss of generality, we assume that there exists t1 ≥ t0 such that x(t) > 0, x(t −
τ1) > 0, and x(t − σ1) > 0 for all t ≥ t1. From equation (1.1)

z′′(t) = −q(t)xβ(t − τ1) − p(t)xγ(t + τ2) ≤ 0.

for t ≥ t0. Then as in the proof of Theorem 2.3, we have z′(t) > 0 for t ≥ t1.
Define

y(t) = z(t) + bβz(t − σ1) + cβz(t + σ2).
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Since z(t) > 0 and z′(t) > 0, we have y(t) > 0, y′(t) > 0 and

y′′(t) = z′′(t) + bβz′′(t − σ1) + cβz′′(t + σ2)

y′′(t) + Q1(t)
[

xβ(t − τ1) + bβxβ(t − σ1 − τ1) + cβxβ(t + σ2 − τ1)
]

+ P1(t)
[

xγ(t + τ2) + bβxγ(t − σ1 + τ2) + cβxγ(t + σ2 + τ2)
]

≤ 0.

Using Lemma 2.2, and 0 < β < 1 < γ and c ≤ 1, we get

y′′(t) + Q1(t) [x(t − τ1) + bx(t − σ1 − τ1) + cx(t + σ2 − τ1)]
β

+ P1(t) [xγ(t + τ2) + bγxγ(t − σ1 + τ2) + cγxγ(t + σ2 + τ2)] ≤ 0.

Now using Lemma 2.1 and c ≤ 1, γ > 1, we have

y′′(t) + Q1(t)z
β/α(t − τ1)

+ P1(t)

[

1

2γ−1
(x(t + τ2) + bx(t + τ2 − σ1))

γ +
cγ

2γ−1
xγ(t + τ2 + σ2)

]

≤ 0.

Again using Lemma 2.1, we obtain

y′′(t) + Q1(t)z
β/α(t − τ1)

+
P1(t)

4γ−1
[x(t + τ2) + bx(t + τ2 − σ1) + cx(t + τ1 + σ2)]

γ ≤ 0.

y′′(t) + Q1(t)z
β/α(t − τ1) +

P1(t)

4γ−1
zγ/α(t + τ2) ≤ 0.

or

(2.23) y′′(t) + Q1(t)z
β/α(t − τ) +

P1(t)

4γ−1
zγ/α(t − τ) ≤ 0

Define u1 = η−1
1

P1(t)

4γ−1
zγ/α(t − τ) and u2 = η−1

2 Q1(t)z
β/α(t − τ). Using

arithmetic-geometric mean inequality u1η1 + u2η2 ≥ uη1

1 uη2

2 , we have

y′′(t) ≥

(

P1(t)

η14γ−1
zγ/α(t − τ)

)η1

(

Q1(t)z
β/α(t − τ)

η2

)η2

= η−η1

1 η−η2

2

(

P1(t)

4γ−1

)η1

Qη2

1 (t)z(t − τ).(2.24)
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Since z′(t) > 0, we see that

y(t − τ) = z(t − τ) + bβz(t − τ − σ1) + cβz(t − τ + σ2)

≤ (1 + bβ + cβ)z(t − τ + σ2).(2.25)

Using the inequality (2.25) in (2.24), we obtain

y′′(t) +
η−η1

1 η−η2

2

1 + bβ + cβ

(

P1(t)

4γ−1

)η1

Qη2

1 (t)y(t − τ − σ2) ≤ 0.

Therefore y(t) is a positive increasing solution of the inequality (2.22), which is
a contradiction. This completes the proof. �

Theorem 2.16. Assume that a(t) ≡ 1, β > 1, 0 < γ < 1 with
β

α
> 1 >

γ

α
, b ≥ 1, c ≥ 1 and τi > σi for i = 1, 2. If the differential inequality

(2.26) y′′(t) +
η−η1

1 η−η2

2

1 + bβ + cβ

(

Q1(t)

4β−1

)η1

P η2

1 (t)y(t − τ − σ2) ≤ 0

where η1 =
α − γ

β − γ
, η2 =

β − α

β − γ
, and τ = max{τ1, τ2} has no positive increasing

solution, then every solution of equation (1.1) is oscillatory.

P r o o f. Let x(t) be a nonoscillatory solution of equation (1.1). Without
loss of generality, we assume that there exists t1 ≥ t0 such that x(t) > 0, x(t −
τ1) > 0, and x(t−σ1) > 0 for all t ≥ t1. Then as in the proof of Theorem 2.3 we
have z′(t) > 0 for t ≥ t1. Define

y(t) = z(t) + bβz(t − σ1) + cβz(t + σ2).

