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Abstract. We consider a class of age-structured control problems with
state constraints, nonlocal dynamics and boundary conditions, defined on
finite time intervals. For these problems we suggest Mangasarian-type suf-
ficient conditions for the optimality of the control. As an application we
consider a model with a state constraint of optimal investment in vintage
capital goods. To solve this model we suggest a numerical method and we
prove that this method converges to an optimal solution.

1. Introduction and the general problem. The age (vintage)
plays an important role in the statement of many problems which arise in biol-
ogy, economics, demography and other sciences. Such problems, known as age-
structured optimal control problems, are considered for example in [1], [2], [5],
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[6], [9], [10], [12] and [16]. The finding of an optimal solution to a control problem
is usually connected with implementation of some optimality condition. It turns
out that the most applicable optimality condition for the age-structured control
problems without state constraints is the Pontryagin’s type necessary condition
which is obtained in [7]. The use of state constraints is an intrinsic feature of the
economic models. As we know there have not been obtained optimality condi-
tions for the control problems which correspond to these models. In the present
paper we suggest Mangasarian type sufficient conditions for optimality for a class
of age-structured optimal control problems with state constraints. These con-
ditions are analogous to the sufficient optimality conditions for optimal control
problems governed by ODEs suggested in [17] and [18].

We consider the following general control problem:

(1)

J(u, v, w) =

T
∫

0

ω
∫

0

f0

(

t, a, y(t, a), p(t, a), q(t), u(t, a)
)

da dt+

+

ω
∫

0

(

ψ0(a,w(a)) + l(a, y(T, a))
)

da+

T
∫

0

ϕ0

(

t, q(t), v(t)
)

dt −→ max,

subject to the dynamic equations

(2)

(

∂

∂t
+

∂

∂a

)

y(t, a) = f
(

t, a, y(t, a), p(t, a), q(t), u(t, a)
)

,

(3) p(t, a) =

ω
∫

0

g
(

t, a, a′, y(t, a′), u(t, a′)
)

da′,

(4) q(t) =

ω
∫

0

h
(

t, a, y(t, a), p(t, a), q(t), u(t, a)
)

da,

the initial condition

y(0, a) = ψ(a,w(a)) for a ∈ [0, ω],(5)

the boundary condition

y(t, 0) = ϕ(t, q(t), v(t)) for t ∈ [0, T ] ,(6)
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the control variable constraints

u(t, a) ∈ U, v(t) ∈ V, w(a) ∈W for t ∈ [0, T ] and a ∈ [0, ω],(7)

the mixed state constraints

(8)
Π
(

t, a, y(t, a), p(t, a), q(t), u(t, a)
)

≥ 0, Φ
(

t, q(t), v(t)
)

≥ 0,

Ψ
(

a,w(a)
)

≥ 0

for t ∈ [0, T ] and a ∈ [0, ω], and the pure local state constraints

π
(

t, a, y(t, a)
)

≥ 0 for t ∈ [0, T ] and a ∈ [0, ω].(9)

The third group of inequalities of (8) is not actually a group of state
constraints, but we are introducing it to obtain symmetry in the results. In the
optimization problems the sets U , V and W are usually specified by inequalities.
These inequalities might be incorporated into (8), so there might be various
allocations of these sets. It is known from the optimal control theory for ODEs,
that the pure state constraints (that is the constraints in which control variables
are not involved) are more difficult to handle. Therefore we separate here the
inequalities (9) which do not include control and nonlocal (p and q) variables. We
will call to these inequalities pure local state constraints. They might be included
into the constraints (8) by substitution of the function Π with the function (Π, π).
But analogously to the optimal control theory for ODEs, we will suggest relaxed
sufficient conditions for the age-structured problems with this kind of constraints.

In the paper we denote by t the time, running in the interval [0, T ].
The scalar valued variable a ∈ [0, ω] is usually interpreted as the age of the
controlled objects in the applications. Sometimes it is convenient to transform
the original (t, a) variables (coordinates) to the characteristic (t, x) coordinates
by the transformation x = t − a, a = t − x. Then the variable x ∈ [−ω, T ] is
interpreted as the time of birth.

We denote by (s, c) any pair of state (phase) variable s
def

= (y, p, q) and

control variable c
def

= (u, v, w). Besides y is the local state variable, (p, q) are
nonlocal state variables, and the variables u, v and w are distributed, boundary
and initial control respectively. The strict formulation of these variables and of
the functions used in the problem is given in the next section.

