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Abstract. Necessary and sufficient conditions for absence of zeros of the
function ζ(s), s = σ + it, in the half-plane σ > θ, 1/2 ≤ θ < 1 are proposed
in terms of representations of holomorphic functions by series in Hermite
and Laguerre polynomials as well as in terms of Fourier and Hankel integral
transforms.

1. Representation of holomorphic functions by series of

Hermite and Laguerre polynomials. The region of convergence of a series
in Hermite polynomials

(1.1)

∞
∑

n=0

anHn(z),
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as it is pointed out by G. Szegö [14, 9.2, (5)], is a strip symmetrically situated to
the real axis. More precisely, let

(1.2) τ0 = max{0,− lim sup
n→∞

(2n+ 1)−1/2 log(2n/e)n/2|an|},

then:

If τ0 = 0, then the series (1.1) diverges in the open set C\R. If 0 < τ0 ≤
∞, then it is absolutely uniformly convergent on each compact subset of the strip

S(τ0) := {z ∈ C : | Im z| < τ0} and diverges in the open set C \ S(τ0).
The equality (1.2), which can be regarded as a formula of Cauchy-Hadamard

type for series in Hermite polynomials, is a corollary of the asymptotic formula
for these polynomials in the complex plane [14, Theorem 8.22.7].

The C-vector space H(τ0), 0 < τ0 ≤ ∞ of holomorphic functions, having
an expansion of the kind (1.1) in the strip S(τ0), is completely described by E.
Hille [4]. In fact, he proved the following assertion:

Let 0 ≤ τ <∞, S(τ) := {z ∈ C : | Im z| ≤ τ and define

(1.3) η(τ ;x, y) = x2/2− |x|(τ2 − y2)1/2, z = x+ iy ∈ S(τ).

Then, a complex function f is in the space H(τ0) if and only if for each

τ ∈ [0, τ0) there exist a positive constant H(f, τ) such that

(1.4) |f(z)| = |f(x+ iy)| ≤ H(f, τ) exp(η(τ ;x, y)), z = x+ iy ∈ S(τ).

Moreover, if (1.1) is the Hermite polynomial expansion of the function f
in the strip S(τ0), then

(1.5) an = (
√
πn!2n)−1

∫ ∞

−∞
exp(−x2)Hn(x)f(x) dx, n = 0, 1, 2, . . .

The region of convergence of a series in Laguerre polynomials is the inte-
rior of a parabola with focus at the zero-point and vortex at a point of the real
and negative semi-axes [14, 9.2., (5)]. More precisely, let

(1.6) λ0 = − lim sup
n→∞

(2
√
n)−1 log |an| > 0

and α be an arbitrary complex number, then:

The series

(1.7)
∞
∑

n=0

anL
(α)
n (z)
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is absolutely uniformly convergent on each compact subset of the region

(1.8) ∆(λ0) = {z ∈ C : Re(−z)1/2 < λ0}

and diverges outside it [6, (IV.2.1)].

Let us note that if 0 < λ0 < ∞, then ∆(λ0) is just the interior of the
parabola with focus at the origin and with vortex at the point −λ20, and that
∆(∞) = C.

Let P(α)(λ0), 0 < λ0 ≤ ∞ be the C-vector space of even complex-valued
functions which are holomorphic in the strip S(λ0) and have there a representa-
tion by a series of the kind

(1.9)

∞
∑

n=0

anL
(α)
n (z2).

The growth of the functions in the space P(0)(λ0) is determined first by
H. Pollard [5, Theorem A] by means of Hille’s function (1.3). In fact, Pollard
proved that:

A complex-valued function f , holomorphic in the strip S(λ0), 0 < λ0 ≤ ∞,

is in the space P(0)(λ0) if and only if to each λ ∈ [0, λ0) there corresponds a

positive constant A(f, λ) such that for each z = x+ iy ∈ S(λ),

(1.10) |f(z)| = |f(x+ iy)| ≤ A(f, λ) exp(η(λ;x, y)).

O. Szazs and N. Yeardly generalized Polard’s criterion by showing that
it holds for each α > −1 [13, Theorem A]. This means that the space P(α)(λ0)
does not depend on α > −1. Hence, it can be denoted by P(λ0) only.

