


Serdica Math. J. 39 (2013), 83–102

ON PERMUTABLE FUZZY SUBGROUPS
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Abstract. A fuzzy subgroup κ of a fuzzy group γ on a group G is said to be
permutable in γ if λ⊙κ = κ⊙λ for every fuzzy subgroup λ of γ. Here µ⊙ ν
stands for the product of two fuzzy groups µ and ν on G, that is (µ⊙ν)(x) =
∨{µ(y)∧ ν(z) | y, z ∈ G and x = yz}. In this paper, largely extending some
previous results, we characterize the permutability of fuzzy subgroups in
terms of the level subgroups and the support subgroups. We obtain these
results emphasizing the role of the characteristic functions of elements of the
group. We also show the remarkable fact that the (abstract) subgroups of
a group having a fuzzy group whose fuzzy subgroups are permutable, are
permutable as well.

Introduction. Let G be a group with a multiplicative binary operation
denoted by juxtaposition and identity e. A fuzzy subset γ : G → [0, 1] is said
to be a fuzzy group on G (see, for example, [11, §1.2]) if it satisfies the following
conditions:
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• (FSG1) γ(xy) ≥ γ(x) ∧ γ(y) for all x, y ∈ G, and

• (FSG2) γ(x−1) ≥ γ(x) for every x ∈ G.

Here and everywhere we adopt the usual convention on the operator wedge
∧ (and on the operator vee ∨). If W is a subset of [0, 1], we denote by ∧W the
greatest lower bound of W and by ∨W the least upper bound of W . If W = {a, b},
we simply write a∧ b and a∨ b for short. We assume that the least upper bound
of the empty set is 0, and its greatest lower bound is 1. However we remark that
we deliberately replace the standard expression a fuzzy subgroup of G by a fuzzy
group on G in order to avoid misunderstandings and to emphasize that a fuzzy
group is in fact a function defined on a group G. For example, if γ, κ are fuzzy
groups on G and γ ⊆ κ happens, we will say that γ is a fuzzy subgroup of κ and
denote this by γ � κ.

Fuzzy group theory, as well as other fuzzy algebraic structures, was in-
troduced very soon after the beginning of fuzzy set theory. The theory of fuzzy
groups was developed by many people who obtained a variety of results and in-
troduced many new concepts. One of the main goals of fuzzy group theory is
the study of algebraic properties of an arbitrary fuzzy group defined on an ab-
stract group G. Here we have the following situation. There are a lot of studies
on the structure of the largest fuzzy group χ(G, 1) on G (χ(G, 1) is the charac-
teristic function of G, that is Im(χ(G, 1)) = {1}). In particular, many articles
were dedicated to such an important inner property known as to be a normal
fuzzy subgroup of χ(G, 1). Meanwhile, there are significant differences between
the case of an arbitrary fuzzy group defined on a group G and the case of the
largest fuzzy group χ(G, 1). If a fuzzy subgroup λ of a fuzzy group γ defined
on a group G possess some given property with respect to γ, then, in general,
it does not always possess the same property with respect to χ(G, 1). Further,
an arbitrary fuzzy group γ can be considered as a set of fuzzy points, and this
set is a semigroup with identity with respect to the multiplication of the fuzzy
sets. However, the largest fuzzy group χ(G, 1) has many invertible elements (for
example, all fuzzy points χ(g, 1), g ∈ G, are invertible), and this makes possible
to use essentially the action of the group G on χ(G, 1). These benefits were very
clearly demonstrated in the study of some important properties of normal fuzzy
subgroups of χ(G, 1). At the same time, an arbitrary fuzzy group defined on a
group G may have very few invertible elements, and as a consequence, we have
very little tangible results on arbitrary fuzzy groups defined on a group G. Once
again, the example of normal subgroups supports this statement. Our goal is to
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begin a systematic study of the properties of an arbitrary fuzzy group defined on
a group G.

One of the key inner properties closely related to the normality is per-
mutability or the property to be a permutable subgroup. Therefore it seems very
natural to study it. To define properly the permutable fuzzy subgroups we need
to recall the definition of the product of two fuzzy groups.

Given µ and ν two fuzzy groups on G, we define the operation ⊙ by

(µ ⊙ ν)(x) = ∨{µ(y) ∧ ν(z) | y, z ∈ G and x = yz}.

Thus (µ ⊙ ν)(x) = ∨{µ(y) ∧ ν(y−1x) | y ∈ G} = ∨{µ(xz−1) ∧ ν(z) | z ∈ G}.
As above, we introduce the symbol ⊙ to avoid misunderstandings with the more
standard symbol ◦ that is used throughout the book [11] to denote both, the
regular product of mappings and the product of fuzzy subgroups.

Let γ and κ be two fuzzy groups on a group G. It is said that γ and κ
permute if γ⊙κ = κ⊙γ. At this point, it is worth mentioning that in general the
product of two fuzzy groups is not a fuzzy group in general. Actually, the product
γ ⊙ κ is a fuzzy group if and only if the fuzzy groups γ and κ permute (see [11,
§4.3] for example). If κ � γ, we say that κ is permutable in γ if κ⊙λ = λ⊙κ for
each λ � γ. As we shall see, the first examples of permutable fuzzy subgroups
are normal fuzzy subgroups. If κ � γ are fuzzy groups on G as above, it is said
that κ is a normal fuzzy subgroup of γ if κ(yxy−1) ≥ κ(x)∧γ(y) for any elements
x, y ∈ G (see [11, §1.4]).