The present paper may be considered as a continuation of the paper [14].
The problem considered here is a modification of the main control problems which
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have been considered in [7] and [14]. The difference with the paper [14] is the
presence of state constraints given by the inequalities (8) and (9). Unlike the
main problem considered in [7], in [14] and in the present paper the objective
functional (1) is divided additively.

The paper is organized as follows. In the next section we give the formu-
lation of the main problem in details and define the corresponding Hamiltonians,
Lagrangians, adjoint variables and Lagrange multipliers. In section 3 we suggest
and prove sufficient conditions for optimality for the main problem. As appli-
cation of the suggested sufficient conditions in the last section 4 we consider a
model with pure local state constraint of a problem for investment in vintage
capital goods. In order to solve this model we suggest a numerical algorithm
based on the shooting method. We show that this algorithm converges to an
optimal solution.

2. Basic definitions and assumptions. Let us denote by Q
def

=
[0, T ] × [0, ω] the domain in which we consider the main problem. We refer to
the vector ~e = (1, 1) as the (characteristic) direction of the differential operator
(

∂/∂t+∂/∂a
)

, and to the last operator we refer as to directional derivative along

the direction ~e, that is

(

∂

∂t
+

∂

∂a

)

y(t, a)
def

= lim
ε→0

y(t+ ε, a+ ε)− y(t, a)

ε

The control variables are u : Q→ Rk1 , v : [0, T ] → Rk2 and w : [0, ω] → Rk3 , and
they are restricted in the sets U ⊂ Rk1 , V ⊂ Rk2 and W ⊂ Rk3 respectively. The
state variables are y : Q → Rm, p : Q → Rn and q : [0, T ] → Rr. The functions
used in the main problem f0, ψ0, l and ϕ0 are scalar valued. The other functions
are vector valued: f ∈ Rm, g ∈ Rn, h ∈ Rr, ψ ∈ Rm, ϕ ∈ Rm, Π ∈ Rl1 , Φ ∈ Rl2 ,
Ψ ∈ Rl3 and π ∈ Rl4 . As in [14] the functions used f0, f , h, g, ψ0, ψ, l, ϕ0, ϕ, Π,
Φ, Ψ and π are Carathéodory (measurable with respect to t, a, a′ and continuous
with respect to the rest of the variables), essentially bounded, and differentiable
with respect to (y, p, q, u, v, w). Their partial derivatives are also Carathéodory
(measurable with respect to t, a, a′ and continuous with respect to the rest of
the variables) and essentially bounded.

An admissible control is any triplet c(·, ·) = (u(·,·), v(·), w(·)) where u(·,·),
v(·) and w(·) are measurable in Q, [0, T ] and [0, ω] respectively and the constraints
(7) are satisfied. If c(·, ·) is a fixed admissible control, we use the notion of solution
y ∈ L∞ (Q;Rm), p ∈ L∞ (Q;Rn) and q ∈ L∞ ([0, T ] ;Rr) to the dynamic system
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(2)–(4), which is given in the definition 1 of [7]. Besides we’ll assume that for any
admissible control there exists a unique solution on Q to this dynamic system. If
this solution satisfies (5), (6), (8) and (9) then we will call this solution admissible
state (phase) trajectory.

For the main problem we use the distributed, the boundary and the initial
Hamiltonians

(10)

H(t, a, y, p, q, u, ξ, ηt(·), ζ)
def

= f0(t, a, y, p, q, u) + ξf(t, a, y, p, q, u)+

+

ω
∫

0

ηt(a
′)g(t, a′, a, y, u) da′ + ζh(t, a, y, p, q, u),

(11) Hb(t, q, v, ξt(·))
def

= ϕ0(t, q, v) + ξt(0)ϕ(t, q, v),

(12) H0(a,w, ξa(·))
def

= ψ0(a,w) + ξa(0)ψ(a,w),

which are functionals of the functions ηt(·), ξt(·) and ξa(·). We will use these
Hamiltonians together with the adjoint functions (variables) ξ(·, ·), η(·, ·) and
ζ(·) which will be defined below. Besides, for the functions referred to as argu-
ments of the Hamiltonians, we will always use ηt(·) = η(t, ·), ξt(·) = ξ(t, ·) and
ξa(·) = ξ(·, a).