Let L(λ0), 0 < λ0 ≤ ∞ be the C-vector space of complex-valued functions
f , holomorphic in the region ∆(λ0), with the property that for each λ ∈ [0, λ0)
there exists a positive constant M(f, λ) such that for each z ∈ ∆(λ) = {z ∈ C :
Re(−z)1/2 ≤ λ},

(1.11) |f(z)| = |f(x+ iy)| ≤M(f, λ)ϕ(λ;x, y),

where

(1.12) ϕ(λ;x, y)

= exp







√

x2 + y2 + x

4
−
[

√

x2 + y2 + x

2

(

λ2 −
√

x2 + y2 − x

2

)]1/2





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Since the image of the strip S(λ0) under the mapping z 7−→ z2 is the
region ∆(λ0), the following assertion holds true:

A complex function f , holomorphic in the region ∆(λ0), 0 < λ ≤ ∞ is

representable in this region by a series in Laguerre polynomials with parameter

α > −1 if and only if it is in the space L(λ0). Moreover, if (1.7) is the Laguerre

polynomial expansion of the function f in the region ∆(λ0), then

(1.13) an =
Γ(n+ 1)

Γ(n+ α+ 1)

∫ ∞

0
xα exp(−x)L(α)

n (x)f(x) dx, n = 0, 1, 2, . . . .

Remark. Let Ak = {z ∈ C : Re z = k + 1/2, z 6= k + 1/2}, k ∈ Z and
A =

⋃

k∈ZAk. Then, the above assertion remains true provided the parameter
α ∈ C \A [6, (V.3.6)].

There is another approach to the problem of expansion of holomorphic
functions in series of Laguerre and Hermite polynomials. Namely, the integral
representations

(1.14) L(α)
n (z) =

z−α/2 exp z

n!

∫ ∞

0
tn+α exp(−t)Jα(2

√
zt) dt, n = 0, 1, 2, . . . ,

and

(1.15) Hn(z) =
2n(−i)n exp z2

n!

∫ ∞

−∞
tn exp(−t2 + 2izt) dt, n = 0, 1, 2, . . .

give rise to “translate” this problem in the language of Hankel and Fourier integral
transforms. The role of a “mediator” is playing by the class G(γ),−∞ < γ ≤ ∞
of entire functions G such that

(1.16) lim sup
|w|→∞

(2
√

|w|)−1(log |G(w)| − |w|) ≤ −γ.

Evidently, the class G(γ) consists of the entire functions G such that the
estimate

(1.17) |G(w)| = O(exp |w| − 2(γ − δ)
√

|w|), w ∈ C

holds whatever the positive δ be. Hence, G is a C-vector space.

Closely related to G(γ) is the class E(γ),−∞ < γ ≤ ∞ of entire functions
E such that

(1.18) lim sup
|w|→∞

(2|w|)−1(log |E(w)| − |w|2) ≤ −γ.
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It is quite easy to prove that an entire function E is in E(γ) if and only
if it has the form

(1.19) E(w) = U(w2) + wV (w2), w ∈ C,

where the entire functions U and V are in the class G(γ). Indeed, if E has the
form (1.19), then (1.18) is a corollary of (1.16). Conversely, if E satisfies (1.18),
then we define

U(w) = (1/2)(E(w1/2) + E(−w1/2))

and

V (w) = (1/2)w−1/2(E(w1/2)− E(−w1/2)).

Then, the entire functions U, V are in the class G(γ) and, moreover,

E(w) = U(w2) + wV (w2), w ∈ C.

The role of the spaces G(γ) and E(γ) is cleared up by the following asser-
tions:

A complex function f , holomorphic in the region ∆(λ0), 0 < λ0 ≤ ∞, has

an expansion in this region in a series of Laguerre polynomials with parameter

α > −1 if and only if it admits the representation

(1.20) f(z) = z−α/2 exp z

∫ ∞

0
tα/2 exp(−t)G(t)Jα(2

√
zt) dt

in the region z ∈ ∆(λ0) \ (λ20, 0] with a function G ∈ G(λ0) [7, Theorem 1], [8,
Theorem V], [6, (VI.1.3)].

A complex function f , holomorphic in the region S(τ0), 0 < τ0 ≤ ∞, has

an expansion there in a series of Hermite polynomials if and only if it admits the

representation

(1.21) f(z) =
1√
π

∫ ∞

−∞
E(t) exp{−(t− iz)2} dt, z ∈ S(τ0)

with a function E ∈ E(τ0) [6, (VI.4.1)], [8, Theorem VI].