In abstract group theory, the property to be a permutable subgroup was the
main topic of many prolific papers for a long period of time. These papers were
devoted to properties of permutable subgroups in infinite and finite groups. Many
of such results can be found in the book [13]. For fuzzy permutable subgroups,
the situation is completely different. As for many other properties, the study of
this one was initiated for only the largest fuzzy group χ(G, 1) as some properties
of permutable fuzzy subgroups of χ(G, 1) were obtained. For example, in the
papers [4, 5, 6, 7] and in the book [11, §4.3]), one can find some initial results in
the case of a finite group G. The investigation of permutable fuzzy subgroups of
χ(G, 1), where G is an arbitrary (not necessary finite) group has been initiated in
[2, 12]. As we already noted, the case of arbitrary fuzzy group defined on a group
G is significantly different from the case of the largest fuzzy group χ(G, 1). In
abstract group theory, the theory of permutable subgroups is deeply and broadly
developed. In this area, one can find quite interesting papers and many important
results obtained by prominent algebraists. But in fuzzy groups, the picture is
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quite different. In the submitted paper, we just initiate the study of permutable
fuzzy subgroups.

Let λ be a fuzzy subset of a set X, a ∈ [0, 1]. We define

La(λ) = {x ∈ X | λ(x) ≥ a}.

The subset La(λ) is said to be the a–level set (or a–cut of λ. We recall that if
λ is a fuzzy group on G, then either La(λ) is a subgroup of G or La(λ) = ∅.
Actually, La(λ) is a subgroup of G for every a ≤ λ(e). Moreover, it is known
that the level sets allow to characterize fuzzy subgroups in the following way: λ
is a fuzzy group on G if and only if La(λ) is a subgroup of G for each a ≤ λ(e)
(see [11, Theorem 1.2.6] for example). Thus λ is a fuzzy group on G if and only
if every non-empty level of λ is a subgroup of G.

The main result of our paper characterizes permutable fuzzy subgroups
through level subgroups.

Theorem A. Let G be a group and γ be a fuzzy group on G. A fuzzy
subgroup κ of γ is permutable in γ if and only if La(κ) is a permutable subgroup
of La(γ) for every a ≤ κ(e).

Note that this theorem generalizes the main results of the paper [2]. In
this paper, the partial case when κ is permutable in χ(G, 1) and satisfies some
additional condition (the so-called sup property) has been considered.

We deduce some consequences from Theorem A.

Corollary A1. Let G be a group and γ be a fuzzy group on G. If a fuzzy
subgroup κ of γ is permutable in γ, then Supp(κ) is permutable in Supp(γ).

Here and everywhere, as usual, the support of a fuzzy group λ on G is
the subgroup of G given by

Supp(λ) = {x ∈ G | λ(x) > 0}.

Corollary A2. Let G be a group and γ be a fuzzy group on G. If a fuzzy
subgroup κ of γ is normal in γ, then κ is a permutable subgroup of γ.

Corollary A3. Let G be a group and γ be a fuzzy group on G. If λ and κ
are permutable fuzzy subgroups of γ, then the fuzzy subgroup 〈λ, κ〉 is permutable
in γ.
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Here 〈λ, κ〉 is the fuzzy group on G generated by λ and κ. In general, let
S be a family of fuzzy subsets of the group G. Let

M = {γ | γ is a fuzzy subgroup of G and λ ⊆ γ for every λ ∈ S}.

Then
⋂

M is said to be the fuzzy subgroup of G generated by S. We denote this

fuzzy subgroup by 〈S〉 ([11, §1.2]).

One of the main consequences of Theorem A is Theorem B which estab-
lishes some connections between permutable fuzzy subgroups of a fuzzy group
on a group G and permutable subgroups of G. The following result follows from
this.

Corollary B1. Let G be a group and γ be a fuzzy group on G. Then
every fuzzy subgroup of γ is permutable in γ if and only if every subgroup of
Supp(γ) is permutable in Supp(γ).

This is not the only result of such nature in fuzzy group theory. For
example, every fuzzy subgroup of χ(G, 1) is normal if and only if every subgroup
of G is normal in G (see [11, Theorem 4.1.3]). Such kind of results generates
an illusion of easiness of transferring of any result of abstract group theory to
fuzzy groups defined on G. This illusion was supported by the metatheorem
of T. Head [9]. T. Head defined connections among the sets P(X) (the power
set of X), F(X) (the set of all fuzzy subsets of X), and the crisp power set
C(X) of X (the set of characteristic functions of all subsets of X). Extending
the result of T. Head, A. Weinberger [15] shows that for any set X, there is a
set Y such that the lattice of fuzzy subsets of X is isomorphic to a sublattice
of the classical subsets of Y . Moreover, if X is infinite, then it is possible to
choose Y = X. Employing this result, A. Weinberger [14, 15] proved that the
lattice of fuzzy normal subgroups of χ(G, 1) is modular (see also [10]), a result
formerly proved in [1, 3]. However, the situation is much more sophisticated. In
the first, the isomorphism of lattices of two algebraic structures does not always
imply the similarity of the properties of these structures. It is appropriate here
to recall the classical Whitman Theorem stating that every lattice is isomorphic
to a sublattice of a subgroup lattice of some group. Secondly, the abstract groups
and the fuzzy groups are different algebraic structures. A fuzzy group on a group
G as a set of fuzzy points is a semigroup, and as we mentioned above, the set
of its invertible elements can be quite small. Therefore, there is no complete
identification between the concepts that arises in abstract group theory and its
fuzzy counterparts. For example, there is a notion of nilpotency in group theory,
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ring theory, and Lie ring theory. Nevertheless, each of these structures possesses
their own characteristics, and not all of the properties pertaining to one of these
structures can be transferred to others. We will show this below by constructing
some example. In the fourth, as we mentioned above, in the articles [14, 15, 10],
the authors by employing the metatheorem obtained another proof yielding that
the lattice of normal fuzzy subgroups of χ(G, 1) is modular. But both these
proofs (taking into account all the preliminaires and pre-constructions) are not
easier than the proof of N. Ajmal and K.V. Thomas. And the last remark. We
did not want to go beyond classical fuzzy group theory. Therefore, we examined
the situation when we consider mappings of a group G in [0, 1]. However, at
this stage, we did not employ specific properties of real numbers of [0, 1]. The
essential fact is that the image of a group is a complete lattice.