In order to handle the state constraints, we define the following dis-
tributed, boundary and initial Lagrangians:

(13)
L(t, a, y, p, q, u, ξ, ηt(·), ζ, λ, λ

′)
def

=

def

= H(t, a, y, p, q, u, ξ, ηt(·), ζ) + λΠ(t, a, y, p, q, u) + λ′π(t, a, y),

(14) Lb(t, q, v, ξt(·), µ)
def

= Hb(t, q, v, ξt(·)) + µΦ(t, q, v),

(15) L0(a,w, ξa(·), ν)
def

= H0(a,w, ξa(·)) + νΨ(a,w).

Here we assume that the Lagrange multipliers are λ ∈ L1(Q;Rl1), λ′ ∈ L1(Q;Rl4),
µ ∈ L1

(

[0, T ] ;Rl2
)

and ν ∈ L1
(

[0, ω];Rl3
)

. Of course the Lagrangians are also
functionals of ηt(·), ξt(·) and ξa(·), and we will always use the same functions for
these arguments.
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In the definitions (10)–(12) of the Hamiltonians we have used the adjoint
functions ξ ∈ L∞ (Q;Rm), η ∈ L∞ (Q;Rn) and ζ ∈ L∞ ([0, T ] ;Rr), which are a
solution to the following adjoint system of equations:

(16)

(

∂

∂t
+

∂

∂a

)

ξ(t, a) = −
∂

∂y
L
(

t, a, y, p, q, u, ξ(t, a), η(t, ·), ζ(t), λ, λ′
)

=

= −
∂

∂y
H (t, a, y, p, q, u, ξ(t, a), η(t, ·), ζ(t))−

−λ
∂

∂y
Π(t, a, y, p, q, u) − λ′

∂

∂y
π (t, a, y) ,

(17)

η(t, a) =
∂

∂p
L
(

t, a, y, p, q, u, ξ(t, a), η(t, ·), ζ(t), λ, λ′
)

=

=
∂

∂p
H (t, a, y, p, q, u, ξ(t, a), η(t, ·), ζ(t)) + λ

∂

∂p
Π(t, a, y, p, q, u) ,

(18)

ζ(t) =
∂

∂q
Lb (t, q, v, ξ(t, 0), µ) +

+

ω
∫

0

∂

∂q
L
(

t, a, y, p, q, u, ξ(t, a), η(t, ·), ζ(t), λ, λ′
)

da =

=
∂

∂q
Hb (t, q, v, ξ(t, 0)) + µ

∂

∂q
Φ(t, q, v)+

+

ω
∫

0

∂

∂q
H (t, a, y, p, q, u, ξ(t, a), η(t, ·), ζ(t)) da+

ω
∫

0

λ
∂

∂q
Π(t, a, y, p, q, u) da.

The definition of a solution to this adjoint system is analogous to the
definition of the solution to the dynamic system (2)–(4). We omit the argu-
ments t and a of the control and state variables as well as the arguments (t, a)
of the Lagrange multipliers λ and λ′, the argument t of the multiplier µ and a
of the multiplier ν. Further, for the sake of brevity we will continue to omit
the arguments t and a. For example, instead of f (t, a, y(t, a), p(t, a), q(t), u(t, a))
we will write as f (t, a, y, p, q, u). The control and state variables, which we’ll
test for optimality, we will denote by “hats”. Moreover, we will use abbrevi-
ations, such as f∧ [t, a]

def

= f (t, a, ŷ, p̂, q̂, û) and f [t, a]
def

= f (t, a, y, p, q, u). For
the Hamiltonians of the variables denoted by “hats” these abbreviations writ-
ten in detail are H∧[t, a] = H (t, a, ŷ(t, a), p̂(t, a), q̂(t), û(t, a), ξ(t, a), η(t, ·), ζ(t)),
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H∧

0 [a] = H0 (a, ŵ(a), ξ(0, a)) and H∧

b [t] = Hb (t, q̂(t), v̂(t), ξ(t, 0)). The abbrevi-
ations are similar for the Hamiltonians of variables without “hats” and for the
Lagrangians. We will omit the sign for transposition in the dot products of
vectors.