Remark. The assertion [6, (VI.1.2)] is a criterion the power series

(1.22)
∞
∑

n=0

(n!)−1anw
n
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to define an entire function of the class G(γ). It states that this is the case if and
only if

(1.23) lim sup
n→∞

(2
√
n)−1 log |an| ≤ −γ.

Furthermore, the above criterion and Stirling’s formula yield that the
power series (1.22) defines an entire function of the class E(γ) if and only if

(1.24) lim sup
n→∞

(2n)−1 log(2n/e)n/2|an| ≤ −γ.

2. Holomorphic extension by means of series in Laguerre

and Hermite polynomials. For a complex-valued function f , defined on an
interval (a, b), −∞ ≤ a < b ≤ ∞ of the real line is said that it is holomorphically
extendable in the complex plane if there exist a domain D ⊂ C containing the
interval (a, b) and a function F holomorphic in D and such that F (x) = f(x)
a.e. (almost everywhere) in (a, b). Evidently, the uniqueness of the holomor-
phic extension F is a direct consequence of the identity theorem for holomorphic
functions of one complex variable.

Sufficient conditions for existence of holomorphic extensions of complex
functions of a real variable in terms of Jacobi, Laguerre and Hermite polynomials
are given in the paper [9] as well as in Chapter V of the monograph [6]. The
assertions we need further are the following:

Suppose that for a measurable complex-valued function b, defined on the

interval (0,∞), there exist r > 0, δ < 1 and α > −1 such that the function

exp(−δx)b(x) is essentially bounded on the interval (r,∞) and, moreover,

(2.1)

∫ r

0
xα|b(x)| dx <∞.

If

λ0(b) = − lim sup
n→∞

(2
√
n)−1 log |b(α)n (b)| > 0,

where

(2.2) b(α)n (b) =

∫ ∞

0
xα exp(−x)L(α)

n (x)b(x) dx, n = 0, 1, 2, . . . ,

then b has a holomorphic extension. More precisely, there exists a function B
holomorphic in the region ∆(λ0(b)) and such that B(x) = b(x) a.e. in (0,∞).
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Moreover, for each λ ∈ [0, λ0(b)) there exists a positive constant M(b, λ) such

that

(2.3) |b(x)| ≤M(b, λ) exp(x/2 − λ
√
x) a.e. in (0,∞).

Suppose that for a measurable complex-valued function c, defined on the

real line, there exist r > 0 and δ < 1 such that the function exp(−δx2)c(x) is

essentially bounded for |x| ≥ r and, moreover,
∫ r

−r
|c(x)| dx <∞.

If τ0(g) = − lim supn→∞(2n+ 1)−1/2 log(2n/e)−n/2|cn(c)| > 0, where

(2.4) cn(c) =

∫ ∞

−∞
exp(−x2)Hn(x)c(x) dx, n = 0, 1, 2, . . . ,

then c has holomorphic extension. More precisely, there exists a complex-valued

function C which is holomorphic in the strip S(τ0(g)) and such that C(x) = c(x)
a.e. in (−∞,∞). Moreover, to each τ ∈ [0, τ0(g)) there correspond a positive

number N(c, τ) such that

(2.5) |c(x)| ≤ N(c, τ) exp(x2/2− τ |x|) a.e. in (−∞,∞).

In order to prove the first of them we define the complex-valued function
B by

(2.6) B(z) =

∞
∑

n=0

Γ(n+ 1)

Γ(n+ α+ 1)
b(α)n (b)L(α)

n (z),

Then, Stirling’s formula yields that

− lim sup
n→∞

(2
√
n)−1 log |(Γ(n+ 1)/Γ(n + α+ 1))b(α)n (b)| =

− lim sup
n→∞

(2
√
n)−1 log |b(α)n (b)| = λ0(f).

Hence, the series in (2.6) converges absolutely uniformly on each compact sub-
set of the region ∆(λ0(b)), i.e. the function B is holomorphic in this region.
Furthermore,

(2.7)

∫ ∞

0
B(α)(x)L(α)

n (x) dx = 0, n = 0, 1, 2, . . . ,
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where

(2.8) B(α)(x) = xα exp(−x)(B(x)− b(x)), 0 < x <∞.

Indeed,
∫ ∞

0
B(α)(x)L(α)

n (x) dx

=
Γ(n+ 1)

Γ(n+ α+ 1)
b(α)n

∫ ∞

0
xα exp(−x){L(α)

n (x)}2 dx− b(α)n = 0, n = 0, 1, 2, . . . .

