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Abstract. Let k ≥ 0 be an integer. Then it is known that oblong (pronic)
numbers are numbers of the form k(k + 1) which is denoted by Ok. In
this work, we derive some algebraic relations on the Pell form F∆k

(x, y) =
x2−Oky

2 of discriminant ∆k = 4Ok including cycle, proper cycle, reduction
and proper automorphism of it. Also we determine the integer solutions of
the Pell equation F∆k

(x, y) = 1 via oblong numbers Ok.

1. Preliminaries. A real binary quadratic form (or just a form) F is a
polynomial in two variables x, y of the type

(1.1) F = F (x, y) = ax2 + bxy + cy2
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with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discrimi-
nant of F is defined by the formula b2 − 4ac and is denoted by ∆. A quadratic
form F of discriminant ∆ is called indefinite if ∆ > 0, and is called integral if
and only if a, b, c ∈ Z. An indefinite quadratic form F = (a, b, c) of discriminant
∆ is said to be reduced if

(1.2)
∣
∣
∣

√
∆ − 2|a|

∣
∣
∣ < b <

√
∆.

Most properties of quadratic forms can be giving by the aid of extended
modular group Γ (see [14]). Gauss defined the group action of Γ on the set of
forms as follows:

gF (x, y) =
(
ar2 + brs+ cs2

)
x2 + (2art+ bru+ bts+ 2csu)xy(1.3)

+
(
at2 + btu+ cu2

)
y2

for g =

(
r s

t u

)

∈ Γ, that is, gF is gotten from F by making the substitution

x → rx + tu and y → sx + uy. Moreover ∆(F ) = ∆(gF ) for all g ∈ Γ, that is,
the action of Γ on forms leaves the discriminant invariant. If F is indefinite or
integral, then so is gF for all g ∈ Γ. Let F and G be two forms. If there exists
a g ∈ Γ such that gF = G, then F and G are called equivalent. If det g = 1,
then F and G are called properly equivalent and if det g = −1, then F and G are
called improperly equivalent. A form F is called ambiguous if it is improperly
equivalent to itself. An element g ∈ Γ is called an automorphism of F if gF = F .
If det g = 1, then g is called a proper automorphism of F and if det g = −1, then
g is called an improper automorphism of F . Let Aut(F )+ denote the set of proper
automorphisms of F and let Aut(F )− denote the set of improper automorphisms
of F (for further details on binary quadratic forms see [3, 4, 7, 11]).

Let ρ(F ) denotes the normalization (it means that replacing F by its
normalization) of (c,−b, a). To be more explicit, we set

(1.4) ρi+1(F ) = (ci,−bi + 2ciri, cir
2
i − biri + ai),

where

(1.5) ri =







sign(ci)

⌊
bi

2|ci|

⌋

for |ci| ≥
√

∆

sign(ci)

⌊

bi +
√

∆

2|ci|

⌋

for |ci| <
√

∆
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for i ≥ 0. The number r is called the reducing number and the form ρi+1(F )
is called the reduction of F . Further if F is reduced, then so is ρi+1(F ). In
fact, ρ is a permutation of the set of all reduced indefinite forms. Let τ(F ) =
τ(a, b, c) = (−a, b,−c). Then the cycle of F is the sequence ((τρ)i(G)) for i ∈ Z,
where G = (A,B,C) is a reduced form with A > 0 which is equivalent to F . The
cycle and proper cycle of F is given by the following theorem.

Theorem 1.1. Let F = (a, b, c) be reduced indefinite quadratic form of

discriminant ∆. Then the cycle of F is a sequence F0 ∼ F1 ∼ F2 ∼ · · · ∼ Fl−1 of

length l, where F0 = F = (a0, b0, c0),

(1.6) si = |s(Fi)| =

⌊

bi +
√

∆

2|ci|

⌋

and

(1.7) Fi+1 = (ai+1, bi+1, ci+1) =
(
|ci|, −bi + 2si|ci|, −(ai + bisi + cis

2
i )
)

for 1 ≤ i ≤ l − 2. If l is odd, then the proper cycle of F is

F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ · · · ∼ τ(Fl−2) ∼ Fl−1 ∼

τ(F0) ∼ F1 ∼ τ(F2) ∼ · · · ∼ Fl−2 ∼ τ(Fl−1)

of length 2l. In this case the equivalence class of F is equal to the proper equiva-

lence class of F , and if l is even, then the proper cycle of F is

F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ · · · ∼ Fl−2 ∼ τ(Fl−1)

of length l. In this case the equivalence class of F is the disjoint union of the

proper equivalence class of F and the proper equivalence class of τ(F ) [3].