1. Some remarks about properties of abstract groups and

fuzzy groups. As we mentioned above, some results of abstract group theory
have corresponding analogs in fuzzy group theory. We begin with the constructing
of the following example showing that this case not always legitimate. Recall some
needed notions from group theory.

Let p be a prime and for, each natural number n ≥ 1, let Gn = 〈an〉 a
cyclic group of order pn If n ≥ 1, let θn : Gn → Gn+1 be the monomorphism
given by anθn = ap

n+1. We think of Gn as a subgroup of Gn+1, and hence we

construct the group Cp∞ =
⋃

n≥1

Gn as the union of the ascending chain

G1 ≤ G2 ≤ · · · ≤ Gn ≤ Gn+1 ≤ · · ·

of cyclic p–groups of orders p, p2, . . . The above group Cp∞ is said to be a
quasicyclic p–group or a Prüfer group of type p∞. It is not hard to see, that
every proper subgroup of Cp∞ is finite. In particular, it satisfies the minimal
condition for all subgroups.

A group G is called a Chernikov group if G includes a normal subgroup D
of finite index which is a direct product of finitely many Prüfer p–subgroups. Such
groups were named in honour of S.N. Chernikov who made an extensive study
of groups with the minimum condition. In particular, S.N. Chernikov proved [8]
that a locally soluble group satisfying the minimal condition for all subgroups is
a Chernikov group.
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Consider now a fuzzy group defined on a quasicyclic p–group G.

Proposition 1.1. Let G be a group and let

〈e〉 = L0 ≤ L1 ≤ · · · ≤ Ln ≤ Ln+1 ≤ · · ·
⋃

n≥1

Ln = G

be a countable ascending chain of subgroups. Let {r1, · · · , rn · · · } be a subset of
[0, 1] such that rn ≥ rn+1 for every n ≥ 1 (the case rn = rn+1 could happen).
Define the function γ : G → [0, 1] by γ(g) = rk(g), where k(g) is the least number
such that g ∈ Lk(g). Then γ is a fuzzy group on G and Ln ≤ Lrn

(γ) for every
n ≥ 1.

P r o o f. Pick x, y ∈ G. We have γ(x) = ak(x) and γ(y) = ak(y) and,
without loss of generality, we can assume that k(x) ≤ k(y) so that x, y ∈ Lk(y).

Suppose first that k(x) < k(y). Then y /∈ Lk(y)−1, and hence y /∈ Lk(x).
It follows that xy ∈ Lk(y) but xy /∈ Lk(x). Then γ(xy) = ak(y) and so γ(x) ≥ γ(y)
and γ(x)∧γ(y) = γ(y). Hence γ(xy) = ak(y) = ak(y)∧ak(x) = γ(x)∧γ(y). Suppose
now that k(x) = k(y). In this case either xy ∈ Lk(x) and xy /∈ Lk(x)−1 or xy ∈ Lm

for some m < k(x). In first the case γ(xy) = ak(x) = ak(x) ∧ ak(x) = γ(x) ∧ γ(y).
In the second case, γ(xy) = am ≥ ak(x) = ak(x) ∧ ak(x) = γ(x) ∧ γ(y). Therefore
we see that γ satisfies (FSG1).

Clearly k(x−1) = k(x) and then γ(x) = γ(x−1). This holds for every
element x ∈ G so that γ satisfies (FSG2).

The inclusions Ln ≤ Lan
(γ) are a fair consequence of the choice of γ. 2

Let now G be a quasicyclic p–group, where p is a prime. Then G has an
ascending chain of cyclic subgroups

〈e〉 ≤ 〈a1〉 ≤ · · · ≤ 〈an〉 ≤ 〈an+1〉 ≤ · · ·
⋃

n≥1

〈an〉 = G,

where ap
1 = e and ap

n+1 = an for every n ≥ 1. By Proposition 1.1, we may
construct fuzzy groups γn : G → [0, 1] as follows.

Fix 0 < d < 1. Define the function γ1 by γ1(x) = d1 = d for every x ∈ G.

Let d2 =
d1

2
. Define the function γ2 by
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γ2(x) =







d2, if x ∈ 〈a1〉

d2

2
, otherwise

Let d3 =
d2

4
. Define the function γ3 by

γ3(x) =























d3, if x ∈ 〈a1〉

d3

2
, if x ∈ 〈a2〉 \ 〈a1〉

d3

4
, otherwise

Suppose that we have already defined the functions γn for all n < k. Let dk =
dk−1

2k−1
and define the function γk by

γ(x) =



































































dk, if x ∈ 〈a1〉

dk

2
, if x ∈ 〈a2〉 \ 〈a1〉

dk

4
, if x〈a3〉 \ 〈a2〉

· · · · · · · · · · · ·

dk

2k−1
, if x〈ak〉 \ 〈ak−1〉

dk

2k
, otherwise

Thus we obtain an infinite family {γn | n ≥ 1} of fuzzy groups on G. By the
construction, γn+1 � γn, γn and γn+1 are not equivalent for all n ≥ 1. Therefore
we obtain an infinite descending chain

γ1 � γ2 � · · · � γn � · · ·

of pairwise non-equivalent fuzzy groups defined on the group G. But the group
G has no infinite descending chain of subgroups.
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2. Some properties of fuzzy subgroups. We start by developing
some properties of the product of fuzzy groups. If X is a set, for every subset Y of
X and every a ∈ [0, 1], we recall that the fuzzy subset χ(Y, a) (the characteristic
function of Y ) is defined by:

χ(Y, a)(x) =

{

a if x ∈ Y
0 if x /∈ Y

where x ∈ X.

Clearly χ(H,a) is a fuzzy group on G for every subgroup H of G. If Y = {y},
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then we will write shorter χ(y, a). A fuzzy subset χ(y, a) is called a fuzzy point
(or a fuzzy singleton).

Let L be a subgroup of G and γ be a fuzzy subgroup on G. We define
the function L|γ : G → [0, 1] by the following rule:

L|γ(x) =

{

γ(x) if x ∈ L
0 if x /∈ L

where x ∈ G.