Since degL
(α)
n = n, α 6= −1,−2,−3, . . . , n = 0, 1, 2, . . . , the system of

Laguerre polynomials with parameter α > −1 is linearly independent. Hence, it
is a basis in the space of the algebraic polynomials with real coefficients. Then,
from equalities (2.7) it follows that

(2.9)

∫ ∞

0
B(α)(x)xn dx = 0, n = 0, 1, 2, . . . .

Let B(α)(x) be the Fourier transform of the function B(α)(x), i.e.

(2.10) B(α)(w) =

∫ ∞

0
B(α)(x) exp(−iwx) dx.

There is a positive constant D such that the inequality |b(x)| ≤ D exp(δx)
holds a.e. in the interval (r,∞). Since the function B is in the space L(λ0(b)),
from (1.12) it follows that |B(x)| ≤ M(b, 0) exp(x/2) for x ∈ [0,∞). Hence,
|B(α)(x)| ≤ Q exp(−(1 − q)x) a.e. in (r,∞) where Q = max{M(b, 0),D} and
q = max(1/2, δ). Therefore, the integral in (2.10) is uniformly convergent on
each closed strip S(τ) = {w ∈ C : | Imw| ≤ τ} with τ ∈ [0, 1 − q), i.e. the
function B(α) is holomorphic in the strip S(1 − q). Furthermore, because of the
equalities (2.9), this function and each of its derivatives vanishes at the point
w = 0. Hence, the function B(α) is identically zero and the uniqueness property
of Fourier transform yields that B(α) ∼ 0, i.e. B(α)(x) = 0 a.e. in (0,∞) which
immediately gives that B(x) = b(x) a.e. in (0,∞). Since ϕ(λ;x, 0) = x/2− λ

√
x

for x ∈ [0,∞), (2.3) is a consequence of (1.12).

The proof of the criterion for holomorphic extension by means of series
in Hermite polynomials proceeds in a similar way. We define the function C by

(2.11) C(z) =
∞
∑

n=0

(
√
πn!2n)−1cn(c)Hn(z).
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Since

− lim sup
n→∞

(2n + 1)−1/2 log(
√
πn!2n)−1(2n/e)n/2|cn(c)| =

− lim sup
n→∞

(2n+ 1)−1/2 log(2n/e)−n/2|cn(c)| = τ0(c),

the series in (2.11) is absolutely uniformly convergent on each compact subset of
the strip S(τ0(c)), i.e. its sum is in the space H(τ0(c)). Moreover,

∫ ∞

−∞
T (x)Hn(x) dx = 0, n = 0, 1, 2, . . . ,

where T (x) = exp(−x2)(C(x) − c(x)),−∞ < x < ∞. Furthermore, the Fourier
transform T of the function T , which is holomorphic in the strip S(1−q), turns out
to be identically zero. Hence, T ∼ 0 in (−∞,∞) which yields that C(x) = c(x)
a.e. in (−∞,∞).

3. Applications to the zero-distribution of Riemann’s

ζ-function. It is well-known that the function ζ(s), s = σ + it, defined in
the half-plane σ > 1 by the Dirichlet series

(3.1) ζ(s) =

∞
∑

n=1

1

ns
,

is analytically continuable in the whole complex plane as a meromorphic function
with unique pole at the point s = 1. Indeed, from (2.6) it follows that

(3.2) (1− 21−s)ζ(s) =

∞
∑

n=1

(−1)n

ns
·

for Re s > 1. But the series on the right-hand side is uniformly convergent on
each closed half-plane σ ≥ δ > 0. Hence, its sum Z(s) is a holomorphic function
in the half-plane σ > 0. Assuming that ζ(s) = (1 − 21−s)−1Z(s) for 0 < σ ≤ 1
and s 6= 1, we obtain the continuation of the function ζ(s) as a meromorphic
function in the half-plane σ > 0 with unique pole at the point 1. Furthermore,
the functional equation

π−s/2Γ(s/2)ζ(s) = π−(1−s)Γ((1− s)/2)ζ(1 − s)

holds in the strip 0 < σ < 1. But, in fact, it realizes the continuation of the
function ζ(s) as a holomorphic function on left of the imaginary axis. Its direct
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consequence is that this function has simple zeros at the non-zero poles of the
function Γ(s/2), i.e. at each of the points −2k, k = 1, 2, 3, . . . . These are the so
called trivial zeros of the function ζ(s).