Let ∆ be a non-square discriminant. Then the Pell form F∆ is defined to
be

(1.8) F∆(x, y) =

{
x2 − ∆

4
y2 if ∆ ≡ 0(mod 4)

x2 + xy − 1−∆
4
y2 if ∆ ≡ 1(mod 4).

So the Pell equation is the equation F∆(x, y) = 1 and the negative Pell equation
is the equation F∆(x, y) = −1.

Let ∆ ≡ 0(mod 4), say ∆ = 4d for a positive non–square integer d and
let N be any fixed integer. Then the equation

x2 − dy2 = ±N(1.9)
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is known as Pell–type equation and is named after John Pell (1611–1685), a
mathematician who searched for integer solutions to equations of this type in the
seventeenth century. Ironically, Pell was not the first to work on this problem,
nor did he contribute to our knowledge for solving it. Euler (1707–1783), who
brought us the ψ-function, accidentally named the equation after Pell, and the
name stuck.

For N = 1, the equation

x2 − dy2 = ±1

is known the classical Pell equation. The Pell equation x2 − dy2 = 1 was first
studied by Brahmagupta (598–670) and Bhaskara (1114–1185). Its complete
theory was worked out by Lagrange (1736–1813), not Pell. It is often said that
Euler (1707–1783) mistakenly attributed Brouncker’s (1620–1684) work on this
equation to Pell. However the equation appears in a book by Rahn (1622–1676)
which was certainly written with Pell’s help: some say entirely written by Pell.
Perhaps Euler knew what he was doing in naming the equation. In 1657, Fermat
stated (without giving proof) that the positive Pell equation x2 − dy2 = 1 has an
infinite number of solutions. If (m,n) is a solution, that is, m2 − dn2 = 1, then
(m2+dn2, 2mn) is also a solution since (m2+dn2)2−d(2mn)2 = (m2−dn2)2 = 1.
So the Pell equation x2 − dy2 = 1 has infinitely many. Later, in 1766 Lagrange
proved that the Pell equation x2 − dy2 = 1 has an infinite number of solutions if
d is positive and non–square. The first non–trivial solution (x1, y1) 6= (±1, 0) of
this equation is called the fundamental solution from which all others are easily
computed since

xn + yn

√
d = (x1 + y1

√
d)n

for n ≥ 1, can be found using, e.g., the cyclic method [6], known in India in
the 12th century, or using the slightly less efficient but more regular English
method [6] (17th century). There are other methods to compute this so–called
fundamental solution, some of which are based on a continued fraction expansion
of the square root of d which given as follows: Let

√
d = [a0; a1, a2, · · · , al] denote

the continued fraction expansion of period length l. Set A−2 = 0, A−1 = 1,
Ak = akAk−1+Ak−2 and B−2 = 1, B−1 = 0, Bk = akBk−1+Bk−2 for nonnegative

integer k. Then Ck =
Ak

Bk

is the k−th convergent of
√
d, and the fundamental

solution of x2 − dy2 = 1 is (x1, y1) = (Al−1, Bl−1) if l is even or (A2l−1, B2l−1) if
l is odd. Also if l is odd, then the the fundamental solution of x2 − dy2 = −1 is
(x1, y1) = (Al−1, Bl−1) (for further details on Pell equations see [1, 8, 9, 10, 12]).
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2. Pell form and Pell equation via oblong numbers. In [15–
18], Tekcan (also Bizim and Bayraktar) considered some specific Pell equations
and their integer solutions. In [17], Tekcan considered the integer solutions of
the Pell equation x2 − Dy2 = ±4 and derived some nice results including two
conjectures related to integer solutions of it. Later, these two conjectures were
proved by Shabani in [13]. In [5], Chandoul extended the integer solutions of
x2 −Dy2 = ±4 to x2 −Dy2 = ±k2 for an integer k ≥ 2 with the same argument
Tekcan used in his work.