Since z(t) > 0 and z′(t) > 0, we have y(t) > 0, y′(t) > 0 and

y′′(t) = z′′(t) + bβz′′(t − σ1) + cβz′′(t + σ2)

y′′(t) +
Q1(t)

4β−1
zβ/α(t − τ1) + P1(t)z

γ/α(t + τ2) ≤ 0.

or

(2.27) y′′(t) +
Q1(t)

4β−1
zβ/α(t − τ) + P1(t)z

γ/α(t − τ) ≤ 0.
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Define u1 = η−1
1

Q1(t)

4β−1
zβ/α(t−τ) and u2 = η−1

2 P1(t)z
γ/α(t−τ). Using arithmetic-

geometric mean inequality u1η1 + u2η2 ≥ uη1

1 uη2

2 , we have

y′′(t) +

(

Q1(t)

η14β−1
zβ/α(t − τ)

)η1

(

P1(t)z
γ/α(t − τ)

η2

)η2

≤ 0

y′′(t) + η−η1

1 η−η2

2

(

Q1(t)

4β−1

)η1

P η2

1 (t)z(t − τ) ≤ 0.(2.28)

Since z′(t) > 0, we see that

y(t − τ) = z(t − τ) + bβz(t − τ − σ1) + cβz(t − τ + σ2)

≤ (1 + bβ + cβ)z(t − τ + σ2).(2.29)

Using the inequality (2.29) in (2.28), we have

y′′(t) +
η−η1

1 η−η2

2

1 + bβ + cβ

(

Q1(t)

4β−1

)η1

P η2

1 (t)y(t − τ − σ2) ≤ 0.

Therefore y(t) is a positive increasing solution of the inequality (2.26), which is
a contradiction. This completes the proof of the theorem. �

3. Examples. In this section we present some examples to illustrate
the main results.

Example 3.1. Consider the differential equation

(3.1) (x(t) + bx(t − σ1) + cx(t + σ2))
′′ +

q

t
x(t − τ1) +

p

t
x(t + τ2) = 0, t ≥ 1

where b, c, q and p are positive constants and τ1 − σ1 > 0.

a(t) = 1, b(t) = b, c(t) = c, q(t) =
q

t
, p(t) =

p

t
and α = β = γ = 1.

Therefore,

Q1(t) = min

{

q

t
,

q

t − σ1
,

q

t + σ2

}

=
q

t + σ2

P1(t) = min

{

p

t
,

p

t − σ1
,

p

t + σ2

}

=
p

t + σ2

Q∗(t) = Q(t) + P (t) =
p + q

t + σ2

R(t) =

t
∫

1

dt = t − 1.
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and

(i) Let τ1 > σ1. Now

lim inf
t→∞

t
∫

t+σ1−τ1

Q∗(s)R(s − τ1)ds = lim inf
t→∞

t
∫

t+σ1−τ1

p + q

s + σ2
(s − τ1 − 1)ds

= (τ1 − σ1)(p + q).

Therefore, if

(p + q)(τ1 − σ1) >
(1 + b + c)

e
,

then equation (3.1) is oscillatory due to Corollary 2.4.

(ii) Let τ < σ1.

lim inf
t→∞

t+σ1−τ1
∫

t

Q∗(s + σ1)





s+σ1
∫

t1

1

a(v − τ1)
dv



 ds =

lim inf
t→∞

t+σ1−τ1
∫

t

(p + q)(s + σ1 − τ1)

s + σ2 + σ1
ds = (p + q)(σ1 − τ1)

Therefore, if

(p + q)(σ1 − τ1) >
(1 + b + c)

e
,

then equation (3.1) is oscillatory due to Corollary 2.8.

Example 3.2.

(3.2)

(

1

t

(

(x(t) + bx(t − σ1) + cx(t + σ2))
′
)3
)

′

+
q

t
x(t − τ1) +

p

t
x(t + τ2) = 0, t ≥ 1,

where b, c, q and p are positive constants and τ1 − σ1 > 0. Here a(t) =
1

t
, α = 3,

γ = β = 1. Then

Q∗(t) =
p + q

t + σ2
and R(t) =

t
∫

1

sds =
t2 − 1

2
.
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Since

∞
∫

1

Q∗(s)Rβ/α(s − τ1)ds =

∞
∫

1

p + q

s + σ2

(

(s − τ1)
2 − 1

2

)1/3

ds = ∞,

every solution of equation (3.2) is oscillatory due to Corollary 2.5.

Example 3.3. Consider the differential equation

(3.3)

(

1

t
(x(t) + bx(t − 1) + cx(t + 2))′

)

′

+ q exp
(

e2(t+1)
)

x3(t − 2) + px3(t + 3) = 0

where t ≥ 1, b, c, q and p are positive constants. Here α = 1, β = γ = 3, a(t) =
1

t
,

q(t) = q exp
(

e2(t+1)
)

, p(t) = p, σ1 = 1, σ2 = 2, τ1 = 2, τ2 = 3. Choose λ = 2.

Then λ >
1

τ1 − σ1
log (β/α). Also

lim inf
t→∞

[

Q∗(t)Rβ/α(t − τ1) exp
(

e−λt
)]

= lim inf
t→∞

[

(qee2t

+ p)
(t − 2)3(t − 1)3

23
e−e2t

]

> 0.

Hence equation (3.3) is oscillatory due to Corollary 2.6.

We conclude this paper with the following remark.
Remark 3.4. It would be interesting to study the oscillatory behavior

of equation(1.1) when
∫

∞

t0

1

a(t)
dt < ∞;
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