It is well-known, that it has infinitely many zeros in the strip 0 < Re s < 1,
called non-trivial. The conjecture that all the non-trivial zeros of the function
ζ(s) are situated on the line σ = 1/2 is the famous hypothesis of Riemann. Till
now it is neither proved, nor disproved. Moreover, it is not known whether these
zeros are in a closed strip of the kind 1/2− δ ≤ σ ≤ 1/2 + δ for some δ ∈ (0, 1/2).
It is clear that this is true if and only if the function ζ(s) has no zeros in the
half-plane σ > θ for some θ ∈ [1/2, 1).

It is also well-known that the function ζ(s) has no zeros on the closed
half-plane σ ≥ 1. Hence, there is a region Ω containing this half-plane and such
that ζ(s) 6= 0 for s ∈ Ω. Therefore, the function

(3.3) Φ(s) = −ζ
′(s)

ζ(s)
− 1

s− 1

is holomorphic in the region Ω. Moreover, the integral representation

(3.4) Φ(s) =

∫ ∞

1

ψ(x)− x

xs+1
dx

holds on the closed half-plane σ ≥ 1, where ψ is one of the Chebisheff functions
[2, Section 3]. More precisely, the integral in (3.4) is absolutely and uniformly
convergent on this half-plane and the function Φ is bounded there. Indeed, since
ψ(x)−x = O(x exp(−c(log x)1/2)), c > 0, as x→ ∞ s.e.g. [3, Section 18, (1)], we
have that for σ ≥ 1 and −∞ < t <∞,

|Φ(s)| ≤
∫ ∞

1

|ψ(x) − x|
xσ+1

dx = O

(
∫ ∞

1
x−1 exp(−c(log x)1/2) dx

)

= O

(
∫ ∞

0
exp(−cx1/2) dx

)

= O(1).

It turns out that the function

(3.5) Φ(1 + iz) =

∫ ∞

1

ψ(t)− t

t2+iz
dt, z = x+ iy,

is holomorphic on the closed half-plane Im z ≤ 0. Moreover, it is bounded there
and, in particular, on the real axis. Hence, there exist the Fourier-Hermite coef-
ficients of the function Φ(1 + ix),−∞ < x <∞, namely

(3.6) an(Φ) =

∫ ∞

−∞
exp(−x2)Hn(x)Φ(1 + ix) dx, n = 0, 1, 2, . . . .
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Let us define

(3.7) An(ψ) =

∫ ∞

0
tn exp(−t2/4− t)(ψ(exp t)− exp t) dt, 0, 1, 2 . . . ,

then the equalities

(3.8) an(Φ) =
√
π(−i)nAn(ψ), n = 0, 1, 2, . . .

hold [10, (3.6)]. If

τ0(Φ) = − lim sup
n→∞

(2n + 1)−1/2 log(2n/e)−n/2|an(Φ)|

and

T0(ψ) = − lim sup
n→∞

(2n + 1)−1/2 log(2n/e)−n/2|An(ψ)|,

then, (3.8) yields that

(3.9) τ0(Φ) = T0(ψ).

The first of our results concerning the distribution of the non-trivial zeros
of Riemann’s ζ-function is the following assertion:

The function ζ(s) has no zeros in the half-plane σ > θ, 1/2 ≤ θ < 1 if and

only if T0(ψ) ≥ 1− θ [10, (I)].

If T0(ψ) ≥ 1− θ, then (3.9) yields that τ0(Φ) ≥ 1− θ. Hence, the function
Φ(1+ix),−∞ < x <∞, has a holomorphic extension at least in the strip S(1−θ).
This means that the function Φ has no poles in the half-plane σ > θ, i.e. the
function ζ has no zeros in this half-plane.

The assumption that ζ(s) 6= 0 when σ > θ, 1/2 ≤ θ < 1 implies that
ψ(x) = x+O(xθ log2 x) as x→ ∞ [3, Section 18], i.e.