In the present paper, we aim to consider the same problem by considering
the oblong (pronic, rectangular or heteromecic) numbers which are the product
of two consecutive integers, that is, k(k+1) for and integer k ≥ 0, and is denoted
by Ok. So

(2.1) Ok = k(k + 1).

The first few oblongs numbers are 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, . . .
(sequence A002378 in OEIS). So the kth oblong number represents the number of
points in a rectangular array having k columns and k+1 rows. (see [19]). Further
the product of two oblong numbers Ok−1 and Ok is another oblong number Ok2

−1

(see [2]), that is,

Ok−1Ok = [(k − 1)k][k(k + 1)] = (k2 − 1)k2 = Ok2
−1.

Also the half of Ok is a triangular number denoted by Tk, that is, Tk =
Ok

2
(sequence A000217 in OEIS).

Now we set ∆k = 4Ok. Then by (1.8), we get the Pell form

(2.2) F∆k
(x, y) = x2 −Oky

2

and so the Pell equation

(2.3) F∆k
(x, y) = x2 −Oky

2 = 1.

Then we can give the following results.

Theorem 2.1. Let Ok denote the kth oblong number. Then for the Pell

equation F∆k
(x, y) = 1 we have,
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(1) The continued fraction expansion of
√
Ok is

√

Ok =







[1, O1] for k = 1

[√
4Ok + 1 − 1

2
;O1,

√
4Ok + 1 − 1

]

for k > 1.

(2) (x1, y1) = (
√

4Ok + 1, O1) is the fundamental solution and the other solu-

tions are (xn, yn), where

xn

yn

=





√
4Ok + 1 − 1

2
;O1,

√

4Ok + 1 − 1
︸ ︷︷ ︸

n−1 times

, O1





for n ≥ 2.

(3) The nth integer solution (xn, yn) can be given as a linear combination of

O1, Ok and
√

4Ok + 1, namely,

xn =
√

4Ok + 1xn−1 +O1Okyn−1

yn = O1xn−1 +
√

4Ok + 1yn−1

for n ≥ 2 and also satisfy the recurrence relation

xn = (2
√

4Ok + 1 − 1) (xn−1 + xn−2) − xn−3

yn = (2
√

4Ok + 1 − 1) (yn−1 + yn−2) − yn−3

for n ≥ 4.

P r o o f. (1) Let k = 1. Then O1 = 2 and hence
√
Q1 = [1; 2]. Now let

k > 1. Then since

√

Ok =

√
4Ok + 1 − 1

2
+

(
√

Ok −
√

4Ok + 1 − 1

2

)

we deduce that

√

Ok =

√
4Ok + 1 − 1

2
+

1

O1 +
1

√
4Ok + 1 − 1 +

(√
Ok −

√

4Ok+1−1

2

)

.
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Therefore
√

Ok =

[√
4Ok + 1 − 1

2
;O1,

√

4Ok + 1 − 1

]

.

(2) We derive the fundamental solution of it by using the continued frac-

tion expansion of
√
Ok. Since

√

Ok =

[√
4Ok + 1 − 1

2
;O1,

√

4Ok + 1 − 1

]

of

period length 2, we deduce that A0 =

√
4Ok + 1 − 1

2
, A1 =

√
4Ok + 1, B0 = 1

and B1 = O1. Therefore (x1, y1) = (A1, B1) = (
√

4Ok + 1, O1) is the fundamental
solution.

Now we assume that (xn−1, yn−1) is a solution, that is, x2
n−1−Oky

2
n−1 = 1.

Then we find that

xn

yn

=

√
4Ok + 1 − 1

2
+

1

O1 +
1

√

4Ok + 1 − 1 +
1

O1 +
1

+ · · ·
+
√

4Ok + 1 − 1 +
1

O1

=

√
4Ok + 1 − 1

2

+
1

O1 +
1√

4Ok + 1 − 1

2
+

√
4Ok + 1 − 1

2
+

1

O1 +
1

+ · · ·
+
√

4Ok + 1 − 1 +
1

O1

=

√
4Ok + 1 − 1

2
+

1

O1 +
1√

4Ok + 1 − 1

2
+
xn−1

yn−1

=

√
4Ok + 1xn−1 +O1Okyn−1

O1xn−1 +
√

4Ok + 1yn−1

.(2.4)

So

x2
n −Oky

2
n =

[√

4Ok + 1xn−1 +O1Okyn−1

]2

−Ok

[

O1xn−1 +
√

4Ok + 1yn−1

]2
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= (4Ok + 1)x2
n−1 + 4Ok

√

4Ok + 1xn−1yn−1 + 4O2
ky

2
n−1

−Ok[O
2
1x

2
n + 2O1

√

4Ok + 1xn−1yn−1 + (4Ok + 1)]y2
n−1

= x2
n−1 −Oky

2
n−1

= 1.