3. Sufficient conditions for optimality. In this section we consider
the problems (1)–(8) and (1)–(9) which are problems with and without pure local
state constraints, respectively. In order to prove the main results we need the
following:

Lemma 1. Let the function f(t, a) ∈ L1(Q) be absolutely continuous

along the characteristic direction and let (∂/∂t+ ∂/∂a) f(t, a) ∈ L1(Q).
Then the following equality holds:

(19)

T
∫

0

ω
∫

0

(

∂

∂t
+

∂

∂a

)

f(t, a) da dt =

T
∫

0

f(t, a)

∣

∣

∣

∣

ω

0

dt +

ω
∫

0

f(t, a)

∣

∣

∣

∣

T

0

da

This lemma is proven in [14] and it is actually a reformulation of Lemma
2 from the paper [7]. Therefore we omit the proof here.

Further we use the following well-known notion:

Quasiconcave function. Let f : S → R be a real-valued function

defined on a convex subset S of a real vector space. The function f is said to be

quasiconcave if for each x1, x2 ∈ S the following inequality holds:

f (λx1 + (1− λ)x2) ≥ min {f (x1) , f (x2)} for each λ ∈ [0, 1].

In other words f is said to be quasiconcave if −f is quasiconvex.

In the following theorem we suggest a sufficient condition for optimality
for the age-structured control problem with mixed state constraints (1)–(8).

Theorem 1. Let (ŝ, ĉ) = (ŷ, p̂, q̂, û, v̂, ŵ) be an admissible pair of state

and control variables for the problem (1)–(8). Let there exist Lagrange multipliers

λ, µ and ν, and an absolutely continuous along the characteristic direction ~e solu-
tion (ξ, η, ζ) of the adjoint system (16)–(18), which corresponds to the considered

pair and to the Lagrange multipliers. Besides let the following six assumptions

hold:

1. The necessary conditions for local maximum of the Lagrangians:
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(20)
∂

∂u
L∧ [t, a]

(

u− û(t, a)
)

=

=

{

∂

∂u
H∧ [t, a] + λ(t, a)

∂

∂u
Π∧ [t, a]

}

(

u− û(t, a)
)

≤ 0

for a.e. (t, a) ∈ Q and a.e. u ∈ U ;

(21)
∂

∂v
L∧

b [t]
(

v − v̂(t)
)

=

{

∂

∂v
H∧

b [t] + µ(t)
∂

∂v
Φ∧[t]

}

(

v − v̂(t)
)

≤ 0

for a.e. t ∈ [0, T ] and a.e. v ∈ V ;

(22)
∂

∂w
L∧

0 [a]
(

w − ŵ(a)
)

=

{

∂

∂w
H∧

0 [a] + ν(a)
∂

∂w
Ψ∧[a]

}

(

w − ŵ(a)
)

≤ 0

for a.e. a ∈ [0, ω] and a.e. w ∈W .

2. The conditions for non-negativity of the Lagrange multipliers and the com-

plementary slackness conditions:

(23)
λ(t, a) ≥ 0, λ(t, a)Π∧[t, a] = 0; µ(t) ≥ 0, µ(t)Φ∧[t] = 0;

ν(a) ≥ 0, ν(a)Ψ∧[a] = 0

for a.e. (t, a) ∈ Q, t ∈ [0, T ] and a ∈ [0, ω] respectively.

3. The transversality conditions:

ξ(T, a) =
∂

∂y
l
(

a, ŷ(T, a)
)

for a.e. a ∈ [0, ω],(24)

ξ(t, ω) = 0 for a.e. t ∈ [0, T ].(25)

4. The function Π(t, a, y, p, q, u) is quasiconcave with respect to (y, p, q, u),
Φ(t, q, v) is quasiconcave with respect to (q, v) and Ψ(a,w) is quasiconcave

with respect to w. The sets U , V and W are convex.
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5. For the given adjoint functions ξ, η and ζ the distributed Hamiltonian

H(t, a, y, p, q, u, ξ(t, a), η(t, ·), ζ(t)) is concave with respect to (y, p, q, u), the
boundary Hamiltonian Hb(t, q, v, ξ(t, ·)) is concave with respect to (q, v) and
the initial Hamiltonian H0(a,w, ξ(·, a)) is concave with respect to w.

6. The function l(a, y) is concave with respect to y.

Then the pair (ŝ, ĉ) = (ŷ, p̂, q̂, û, v̂, ŵ) is optimal for the problem (1)–(8).