If x, y ∈ G, it is easy to check that L|γ(xy) ≥ L|γ(x)∧L|γ(y). It follows that L|γ

is a fuzzy group on G.

Proposition 2.1. Let G be a group. Then we have
(1) The operation ⊙ of fuzzy groups on G is associative;
(2) The function χ(e, 1) is the identity element of the operation ⊙. Moreover, if

γ is a fuzzy group on G and λ � γ, then λ⊙χ(e, γ(e)) = χ(e, γ(e))⊙λ = λ;
and

(3) If λ is a fuzzy group on G, x, y ∈ G and a, b ∈ [0, 1], then
(a) (χ(y, a) ⊙ λ)(x) = a ∧ λ(y−1x);
(b) (λ ⊙ χ(y, a))(x) = a ∧ χ(xy−1); and
(c) (χ(y, a) ⊙ χ(u, b))(yu) = a ∧ b and (χ(y, a) ⊙ χ(u, b))(x) = 0 if u ∈ G

and x 6= yu. That is, χ(y, a) ⊙ χ(u, b) = χ(yu, a ∧ b). Thus, χ(y, a) ⊙
χ(u, a) = χ(yu, a).

P r o o f. (1) and (2) It suffices to apply the results of [11, §1.2].
(3) If y 6= z ∈ G, then χ(y, a)(z) = 0. Therefore we have (χ(y, a)⊙λ)(x) =

= ∨{(χ(y, a)(z) ∧ λ(z−1x)) | z ∈ G} = χ(y, a)(y) ∧ λ(y−1x) = a ∧ λ(y−1x).

In particular, if u ∈ G, (χ(y, a) ⊙ χ(u, b))(x) = a ∧ χ(u, b)(y−1x). Since
χ(u, b)(y−1x)) = b provided y−1x = u and χ(u, b)(y−1x)) = 0 otherwise,

(χ(y, a) ⊙ χ(u, b))(x) =

{

a ∧ b if x = yu
0 if x 6= yu

,

and hence we obtain (a) and (c). The proof of (b) is similar. 2

Corollary 2.2. Let γ be a fuzzy group on a group G. If λ and κ are
permutable fuzzy subgroups of γ, then so is λ ⊙ κ.

P r o o f. As we mentioned above the product λ ⊙ κ is a fuzzy subgroup
of γ since its factors are permutable. Let µ be an arbitrary fuzzy subgroup of γ.
Applying Proposition 2.1, we have (λ ⊙ κ) ⊙ µ = λ ⊙ (κ ⊙ µ) = λ ⊙ (µ ⊙ κ) =
(λ ⊙ µ) ⊙ κ = (µ ⊙ λ) ⊙ κ = µ ⊙ (λ ⊙ κ). 2
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Unlike from abstract groups, λ ⊙ κ cannot include λ and κ. In fact,
(λ ⊙ κ)(e) = ∨{λ(y) ∧ κ(z) | y, z ∈ G, e = yz} = ∨{λ(y) ∧ κ(y−1) | y ∈ G} =
∨{λ(y) ∧ κ(y) | y ∈ G}. Since λ and κ are fuzzy groups, λ(e) ≥ λ(y) and
κ(e) ≥ κ(y) for every element y ∈ G. It follows that λ(y)∧κ(y) ≤ λ(e)∧κ(e) for
every y ∈ G, and hence (λ ⊙ κ)(e) = λ(e) ∧ κ(e).

We also remark that if λ ⊙ κ = κ ⊙ λ, then 〈λ, κ〉 = λ ∪ κ ∪ (λ ⊙ κ).

We now are developing a new criterion of being a fuzzy subgroup.

Lemma 2.3. Let γ be a fuzzy group on a group G. If λ, κ ⊆ γ are fuzzy
subsets of G, then λ ⊙ κ ⊆ γ. In particular, γ ⊙ γ � γ.

P r o o f. By definition, (λ⊙κ)(x) = ∨{λ(y)∧κ(z) | y, z ∈ G and x = yz}.
Since λ, κ � γ and the latter is a fuzzy group, λ(y)∧κ(z) ≤ γ(y)∧ γ(z) ≤ γ(yz).
Thus (λ ⊙ κ)(x) ≤ ∨{γ(yz) | y, z ∈ G and x = yz} = γ(x). 2

Proposition 2.4. A fuzzy subset γ of a group G is a fuzzy subgroup if
and only if the following assertion holds:

• (FSG3) χ(x, γ(x)) ⊙ χ(y, γ(y)) ⊆ γ for every x, y ∈ Supp(γ), and

• (FSG4) χ(x−1, γ(x)) ⊆ γ for every x ∈ G.

P r o o f. Let γ be a fuzzy group on G. Since γ includes χ(x, γ(x)) and
χ(y, γ(y)) if x, y ∈ Supp(γ), by Lemma 2.3, χ(x, γ(x)) ⊙ χ(y, γ(y)) ⊆ γ. More-
over, if x ∈ Supp(γ), χ(x−1, γ(x))(x−1) = γ(x) ≤ γ(x−1) since γ is a fuzzy
group. Since χ(x−1, γ(x))(y) = 0 provided y 6= x−1, χ(x−1, γ(x))(y) ≤ γ(y) for
every y ∈ G. This means that χ(x−1, γ(x)) ⊆ γ.