Therefore (xn, yn) is also a solution.
(3) The first assertion is easily seen from (2.4). The second assertion can

be proved by induction on n. �

Let Ok denote the kth oblong number. We set the matrix M as

(2.5) M =

( √
4Ok + 1 O1Ok

O1

√
4Ok + 1

)

.

In the following theorem, we able to determine the nth power of M which we use
it later.

Theorem 2.2. For the matrix M , we let

Mn =

(
Mn

11 Mn
12

Mn
21 Mn

22

)

.

(1) If n is even, then

Mn
11 =

n
2∑

i=0

C(n, 2i)(
√

4Ok + 1)n−2iO2i
1 O

i
k = Mn

22

Mn
12 =

n−2

2∑

i=0

C(n, 2i+ 1)(
√

4Ok + 1)n−1−2iO2i+1
1 Oi+1

k

Mn
21 =

n−2

2∑

i=0

C(n, 2i+ 1)(
√

4Ok + 1)n−1−2iO2i+1
1 Oi

k.

(2) If n is odd, then

Mn
11 =

n−1

2∑

i=0

C(n, 2i)(
√

4Ok + 1)n−2iO2i
1 O

i
k = Mn

22
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Mn
12 =

n−1

2∑

i=0

C(n, 2i+ 1)(
√

4Ok + 1)n−1−2iO2i+1
1 Oi+1

k

Mn
21 =

n−1

2∑

i=0

C(n, 2i+ 1)(
√

4Ok + 1)n−1−2iO2i+1
1 Oi

k

for n ≥ 2 (here C(n, i) denotes the binomial coefficient).

P r o o f. (1) Let n = 2. Then

M2 =

(
4Ok + 1 +O2

1Ok 2O1Ok

√
4Ok + 1

2O1

√
4Ok + 1 4Ok + 1 +O2

1Ok

)

.

Also

M2
11 =

1∑

i=0

C(2, 2i)(
√

4Ok + 1)2−2iO2i
1 O

i
k = 4Ok + 1 +O2

1Ok = M2
22

M2
12 =

0∑

i=0

C(2, 2i + 1)(
√

4Ok + 1)1−2iO2i+1
1 Oi+1

k = 2O1Ok

√

4Ok + 1

M2
21 =

0∑

i=0

C(2, 2i + 1)(
√

4Ok + 1)1−2iO2i+1
1 Oi

k = 2O1

√

4Ok + 1.

So it is true for n = 2. Let us assume that it is satisfied for n− 2, that is,

Mn−2 =

(
Mn−2

11 Mn−2
12

Mn−2
21 Mn−2

22

)

,

where

Mn−2
11 =

n−2

2∑

i=0

C(n− 2, 2i)(
√

4Ok + 1)n−2−2iO2i
1 O

i
k = Mn−2

22

Mn−2
12 =

n−4

2∑

i=0

C(n− 2, 2i + 1)(
√

4Ok + 1)n−3−2iO2i+1
1 Oi+1

k
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Mn−2
21 =

n−4

2∑

i=0

C(n− 2, 2i + 1)(
√

4Ok + 1)n−3−2iO2i+1
1 Oi

k.

Then since Mn−2 ·M2, we get

Mn−2
11 [4Ok + 1 +O2

1Ok] +Mn−2
12 [2O1

√

4Ok + 1]

=









(
√

4Ok + 1)n−2

+C(n− 2, 2)(
√

4Ok + 1)n−4O2
1Ok + · · ·

+C(n− 2, n − 4)(
√

4Ok + 1)2On−4
1 Ok

n−4

2

+On−2
1 Ok

n−2

2









[4Ok + 1 + 2O1Ok]