P r o o f. The ideas are the same as in [17] and [18]. Let us note first,
that from the concavity of the Hamiltonians (assumption 5 of the theorem) the
following inequalities hold (see in [3, p. 103]):

(26)
H∧[t, a]−H[t, a] ≥

∂

∂y
H∧[t, a] (ŷ − y)+

+
∂

∂p
H∧[t, a] (p̂− p) +

∂

∂q
H∧[t, a] (q̂ − q) +

∂

∂u
H∧[t, a] (û− u) ,

(27) H∧

b [t]−Hb[t] ≥
∂

∂q
H∧

b [t] (q̂ − q) +
∂

∂v
H∧

b [t] (v̂ − v) ,

(28) H∧

0 [a]−H0[a] ≥
∂

∂w
H∧

0 [a] (ŵ − w) .

According to [3, p. 115, Theorem 3.5.4] and to the standing assumptions
of the present paper for differentiability, the functions Π(t, a, y, p, q, u), Φ(t, q, v)
and Ψ(a,w) are quasiconcave with respect to (y, p, q, u), (q, v) and w respectively
if and only if the statement

(29)

if Π[t, a] ≥ Π∧[t, a] then

∂Π∧[t, a]

∂y
(y−ŷ) +

∂Π∧[t, a]

∂p
(p−p̂)+

+
∂Π∧[t, a]

∂q
(q−q̂) +

∂Π∧[t, a]

∂u
(u−û) ≥ 0,

(30) if Φ[t] ≥ Φ∧[t] then
∂Φ∧[t]

∂q
(q − q̂) +

∂Φ∧[t]

∂v
(v − v̂) ≥ 0,

(31) if Ψ[a] ≥ Ψ∧[a] then
∂Ψ∧[a]

∂w
(w − ŵ) ≥ 0



164 Vladimir Krastev

holds true respectively.
Let (s, c) be an arbitrary admissible pair of state and control variables.

Let us denote by ∆
def

= J (û, v̂, ŵ) − J (u, v, w) the difference between the values
of the objective functional for ĉ and c. We must prove that ∆ ≥ 0. From (1) we
see that the difference

(32)

∆ =

T
∫

0

ω
∫

0

(

f0 (t, a, ŷ, p̂, q̂, û)− f0 (t, a, y, p, q, u)
)

dadt+

+

ω
∫

0

(

ψ0 (a, ŵ) + l (a, ŷ)− ψ0 (a,w)− l (a, y)
)

da+

+

T
∫

0

(

ϕ0 (t, q̂, v̂)− ϕ0 (t, q, v)
)

dt

is a sum of three integrals, which we denote by I1, I2 and I3.
We have to estimate each of these integrals. First, using the definition of

the distributed Hamiltonian, we estimate I1 consecutively:

(33)

I1 =

T
∫

0

ω
∫

0

(

H∧[t, a]−H[t, a]
)

dadt−

T
∫

0

ω
∫

0

ξ
(

f∧[t, a]− f [t, a]
)

dadt−

−

T
∫

0

ω
∫

0

ω
∫

0

η
(

t, a′
)

(

g
(

t, a′, a, ŷ, û
)

− g
(

t, a′, a, y, u
)

)

da′dadt−

−

T
∫

0

ω
∫

0

ζ(t)
(

h∧[t, a]− h[t, a]
)

dadt ≥

(33a)

≥

T
∫

0

ω
∫

0

(

∂H∧[t, a]

∂y
(ŷ − y) +

∂H∧[t, a]

∂p
(p̂− p) +

∂H∧[t, a]

∂q
(q̂ − q)

)

dadt+

+

T
∫

0

ω
∫

0

∂H∧[t, a]

∂u
(û− u) dadt−

T
∫

0

ω
∫

0

ξ

(

∂

∂t
+

∂

∂a

)

(ŷ − y) dadt−

−

T
∫

0

ω
∫

0

η
(

t, a′
)

(

p̂
(

t, a′
)

− p
(

t, a′
)

)

da′dt−

T
∫

0

ζ (q̂ − q) dt ≥
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(33b)

≥

T
∫

0

ω
∫

0

{[(

∂

∂t
+
∂

∂a

)

ξ + λ
∂Π∧[t, a]

∂y

]

(y−ŷ)+

(

λ
∂Π∧[t, a]

∂p
−η

)

(p−p̂)

}

dadt

+

T
∫

0

ω
∫

0

λ
∂Π∧[t, a]

∂u
(u−û) dadt+

+

T
∫

0







∂H∧

b [t, a]