Conversely, let γ satisfy (FSG3) and (FSG4). Pick x, y ∈ G. To show
(FGS 1), There is no loss of generality if we assume x, y ∈ Supp(γ). For, if
γ(x) = 0 for example, we clearly have γ(xy) ≥ 0 = γ(x) ∧ γ(y). Let x, y ∈
Supp(γ). By (FSG3), χ(x, γ(x)) ⊙ χ(y, γ(y)) ⊆ γ. By Proposition 2.1,

γ(x) ∧ γ(y) = (χ(x, γ(x)) ⊙ χ(y, γ(y)))(xy) ≤ γ(xy),

and (FSG1) follows. By (FGS 4), (χ(x−1, γ(x)))(y) ≤ γ(y) for every y ∈ G. In
particular, γ(x) = (χ(x−1, γ(x))(x−1) ≤ γ(x−1), and (FSG 2) follows. 2

We shall need other characterizations of the normality. First, we show

Lemma 2.5. Let γ be a fuzzy subgroup on a group G. Then (χ(x, a) ⊙
γ ⊙ χ(x−1, a))(w) = a ∧ γ(x−1wx) for every x,w ∈ G and a ∈ [0, 1].

P r o o f. By Proposition 2.1, (χ(x, a) ⊙ (γ ⊙ χ(x−1, a))(w) =

= ∨{χ(x, a)(u) ∧ (γ(v) ∧ χ(x−1, a))(z) | u, v, z ∈ G,uvz = w} =
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= χ(x, a)(x) ∧ γ(x−1wx) ∧ χ(x−1, a)(x−1) = a ∧ γ(x−1wx) ∧ a = a ∧ λ(x−1wx),

as required. 2

Proposition 2.6. Let γ, κ be fuzzy groups on a group G such that κ � γ.
Then κ is a normal fuzzy subgroup of γ if and only if

χ(x, γ(x)) ⊙ κ ⊙ χ(x−1, γ(x)) � κ

for every element x ∈ G.

P r o o f. Suppose first that κ is normal in γ. Given x, y ∈ G, by Lemma 2.5

(χ(y, γ(y)) ⊙ κ ⊙ χ(y−1, γ(y))(x) = γ(y) ∧ κ(y−1xy).

Let u = y−1xy. Then x = y(y−1xy)y−1 = yuy−1 and so

(χ(y, γ(y)) ⊙ κ ⊙ χ(y−1, γ(y))(yuy−1) = γ(y) ∧ κ(u).

Since κ(u) ∧ γ(y) ≤ κ(yuy−1), we obtain

(χ(y, γ(y)) ⊙ κ ⊙ χ(y−1, γ(y))(yuy−1) ≤ κ(yuy−1),

that is

(χ(y, γ(y)) ⊙ κ ⊙ χ(y−1, γ(y))(x) ≤ κ(x).

Since this holds for every element x ∈ G, χ(y, γ(y)) ⊙ κ ⊙ χ(y−1, γ(y)) � κ.

Conversely, suppose that χ(y, γ(y))⊙κ⊙χ(y−1, λ(y)) � κ for every y ∈ G.
Pick x ∈ G. We define z = yxy−1 so that x = y−1zy. We have

(χ(y, γ(y)) ⊙ κ ⊙ χ(y−1, γ(y)))(z) ≤ κ(z).

By Lemma 2.5,

(χ(y, γ(y)) ⊙ κ ⊙ χ(y−1, γ(y))(z) = γ(y) ∧ κ(y−1zy).

Then γ(y) ∧ κ(y−1zy) ≤ κ(z), that is γ(y) ∧ κ(x) ≤ κ(yxy−1), as required. 2

We quote the well-known characterization of the normality connecting it
with level subgroups (see [11, Theorem 1.4.3])

Proposition 2.7. A fuzzy subgroup κ of a fuzzy group γ on a group G
is normal in γ if and only if La(κ) is normal in La(γ) for every a ≤ κ(e).

We now analyze the structure of the product γ ⊙ κ.
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Proposition 2.8. Let γ, κ be fuzzy subsets of a group G. Then

γ ⊙ κ =
⋃

{χ(y, γ(y)) ⊙ χ(z, κ(z)) | y ∈ Supp(γ), z ∈ Supp(κ)}.

P r o o f. By definition, we have

(γ ⊙ κ)(x) = ∨{γ(y) ∧ κ(z) | y, z ∈ G,x = yz}.

If y /∈ Supp(γ) or z /∈ Supp(κ), it readily follows that γ(y) ∧ κ(z) = 0. Thus

(γ ⊙ κ)(x) = ∨{γ(y) ∧ κ(z) | y ∈ Supp(λ), z ∈ Supp(κ), x = yz}.

Let ξ :=
⋃

{χ(y, γ(y)) ⊙ χ(z, κ(z)) | y ∈ Supp(γ), z ∈ Supp(κ)}. We have that

χ(y, γ(y)) ⊙ χ(z, κ(z)) = χ(yz, (γ(y) ∧ κ(z)) by Proposition 2.1. We note that,
if x = yz, then χ(yz, (γ(y) ∧ κ(z))(x) = γ(y) ∧ κ(z). Otherwise, χ(yz, (γ(y) ∧
κ(z))(x) = 0. Therefore, if x ∈ G, we have

ξ(x) = ∨{(χ(yz, (γ(y) ∧ κ(z)))(x) | y ∈ Supp(γ), z ∈ Supp(κ), x = yz} =

= ∨{γ(y) ∧ κ(z) | y ∈ Supp(λ), z ∈ Supp(κ), x = yz} = (γ ⊙ κ)(x).

Hence γ ⊙ κ = ∪{χ(y, γ(y)) ⊙ χ(z, κ(z) | y ∈ Supp(γ), z ∈ Supp(κ)}. 2

Corollary 2.9. Let G be a group.
(1) If γ, λ, κ are fuzzy subsets of G and λ ⊆ κ, then γ ⊙ λ ⊆ γ ⊙ κ and λ⊙ γ ⊆

κ ⊙ γ; and

(2) If γ and {λa | a ∈ A} are fuzzy subsets of G, then γ⊙(
⋃

a∈A

λa) =
⋃

a∈A

(γ⊙λa)

and (
⋃

a∈A

λa) ⊙ λ =
⋃

a∈A

(λa ⊙ γ).

( (1) We have

λ =
⋃

{χ(x, λ(x)) | x ∈ Supp(λ)} and κ =
⋃

{χ(x, κ(x)) | x ∈ Supp(κ)}.