+









C(n− 2, 1)(
√

4Ok + 1)n−3O1Ok

+C(n− 2, 3)(
√

4Ok + 1)n−5O3
1Ok

2 + · · ·
+C(n− 2, n − 5)(

√
4Ok + 1)3On−5

1 Ok

n−4

2

+C(n− 2, n− 3)(
√

4Ok + 1)On−3
1 Ok

n−2

2









[2O1

√

4Ok + 1]

= (
√

4Ok + 1)n + [C(n− 2, 2) + 1 + 2C(n− 2, 1)] (
√

4Ok + 1)n−2O2
1Ok

+ [C(n− 2, 4) + C(n− 2, 2) + 2C(n− 2, 3)] (
√

4Ok + 1)n−4O4
1O

2
k

+ · · ·

+

[

C(n− 2, n− 4) + C(n− 2, n− 6)

+2C(n− 2, n − 5)

]

(
√

4Ok + 1)4On−4
1 O

n−4

2

k

+ [1 + C(n− 2, n− 4) + 2C(n− 2, n − 3)] (
√

4Ok + 1)2On−2
1 O

n−2

2

k

+On
1O

n
2

k

= (
√

4Ok + 1)n + C(n, 2)(
√

4Ok + 1)n−2O2
1Ok + C(n, 4)(

√

4Ok + 1)n−4O4
1O

2
k

+ · · · + C(n, n− 2)(
√

4Ok + 1)2On−2
1 O

n−2

2

k +On
1O

n
2

k
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=

n
2∑

i=0

C(n, 2i)(
√

4Ok + 1)n−2iO2i
1 O

i
k

= Mn
11.

(Here we note that C(n, 2i) = C(n− 2, 2i) +C(n− 2, 2i− 2) + 2C(n− 2, 2i− 1)

for i = 1, 2, . . . ,
n− 2

2
). Similarly it can be shown that

Mn−2
11 [2O1Ok

√

4Ok + 1] +Mn−2
12 [4Ok + 1 +O2

1Ok] = Mn
12

Mn−2
21 [4Ok + 1 +O2

1Ok] +Mn−2
22 [2O1

√

4Ok + 1] = Mn
21

Mn−2
21 [2O1Ok

√

4Ok + 1] +Mn−2
22 [4Ok + 1 +O2

1Ok] = Mn
22.

So

Mn =

(

Mn
11 Mn

12

Mn
21 Mn

22

)

as we claimed. The other case can be proved similarly. �

In the following theorem, we will show that the nth integer solution
(xn, yn) of F∆k

(x, y) = 1 can be deduce via oblong numbers Ok.

Theorem 2.3. The nth integer solution of F∆k
(x, y) = 1 is (xn, yn),

where

xn =







n
2∑

i=0

C(n, 2i)(
√

4Ok + 1)n−2iO2i
1 O

i
k if n is even

n−1

2∑

i=0

C(n, 2i)(
√

4Ok + 1)n−2iO2i
1 O

i
k if n is odd

yn =







n−2

2∑

i=0

C(n, 2i+ 1)(
√

4Ok + 1)n−1−2iO2i+1
1 Oi

k if n is even

n−1

2∑

i=0

C(n, 2i+ 1)(
√

4Ok + 1)n−1−2iO2i+1
1 Oi

k if n is odd

for n ≥ 2.
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P r o o f. It can be proved as in the same way that Theorem 2.2 was
proved. �

Now we can consider the Pell form F∆k
. Note that this form is not reduced

since |
√

4Ok −1| > 0 which is contradiction to (1.2). So we can give the following
theorem related to reduction of F∆k

.

Theorem 2.4. The reduction of F∆k
is

ρ2(F∆k
) =

(

1,
√

4Ok + 1 − 1,
1 −

√
4Ok + 1

2

)

.

P r o o f. Let F∆k
= F∆k,0

= (1, 0,−Ok). Then from (1.5), we get r0 = 0
and hence from (1.4)

ρ1(F∆k
) = (−Ok, 0, 1)

which is not reduced. If we apply the reduction algorithm to ρ1(F∆k
) again, then

we find that r1 =

√
4Ok + 1 − 1

2
and so

ρ2(F∆k
) =

(

1,
√

4Ok + 1 − 1,
1 −

√
4Ok + 1

2

)

which is reduced. So the reduction of F∆k
is ρ2(F∆k

). �

Now we can consider the cycle and proper cycle of ρ2(F∆k
).