∂q
+ µ

∂Φ∧[t]

∂q
+

ω
∫

0

λ
∂Π∧[t, a]

∂q
da− ζ(t)







(q − q̂) dt+

+

T
∫

0

ω
∫

0

ξ

(

∂

∂t
+
∂

∂a

)

(y−ŷ) dadt+

T
∫

0

ω
∫

0

η (p− p̂) dadt+

T
∫

0

ζ (q − q̂) dt =

(33c)

=

T
∫

0

ω
∫

0

(

∂

∂t
+

∂

∂a

)

[

ξ (y − ŷ)
]

dadt+

T
∫

0

{

∂H∧

b [t]

∂q
+ µ

∂Φ∧[t]

∂q

}

(q − q̂) dt+

+

T
∫

0

ω
∫

0

λ

{

∂Π∧[t, a]

∂y
(y − ŷ) +

∂Π∧[t, a]

∂p
(p− p̂) +

∂Π∧[t, a]

∂q
(q − q̂)

}

dadt+

+

T
∫

0

ω
∫

0

λ
∂Π∧[t, a]

∂u
(u− û) dadt ≥

(33d) ≥

T
∫

0

ω
∫

0

(

∂

∂t
+

∂

∂a

)

[

ξ (y − ŷ)
]

dadt+

T
∫

0

{

∂H∧

b [t]

∂q
+ µ

∂Φ∧[t]

∂q

}

(q − q̂) dt =

(33e)

=

ω
∫

0

ξ(t, a)
(

y(t, a)− ŷ(t, a)
)

∣

∣

∣

∣

T

0

da+

T
∫

0

ξ(t, a)
(

y(t, a)− ŷ(t, a)
)

∣

∣

∣

∣

ω

0

dt+

+

T
∫

0

{

∂H∧

b [t]

∂q
+ µ

∂Φ∧[t]

∂q

}

(q − q̂) dt =
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(33f)

=

ω
∫

0

ξ (T, a)
(

y(T, a)− ŷ(T, a)
)

da−

ω
∫

0

ξ(0, a)
(

ψ(a,w) − ψ (a, ŵ)
)

da+

+

T
∫

0

ξ(t, ω)
(

y(t, ω)− ŷ(t, ω)
)

dt−

T
∫

0

ξ(t, 0)
(

ϕ(t, q, v) − ϕ (t, q̂, v̂)
)

dt+

+

T
∫

0

{

∂H∧

b [t]

∂q
+ µ

∂Φ∧[t]

∂q

}

(q − q̂) dt

This series of estimations is obtained: a) from the inequality (26) and
from the dynamic equations (2), (3) and (4); b) from the adjoint system (16),
(17), (18) and from the condition (20) for local maximum of the distributed La-
grangian; c) from the derivative of the product of functions rule and by canceling
of opposite terms; d) from the conditions (23) for non-negativity and comple-
mentary slackness and from the quasiconcavity of the function Π with respect to
(y, p, q, u) (if λ(t, a) > 0 then Π∧[t, a] = 0, therefore Π[t, a] ≥ Π∧[t, a] and the
inequality of the statement (29) holds); e) from the lemma; f) from the initial
condition (5) and the boundary condition (6).

Now we estimate the integral I2:

(34) I2 =

ω
∫

0

(

ψ0 (a, ŵ)− ψ0(a,w)
)

da+

ω
∫

0

(

l (a, ŷ(T, a))− l (a, y(T, a))
)

da ≥

(34a)

≥

ω
∫

0

(

H∧

0 [a]−H0[a]
)

da−

ω
∫

0

ξ(0, a)
(

ψ (a, ŵ)− ψ(a,w)
)

da+

+

ω
∫

0

∂

∂y
l
(

a, ŷ(T, a)
)(

ŷ(T, a)− y(T, a)
)

da ≥

(34b)

≥

ω
∫

0

∂

∂w
H∧

0 [a] (ŵ − w) da−

ω
∫

0

ξ(0, a)
(

ψ (a, ŵ)− ψ(a,w)
)

da+

+

ω
∫

0

∂

∂y
l
(

a, ŷ(T, a)
)(

ŷ(T, a)− y(T, a)
)

da ≥
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(34c)