(3.10) ψ(x) = x+O(xθ+ε), x→ ∞,

whatever the positive ε be.
The proof that T0(ψ) ≥ 1− θ if ζ(s) 6= 0 for σ > θ, given in [10], is

based on the asymptotic estimate (3.10), Hille’s theorem and Cauchy-Hadamard’s
formula for series in Hermite polynomials. But, there is a more direct proof of
this fact which avoids the whole “machinery” of Hermite’s series representation
of holomorphic functions including Hille’s theorem. Indeed, from (3.7) and (3.10)
it follows that

|An(ψ)| = O

(
∫ ∞

0
tn exp(−t2/4− (1− θ − ε)t) dt

)
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= O

(

2n/2
∫ ∞

0
exp(−t2/2−

√
2(1− θ − ε)t) dt

)

and the integral representation [12, 8.3, (3)]

Dν(z) =
exp(−z2/4)

Γ(−ν)

∫ ∞

0
t−ν−1 exp(−t2/2− zt) dt, Re ν < 0,

of Weber-Hermite’s function Dν(z) gives that

|An(ψ)| = O
(

2n/2Γ(n+ 1)D)−n−1(
√
2(1− θ − ε))

)

.

Furthermore, Stirling’s formula as well as T.M. Cherry’s asymptotic formula [1,
8.4, (5)]

Dν(z) =
1√
2
exp((ν/2) log(−ν)− ν/2− (−ν)1/2z)(1 +O(|ν|−1/2)),

| arg(−ν)| ≤ π/2, |ν| → ∞

yield that

(2n/e)−n/2|An(ψ)| = O(exp(−(2n+ 1)1/2(1− θ − ε))), n→ ∞.

Hence, the inequality T0(ψ) ≥ 1− θ − ε holds for each positive ε < 1 − θ, i.e.
T0(ψ) ≥ 1− θ.

It is clear that T0(ψ) ≤ 1/2. Otherwise τ0(Φ) = T0(ψ) > 1/2 and the
function Φ(1+ ix),−∞ < x <∞ would have a holomorphic extension at least in
the strip S(τ0(Φ)) which is impossible. Hence, we may allow us to formulate the
following assertion:

Riemann’s hypothesis is true if and only if T0(ψ) = 1/2 [10, (II)].

The next assertion is “inspired” by the integral representation (1.21) of
the functions from the space H(τ0), 0 < τ0 ≤ ∞. It says that:

The function ζ(s) has no zeros in the half-plane σ > θ, 1/2 ≤ θ < 1 if and

only if the Fourier transform of the function

(3.11) exp(−x2/4)Φ(1 + ix), −∞ < x <∞,

is of the form

(3.12)
√
2 exp(−u2)E(u)

with a function E ∈ E(1− θ) [10, (III)].
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If ζ(s) 6= 0 when σ > θ, then the function Φ(1 + iz) ∈ H(τ0(Φ)). Hence,
the representation

Φ(1 + iz) =
1√
π

∫ ∞

−∞
E(u) exp(−(u− iz)2) du

holds in the strip S(τ0(Φ)) with E ∈ E(τ0(Φ)). Furthermore, if z = x ∈ (−∞,∞),
then (1.21) and the inversion formula for the Fourier transform yield that

(3.13)
√
2 exp(−u2)E(u) =

1√
π

∫ ∞

−∞
Φ(1 + ix) exp(iux)) dx.

It is quite easy to verify that λ ≥ µ implies E(λ) ⊂ E(µ). Then, since
T0(ψ) ≥ 1− θ and E(τ0(Φ)) = E(T0(ψ)), the entire function E is in the class
E(1− θ).

Conversely, let the Fourier transform of the function (3.11) be of the form
(3.12) with E ∈ E(1 − θ). Then, (3.13) holds and again the inversion formula
yields that

Φ(1 + ix) =
1√
π

∫ ∞

−∞
E(u) exp(−(u+ ix)2) du, −∞ < x <∞.

Furthermore, whatever the positive ε < 1− θ be, the integral
∫ ∞

−∞
E(u) exp(−(u+ iz)2) du

is uniformly convergent on the closed strip S(1 − θ − ε). This means that the
function Φ(1+ ix) has a holomorphic extension in the strip S(1− θ). Hence, the
function ζ(s) has no zeros in the half-plane σ > θ.

As a corollary of the last assertion we can formulate the following one:

Riemann’s hypothesis is true if and only if the Fourier transform of the

function exp(−x2/4)Φ(1+ix/2),−∞ < x <∞ is of the form exp(−u2)E(u) with
a function E ∈ E(1/2) [10].