Since λ ⊆ κ, we have χ(x, λ(x))(x) = λ(x) ≤ κ(x) = χ(x, κ(x))(x). On the other
hand χ(x, λ(x))(y) = 0 = χ(x, κ(x))(y) if y 6= x. Then χ(x, λ(x)) ⊆ χ(x, κ(x))
for every x ∈ G. By Proposition 2.8

γ ⊙ λ =
⋃

{χ(y, γ(y)) ⊙ χ(z, λ(z)) | y ∈ Supp(γ), z ∈ Supp(λ)} ⊆

⊆
⋃

{χ(y, γ(y)) ⊙ χ(z, κ(z)) | y ∈ Supp(λ), z ∈ Supp(κ)} = γ ⊙ κ.
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The proof of the other inclusion is similar.

(2) Let λ =
⋃

a∈A

λa. By Proposition 2.8,

γ ⊙ λ =
⋃

{χ(y, γ(y)) ⊙ χ(z, λ(z)) | y ∈ Supp(γ), z ∈ Supp(λ)}.

Clearly L := Supp(
⋃

a∈A

λa) =
⋃

a∈A

Supp(λa). Thus we have
⋃

a∈A

(γ ⊙ λa) =

=
⋃

a∈A

(
⋃

{χ(y, γ(y)) ⊙ χ(z, λa(z))) | y ∈ Supp(γ), z ∈ Supp(λa)} =

⋃

{(
⋃

a∈A

χ(y, γ(y)) ⊙ χ(z, λa(z)) | y ∈ Supp(γ), z ∈ L}).

By Proposition 2.1, χ(y, γ(y)) ⊙ χ(z, λa(z)) = χ(yz, γ(y) ∧ λa(z)). But

(
⋃

a∈A

χ(yz, γ(y) ∧ λa(z)))(g) = ∨{(χ(yz, γ(y) ∧ λa(z))(g)) | a ∈ A}

for every g ∈ G. In particular,

(
⋃

a∈A

χ(yz, γ(y) ∧ λa(z)))(yz) = ∨{(χ(yz, γ(y) ∧ λa(z))(yz)) | a ∈ A} =

= ∨{(χ(y) ∧ λa(z)) | a ∈ A} = γ(y) ∧ (∨{λa(z)) | a ∈ A} = γ(y) ∧ λ(z)

and

(
⋃

a∈A

χ(yz, γ(y) ∧ λa(z)))(g) = ∨{(χ(yz, γ(y) ∧ λa(z))(g)) | a ∈ A} = 0

provided g 6= yz. Then
⋃

a∈A

χ(yz, γ(y)λa(z)) = χ(yz, γ(y) ∧ λ(z)). Hence

⋃

a∈A

(γ ⊙ λa) =
⋃

{(
⋃

a∈A

χ(y, γ(y)) ⊙ χ(z, λa(z))) | y ∈ Supp(γ), z ∈ L} =

=
⋃

{χ(yz, γ(y) ∧ λ(z)) = γ ⊙ λ.

The second equation can be obtained in a similar way. 2

The next result characterizes permutable fuzzy subgroups in terms of
the characteristic function χ of a cyclic group which shall need as a specific
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formula. Let γ be a fuzzy group on G, ν a fuzzy subgroup and x ∈ G satisfying
χ(x, γ(x)) ⊆ ν. By Lemma 2.3, χ(x, γ(x))n ⊆ ν for every integer n ≥ 1. Since
χ(x, γ(x))n = χ(xn, γ(x)) by Proposition 2.1, we may apply Lemma 2.3 again to
obtain that χ(x−1, γ(x)) ⊆ ν, and therefore χ(x−1, γ(x))n ⊆ ν for every integer
n ≥ 1. Since Proposition 2.1 ensures that χ(x−1, γ(x))n = χ(x−n, γ(x)), we have
that χ(xn, γ(x)) ⊆ ν for every non-zero integer n. Since γ(x) = χ(x, γ(x))(x) ≤
ν(x) and ν(x) ≤ ν(e), we deduce that γ(x) ≤ ν(e) for every fuzzy subgroup ν
containing χ(x, γ(x)). We note that the function ξ := χ(〈x〉, γ(x)) is a fuzzy
subgroup on G. Since x ∈ 〈x〉, χ(x, γ(x)) ⊆ ξ. If n is a non-zero integer,
then ξ(xn) = γ(x) = χ(xn, γ(x)) ≤ ν(xn). Moreover, as we showed above,
ξ(e) = γ(x) ≤ ν(e). Hence ξ � ν for every fuzzy subgroup ν that contains
χ(x, γ(x)). Thus

ξ = χ(〈x〉, γ(x)) = 〈χ(x, γ(x))〉.

Theorem 2.10. Let γ be a fuzzy group on a group G and κ � γ be
a fuzzy subgroup. Then κ is permutable in γ if and only if χ(〈x〉, γ(x)) ⊙ κ =
κ ⊙ χ(〈x〉, γ(x)) for every x ∈ Supp(γ).

P r o o f. Let κ be permutable in γ. If x ∈ Supp(γ), then χ(x, γ(x)) ⊆ γ
and therefore 〈χ(x, γ(x))〉 � γ. Therefore 〈χ(x, γ(x))〉⊙κ = κ⊙〈χ(x, γ(x))〉. We
have already showed that 〈χ(x, γ(x))〉 = 〈χ(〈x〉, γ(x))〉 and so χ(〈x〉, γ(x))⊙ κ =
κ ⊙ χ(〈x〉, γ(x)), as required.

Conversely, suppose χ(〈x〉, γ(x)) ⊙ κ = κ ⊙ χ(〈x〉, γ(x)) for every x ∈
Supp(γ), and let λ � γ be an arbitrary fuzzy subgroup. By Proposition 2.8,

λ ⊙ κ =
⋃

{χ(y, λ(y)) ⊙ χ(z, κ(z)) | y ∈ Supp(λ), z ∈ Supp(κ)}.