Theorem 2.5. The cycle of ρ2(F∆k
) is

(

1,
√

4Ok + 1 − 1,
1 −

√
4Ok + 1

2

)

∼
(√

4Ok + 1 − 1

2
,
√

4Ok + 1 − 1,−1

)

of length 2, and the proper cycle of ρ2(F∆k
) is

(

1,
√

4Ok + 1 − 1,
1 −

√
4Ok + 1

2

)

∼
(

1 −
√

4Ok + 1

2
,
√

4Ok + 1 − 1, 1

)

of length 2.

P r o o f. Let ρ2(F∆k
) = ρ2(F∆k,0

) =

(

1,
√

4Ok + 1 − 1,
1 −

√
4Ok + 1

2

)

.

Then from (1.6), we get s0 = O1 and hence

ρ2(F∆k,1
) =

(√
4Ok + 1 − 1

2
,
√

4Ok + 1 − 1,−1

)

.
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s1 =
√

4Ok + 1 − 1 and hence

ρ2(F∆k,2
) =

(

1,
√

4Ok + 1 − 1,
1 −

√
4Ok + 1

2

)

= ρ2(F∆k,0
).

So the cycle of ρ2(F∆k
) is ρ2(F∆k,0

) ∼ ρ2(F∆k,1
). Note that l = 2. Therefore from

Theorem 1.1, the proper cycle of ρ2(F∆k
) is

(

1,
√

4Ok + 1 − 1,
1 −

√
4Ok + 1

2

)

∼
(

1 −
√

4Ok + 1

2
,
√

4Ok + 1 − 1, 1

)

of length 2. �

Now we consider the proper automorphisms of F∆k
. To get this we first

set

(2.6) gF∆k
=

( √
4Ok + 1 O1

O1Ok

√
4Ok + 1

)

.

Then we can give the following theorem which can be proved as in the same way
that Theorem 2.2 was proved.

Theorem 2.6. Let Ok denote the kth oblong number. Then

(1) The set of proper automorphisms of F∆k
is

Aut+(F∆k
) = {±gn

F∆k
: n ∈ Z}.

(2) The integer solutions of F∆k
(x, y) = 1 are (xn, yn), where

(
xn

yn

)

= (gn
F∆k

)T
(

1
0

)

for n ≥ 1.

Example 2.1. Let k = 3. Then O3 = 12 and so
√

12 = [3; 2, 6]. The
fundamental solution of F∆3

: x2−12y2 = 1 is (x1, y1) = (7, 2) and other solutions
are

x2

y2

= [3; 2, 6, 2] =
97

28

x3

y3

= [3; 2, 6, 2, 6, 2] =
1351

390
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x4

y4

= [3; 2, 6, 2, 6, 2, 6, 2] =
18817

5432

x5

y5

= [3; 2, 6, 2, 6, 2, 6, 2, 6, 2] =
262087

75658

and etc. xn = 7xn−1 +24yn−1, yn = 2xn−1 +7yn−1 for n ≥ 2 and xn = 13(xn−1 +
xn−2) − xn−3, yn = 13(yn−1 + yn−2) − yn−3 for n ≥ 4.

The reduction of F∆3
(x, y) = x2 − 12y2 is ρ2(F∆3

) = (1, 6,−3) and hence
the cycle of ρ2(F∆3

) is ρ2(F∆3,0
) = (1, 6,−3) ∼ ρ2(F∆3,1

) = (3, 6,−1) and the
proper cycle of ρ2(F∆3

) is ρ2(F∆3,0
) = (1, 6,−3) ∼ ρ2(F∆3,1

) = (−3, 6, 1).
The set of proper automorphisms of F∆3

is Aut+(F∆3
) = {±gn

F∆3

: n ∈
Z}, where

gF∆3
=

(
7 2
24 7

)

.

Further the integer solutions of F∆3
: x2 − 12y2 = 1 are

(
x2

y2

)

= (g2
F∆3

)T
(

1
0

)

=

(
97
28

)

(
x3

y3

)

= (g3
F∆3

)T
(

1
0

)

=

(
1351
390

)

(
x4

y4

)

= (g4
F∆3

)T
(

1
0

)

=

(
18817
5432

)

(
x5

y5

)

= (g5
F∆3

)T
(

1
0

)

=

(
262087
75658

)

,

and etc.
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