≥

ω
∫

0

ν(a)
∂

∂w
Ψ∧[a] (w − ŵ) da−

ω
∫

0

ξ(0, a)
(

ψ (a, ŵ)− ψ(a,w)
)

da+

+

ω
∫

0

∂

∂y
l
(

a, ŷ(T, a)
)(

ŷ(T, a) − y(T, a)
)

da ≥

(34d) ≥

ω
∫

0

ξ(0, a)
(

ψ (a,w)−ψ (a, ŵ)
)

da+

ω
∫

0

∂

∂y
l
(

a, ŷ(T, a)
)(

ŷ(T, a)−y(T, a)
)

da

We have obtained this estimation using: a) the definition of the initial
Hamiltonian (12) and the concavity of the function l(a, y) with respect to y; b) the
inequality (28); c) the condition (22) for local maximum of the initial Lagrangian
L0; d) the condition (23) and the quasiconcavity of the function Ψ(a,w) with
respect to w (as in the estimation of I1 if ν(a) > 0 then Ψ∧[a] = 0, therefore
Ψ[a] ≥ Ψ∧[a] and the inequality of (31) holds).

Similarly we estimate the integral I3:

(35) I3 =

T
∫

0

(

ϕ0 (t, q̂, v̂)− ϕ0(t, q, v)
)

dt =

(35a) =

T
∫

0

(

H∧

b [t]−Hb[t]
)

dt−

T
∫

0

ξ(t, 0)
(

ϕ (t, q̂, v̂)− ϕ(t, q, v)
)

dt ≥

(35b)

≥

T
∫

0

∂

∂q
H∧

b [t] (q̂ − q) dt+

T
∫

0

∂

∂v
H∧

b [t] (v̂ − v) dt−

−

T
∫

0

ξ(t, 0)
(

ϕ (t, q̂, v̂)− ϕ(t, q, v)
)

dt ≥
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(35c)

≥

T
∫

0

∂

∂q
H∧

b [t] (q̂ − q) dt+

T
∫

0

µ(t)
∂

∂v
Φ∧[t] (v − v̂) dt−

−

T
∫

0

ξ(t, 0)
(

ϕ (t, q̂, v̂)− ϕ(t, q, v)
)

dt

This series of evaluations we have obtained by using: a) the definition of
the boundary Hamiltonian (11); b) the inequality (27); c) the necessary condition
for local maximum of the boundary Lagrangian (21).

Adding the right-hand sides of the inequalities (33), (34) and (35), and
canceling the opposite terms we obtain the following evaluation for the differ-
ence ∆:

(36)

∆ ≥

ω
∫

0

[

ξ(T, a)−
∂

∂y
l
(

a, ŷ(T, a)
)

]

(

y(T, a)− ŷ(T, a)
)

da+

+

T
∫

0

ξ(t, ω)
(

y(t, ω)− ŷ(t, ω)
)

dt+

+

T
∫

0

µ(t)

{

∂

∂q
Φ∧[t] (q − q̂) +

∂

∂v
Φ∧[t] (v − v̂)

}

dt

From the transversality conditions (24) and (25) it follows that the first
two integrals in the right-hand side of the above inequality are non-negative.
From the conditions (23) and from the quasiconcavity of the function Φ with
respect to (q, v) it follows that the third integral is also non-negative (if µ(t) > 0
then Φ∧[t] = 0, Φ[t] ≥ Φ∧[t] and therefore the inequality of (30) holds). Therefore
∆ ≥ 0 and the theorem is proven. �

It turns out that if the age-structured control problem includes pure local
state constraints, as the separated in the inequalities (9) ones, we may have to
allow the adjoint variable ξ(t, a) to jump at the end points t = T and a = ω.
Therefore we suggest the following sufficient condition for the problem (1)–(9):

Theorem 2. Let (ŝ, ĉ) = (ŷ, p̂, q̂, û, v̂, ŵ) be an admissible pair for the

problem (1)–(9). Let there exist Lagrange multipliers λ, λ′, µ and ν, and an ab-
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solutely continuous along the characteristic direction solution (ξ, η, ζ) of the ad-

joint system (16)–(18), which correspond to (ŝ, ĉ) and to the Lagrange multipliers.