As a consequence of the integral representation (1.20) it can be obtained
a criterion a complex function to have an expansion in a series of the polynomials

{L(α)
n (z2)}∞n=0. More precisely:

An even complex function f , holomorphic in the strip S(λ0), 0 < λ0 ≤ ∞,

is in the space P(α)(λ0), α > −1 if and only if the representation

(3.14) zα+1/2 exp(−z2)f(z/
√
2)
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=

∫ ∞

0
tα+1/2 exp(−t2)F (t2/2)(zt)1/2Jα(zt) dt

holds in the half-strip S+(λ0) = {z ∈ S(λ0) : Re z > 0} with a function F ∈ G(λ0)
[12].

Let us suppose that the function ζ(s) has no zeros in the half-plane Re s >
θ, 1/2 ≤ θ < 1. Then, the function Φ̃(s) = Φ(s) + Φ(2 − s) is holomorphic in
the strip θ < Re s < 2 − θ and is bounded in each closed substrip θ + ε ≤
Re s ≤ 2− θ − ε provided 0 < ε < 1 − θ. Hence, the even function Φ∗(z) =
Φ(1 + iz) + Φ(1 − iz) is holomorphic in the strip S(1 − θ). Moreover, it is
bounded on each closed strip S(1− θ− ε) with ε ∈ (0, 1− θ). This means that it
is in the space P(α)(1− θ) for each α > −1, i.e. there is a function F ∈ G(1− θ)
such that

(3.15) zα+1/2 exp(−z2)Φ∗(z/
√
2)

=

∫ ∞

0
tα+1/2 exp(−t2/2)F (t2/2)(zt)1/2Jα(zt) dt

for z ∈ S+(1− θ). Then, the inversion rule for the Hankel transform yields that

(3.16) tα+1/2 exp(−t2/2)F (t2/2)

=

∫ ∞

0
xα+1/2 exp(−x2/2)Φ∗(x/

√
2)(tx)1/2Jα(tx).

Further, if ζ(s) 6= 0 for Re s > θ, 1/2 ≤ θ < 1, then the Hankel transform
with kernel w1/2Jα(w), α > −1, of the function in the left-hand side of (3.15) is
the function in the left-hand side of (3.16). The converse is also true. Indeed, if
the function F is in the class G(1−θ), 1/2 ≤ θ < 1, then the asymptotic formula [1,
7.13., (3)] for the function Jα(z) yields that whatever ε ∈ (0, 1−θ) be, the integral
in the right-hand side of (3.15) is uniformly convergent in the strip S(

√
2(1−θ−ε))

and defines a holomorphic function in the strip S(
√
2(1 − θ)). This means that

the function Φ∗(x) has a holomorphic extension in the strip S(1 − θ), i.e. the
function Φ(s) is analytically continuable in the half-plane Re s > θ. Hence, the
function ζ(s) has no zeros in this half-plane. Thus it is proved that:

A necessary and sufficient condition that ζ(s) 6= 0 in the half-plane Re s >
θ, 1/2 ≤ θ < 1, is the Hankel transform with kernel w1/2Jα(w) of the function

(3.15) to be of the form (3.16) with a function F ∈ G(1 − θ) [11].

A direct consequence of the last assertion is the following criterion:
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Riemann’s hypothesis is true if and only if the Hankel transform with

kernel w1/2Jα(w) of the function (3.15) is of the form (3.16) with F ∈ G(1/2)
[11].

The absence of zeros of ζ(s) in the half-plane Re s > θ, 1/2 ≤ θ < 1 can
be ensured also by the growth of the Fourier-Laguerre coefficients of the function
Φ(1 + i

√
x), 0 ≤ x <∞. Indeed, let define

λ
(α)
0 (Φ) = − lim sup

n→∞
(2
√
n)−1 log |a(α)n (Φ)|,

where

a(α)n (Φ) =

∫ ∞

0
xα exp(−x)L(α)

n (x)Φ(1 + i
√
x) dx, α > −1, n = 0, 1, 2, . . . .

Then:

Riemann’s ζ-function has no zeros in the half-plane Re s > θ, 1/2 ≤ θ <

1, if and only if λ
(α)
0 (Φ) ≥ 1− θ [12].

Since λ
(α)
0 (Φ) ≤ 1/2 whatever α > −1 be, one can formulate the following

criterion:

Riemann’s hypothesis holds true if and only if λ
(α)
0 (Φ) = 1/2 for some

α > −1 [12].
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