We have

χ(y, λ(y)) ⊙ χ(z, κ(z)) ⊆ 〈χ(y, λ(y))〉 ⊙ κ = χ(〈y〉, λ(y)) ⊙ κ = κ ⊙ χ(〈y〉, λ(y)).

Since χ(〈y〉, λ(y)) = 〈χ(y, λ(y))〉 � λ, by Corollary 2.9, κ ⊙ χ(〈y〉, λ(y)) ⊆ κ ⊙ λ.
Therefore, χ(y, λ(y))⊙χ(z, κ(z)) ⊆ κ⊙λ for every y ∈ Supp(λ) and z ∈ Supp(κ).
Hence

λ ⊙ κ =
⋃

{χ(y, λ(y)) ⊙ χ(z, κ(z)) | y ∈ Supp(λ), z ∈ Supp(κ)} ⊆ κ ⊙ λ.

Similarly, κ ⊙ λ ⊆ λ ⊙ κ, which proves that κ ⊙ λ = λ ⊙ κ. 2
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3. Proof of the main results and their corollaries.

P r o o f o f T h e o r em A. Suppose that κ is permutable in γ. By The-
orem 2.10, χ(〈x〉, γ(x)) ⊙ κ = κ ⊙ χ(〈x〉, γ(x)) for every element x ∈ La(γ). Pick
y ∈ La(κ). By Proposition 2.8,

χ(〈x〉, γ(x)) ⊙ κ =
⋃

{χ(u, γ(x)) ⊙ χ(z, κ(z)) | z ∈ Supp(κ), u ∈ 〈x〉} =

=
⋃

{χ(xk, γ(x)) ⊙ χ(z, κ(z)) | z ∈ Supp(κ), k ∈ Z},

and therefore

χ(y, κ(y)) ⊙ χ(x, γ(x)) ⊆ χ(xk, γ(x)) ⊙ χ(z, κ(z))

for some k ∈ Z and z ∈ Supp(κ). By Proposition 2.1, χ(yx, κ(y) ∧ γ(x)) ⊆
χ(xkz, γ(x)∧κ(z)). It follows that yx = xkz and γ(x)∧κ(y) ≤ γ(x)∧κ(z). Since
x ∈ La(γ) and y ∈ La(κ), we have that γ(x) ∧ κ(y) ≥ a. We note that if γ(x) ≤
κ(z) happens, then κ(z) ≥ a holds and then z ∈ La(κ). Otherwise, γ(x) > κ(z),
and then κ(z) = γ(x)∧κ(z) ≥ a and so we deduce again that z ∈ La(κ). In other
words, for every element y ∈ La(κ), there exists another element z ∈ La(κ) such
that yx = xkz for some integer k. Therefore La(κ)〈x〉 ≤ 〈x〉La(κ). Proceeding in
the same way, we obtain that 〈x〉La(κ) ≤ La(κ)〈x〉 and so we have the equality
〈x〉La(κ) = La(κ)〈x〉. Since this holds for every x ∈ La(γ), we deduce that La(κ)
is permutable in La(γ).

Conversely, suppose that La(κ) is a permutable subgroup of La(γ) for
every a ≤ κ(e). We want to show that χ(〈x〉, γ(x)) ⊙ κ = κ ⊙ χ(〈x〉, γ(x)) for
each x ∈ Supp(γ). If x ∈ Supp(γ), pick y ∈ Supp(γ) and let κ(y) = b and
γ(x) = a. By Proposition 2.1, χ(x, γ(x)) ⊙ χ(y, κ(y)) = χ(xy, γ(x) ∧ κ(y)).

If a ≥ b occurs, then x ∈ Lb(γ) and y ∈ Lb(κ). Since Lb(κ) is permutable
in Lb(γ), Lb(κ) and 〈x〉 are permutable. It follows that there exists an element
z ∈ Lb(κ) such that xy = zxk for some integer k. By Proposition 2.1, χ(z, κ(z))⊙
χ(xk, γ(x)) = χ(zxk, κ(z) ∧ γ(x)). Thus we have

χ(xy, γ(x) ∧ κ(y))(xy) = γ(x) ∧ κ(y) = a ∧ b = b

and

χ(xy, γ(x) ∧ κ(y))(u) = 0

provided u 6= xy. Moreover

χ(zxk, κ(z) ∧ γ(x))(xy) = χ(zxk, κ(z) ∧ γ(x))(zxk) = κ(z)γ(x) = κ(z) ∧ a
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and
χ(zxk, κ(z) ∧ γ(x))(u) = 0

provided u 6= zxk = xy. Since z ∈ Lb(κ), κ(z) ≥ b and so κ(z) ∧ a ≥ b. Thus

χ(xy, γ(x) ∧ κ(y))(v) ≤ χ(zxk, κ(z) ∧ γ(x))(v)

for every v ∈ G. Hence χ(xy, γ(x) ∧ κ(y)) ⊆ χ(zxk, κ(z) ∧ γ(x)).
If we have that b > a, then y ∈ Lb(κ) ≤ La(κ). Since x ∈ La(γ) and La(κ)

is permutable in La(γ), there exists an element z ∈ La(κ) such that xy = zxk for
some integer k. As above we have

χ(x, γ(x)) ⊙ χ(y, κ(y)) = χ(xy, γ(x) ∧ κ(y)),

χ(z, κ(z)) ⊙ χ(xk, γ(x)) = χ(zxk, κ(z) ∧ γ(x))

χ(xy, γ(x) ∧ κ(y))(xy) = γ(x) ∧ κ(y) = a ∧ b = a

χ(xy, γ(x) ∧ κ(y))(u) = 0

provided u 6= xy. Moreover

χ(zxk, κ(z) ∧ γ(x))(xy) = χ(zxk, κ(z) ∧ γ(x))(zxk) = κ(z) ∧ γ(x) = κ(z) ∧ a

and
χ(xy, γ(x) ∧ κ(y))(u) = 0

provided u 6= xy. Since z ∈ La(κ), κ(z) ≥ a and so κ(z) ∧ a ≥ a. Thus

χ(xy, γ(x) ∧ κ(y))(v) ≤ χ(zxk, κ(z) ∧ γ(x))(v)

for every v ∈ G. Therefore in every case

χ(xy, γ(x) ∧ κ(y)) ⊆ χ(zxk, κ(z) ∧ γ(x)).

It follows that
χ(〈x〉, γ(x)) ⊙ κ ⊆ κχ(〈x〉, γ(x)).

Proceeding in the same way, we obtain the reverse inclusion, that is

κ ⊙ χ(〈x〉, γ(x)) ⊆ χ(〈x〉, γ(x)) ⊙ κ,

and therefore
χ(〈x〉, γ(x)) ⊙ κ = κ ⊙ χ(〈x〉, γ(x)).

Thus it suffices to apply Theorem 2.10 to see that κ is permutable in γ. 2
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P r o o f o f C o r o l l a r y A1. Let K = Supp(κ) and L = Supp(γ). It
is suffices to prove that K〈x〉 = 〈x〉K for every element x ∈ L. Pick y ∈ K and
Let a = γ(x) ∧ κ(y) so that x ∈ La(γ) and y ∈ La(κ). By Theorem A, La(κ) is
permutable in La(γ). Then there exists an element z ∈ La(κ) such that yx = xkz
for some integer k. Since z ∈ Supp(κ) = K, K〈x〉 ≤ 〈x〉K. Similarly, we obtain
the reverse inclusion and then K〈x〉 = 〈x〉K holds. 2

P r o o f o f C o r o l l a r y A2. Indeed Ld(κ) is normal in Ld(γ) for every
d ≤ κ(e) by Proposition ??. Remark that every normal subgroup of an abstract
group is permutable. Hence Ld(κ) is a permutable subgroup of Ld(γ) for every
d ≤ κ(e). By Theorem 2.10, κ is a permutable fuzzy subgroup of γ. 2

P r o o f o f C o r o l l a r y A3. Since λ and κ are permutable fuzzy sub-
groups of γ, we have that 〈λ, κ〉 = λ ∪ κ ∪ (λ ⊙ κ). Let µ be an arbitrary fuzzy
subgroup of γ. Applying Corollaries 2.9 and 2.2,

〈λ, κ〉 ⊙ µ = (λ ∪ κ ∪ (λ ⊙ κ)) ⊙ µ = (λ ⊙ µ) ∪ (κ ⊙ µ) ∪ (λ ⊙ (κ) ⊙ µ) =

= (µ ⊙ λ) ∪ (µ ⊙ κ) ∪ (µ ⊙ (λ ⊙ κ)) = µ ⊙ 〈λ, κ〉,

as required. 2

Theorem B. Let G be a group and γ be a fuzzy group on G. Suppose
that L is a subgroup of Supp(γ). Then L is permutable in Supp(γ) if and only
if the fuzzy subgroup L|γ of γ is permutable in γ.

P r o o f. If L|γ is permutable in γ, by Corollary A.1, L = Supp(L|γ) is
permutable in Supp(γ).

Conversely, suppose that L is a permutable subgroup of Supp(γ). There
is no loss of generality if we assume that G = Supp(γ). Let κ = L|γ . Pick x ∈ G
and let k be an integer. Since L is permutable in G, for every y ∈ L, there exists
some z ∈ L and integer t such that xky = zxt. Therefore we have

χ(xk, γ(x)) ⊙ χ(y, κ(y)) = χ(xky, γ(x) ∧ κ(y)) = χ(xky, γ(x) ∧ γ(y)),

χ(z, κ(z)) ⊙ χ(xt, γ(x)) = χ(zxt, κ(z) ∧ γ(x)) = χ(zxt, γ(z) ∧ γ(x)).

Since xky = zxt, xkyx−t = z and therefore

γ(z) = γ(xkyx−t) ≥ γ(xk) ∧ γ(y) ∧ γ(x−t) ≥ γ(xk) ∧ γ(y) ∧ γ(xt) ≥

≥ γ(x) ∧ γ(y)γ(x) ≥ γ(x) ∧ γ(y).

It follows that

χ(xk, γ(x)) ⊙ χ(y, κ(y)) ⊆ χ(z, κ(z)) ⊙ χ(xt, γ(x))
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and then we have the inclusion

χ(〈x〉, γ(x)) ⊙ κ ⊆ κ ⊙ χ(〈x〉, γ(x)).

We also have the other inclusion and so χ(〈x〉, γ(x)) ⊙ κ = κ ⊙ χ(〈x〉, γ(x)). By
Theorem 2.10, κ = L|γ is a permutable fuzzy subgroup of γ. 2

The above result extends the one in [2, Theorem 3.2].

P r o o f o f C o r o l l a r y B1. There is no loss of generality if we assume
that G = Supp(γ).

Suppose that every fuzzy subgroup of γ is permutable in γ. Let L be a
subgroup of G. Then the fuzzy subgroup L|γ is permutable in γ. By Theorem
B, L is permutable in G.

Conversely, let every subgroup of G be permutable, and pick λ a fuzzy
subgroup of γ. If a ≤ λ(e), since La(λ) is permutable in G, it is permutable
in La(γ). This holds for each a ≤ λ(e) and then Theorem A shows that λ is a
permutable fuzzy subgroup of γ. 2

Our last consequence has a different nature. We were able to give the
structure of an abstract group G such that there exists a fuzzy group on G whose
fuzzy subgroups are permutable. It follows from Theorem B and Corollary A4
that the subgroups of such G are permutable and then the structure of G is
known (see [13, Lemma 2.4.10, Theorems 2.4.11 and 2.4.14]).

Corollary B2. Let G be a group and γ be a fuzzy subgroup on G whose
fuzzy subgroups are permutable. Then one of the following cases appear Here,
as usual, Π(G) denotes the set of prime divisors of the orders of the periodic
elements of G.
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