Furthermore let there exist functions α ∈ L1 ([0, T ] ;Rm) and β ∈ L1 ([0, ω];Rm).
Let the six assumptions of the Theorem 1 hold with λ replaced by (λ, λ′)

and Π replaced by (Π, π), and in addition the next three assumptions be satisfied:

1. The function π(t, a, y) is quasiconcave with respect to y;

2. The adjoint variable ξ(t, a) could be discontinuous at the end points a = ω
in which case the following jump condition is satisfied

ξ
(

t, ω−
)

− ξ(t, ω) = α(t)
∂

∂y
π
(

t, ω, ŷ(t, ω)
)

for a.e. t ∈ [0, T ](37)

together with the conditions for non-negativity of the function α and the

complementary slackness

α(t) ≥ 0, α(t) π
(

t, ω, ŷ(t, ω)
)

= 0 for a.e. t ∈ [0, T ].(38)

3. The variable ξ(t, a) could have jump discontinuities at t = T in which case

ξ
(

T−, a
)

− ξ(T, a) = β(a)
∂

∂y
π
(

T, a, ŷ(T, a)
)

for a.e. a ∈ [0, ω](39)

together with

β(a) ≥ 0, β(a) π
(

T, a, ŷ(T, a)
)

= 0 for a.e. a ∈ [0, ω].(40)

Then the pair (ŝ, ĉ) is optimal.

In the assumptions of this theorem we use the denotations

ξ
(

T−, a
)

def

= lim
ε→0
ε>0

ξ(T − ε, a− ε) and ξ
(

t, ω−
)

def

= lim
ε→0
ε>0

ξ(t− ε, ω − ε).

P r o o f. The only difference between the proofs of the previous and the
present theorems is in the estimation of the integral I1. In the same way here
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we receive the estimation (33f), but ξ(T, a) and ξ(t, ω) are replaced by ξ(T−, a)
and ξ(t, ω−) respectively. Using the equations (37)–(40) and the quasiconcavity
of the function π we estimate the sum of the first and the third terms of (33f)
with the above mentioned replacements:

ω
∫

0

ξ
(

T−, a
)

(

y(T, a)− ŷ(T, a)
)

da+

T
∫

0

ξ
(

t, ω−
)

(

y(t, ω)− ŷ(t, ω)
)

dt =

=

ω
∫

0

ξ (T, a)
(

y(T, a)− ŷ(T, a)
)

da+

ω
∫

0

β(a)
∂

∂y
π
(

T, a, ŷ(T, a)
)(

y(T, a)− ŷ(T, a)
)

da+

+

T
∫

0

ξ(t, ω)
(

y(t, ω)− ŷ(t, ω)
)

dt+

T
∫

0

α(t)
∂

∂y
π
(

t, ω, ŷ(t, ω)
)(

y(t, ω)− ŷ(t, ω)
)

dt ≥

≥

ω
∫

0

ξ(T, a)
(

y(T, a)− ŷ(T, a)
)

da+

T
∫

0

ξ(t, ω)
(

y(t, ω)− ŷ(t, ω)
)

dt.

So the estimation for I1 from the proof of the previous theorem holds and this
proves the present theorem. �

Remarks. The above theorem is a relaxation of Theorem 1. It is possible
to generalize this relaxation by proving sufficient conditions in which to allow the
adjoint variable ξ(t, a) to have jumps on curves having parts which are internal
to the domain Q. In this paper we will not prove such a generalization.

In the formulation of the Assumptions 2 and 3 of Theorem 2 instead of
the jump conditions (37) and (39) we can assume that the adjoint variable ξ(t, a)
is continuous along the characteristic direction at the end points a = ω and t = T ,
and instead of the transversality conditions (24) and (25) from Theorem 1 the
following transversality conditions hold:

(37′) ξ(t, ω) = α(t)
∂

∂y
π
(

t, ω, ŷ(t, ω)
)

for a.e. t ∈ [0, T ],

(39′) ξ(T, a) = β(a)
∂

∂y
π
(

T, a, ŷ(T, a)
)

+
∂

∂y
l
(

a, ŷ(T, a)
)

for a.e. a ∈ [0, ω].

Let the assumptions of the Theorem 1 or the Theorem 2 hold. Obviously
if any one of the Hamiltonians is strictly concave, then the pair (ŝ, ĉ) is the unique
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optimal solution to the control problem. If we are looking for the minimum of
the objective functional, we must replace all requirements for concavity and qua-
siconcavity of the functions with requirements for convexity and quasiconvexity
respectively, the relations “≤” in (20)–(22) with the opposite ones, and the con-
ditions for non-negativity of the functions α, β and the Lagrange multipliers with
the conditions for non-positivity.

4. An application to investment in vintage capital goods.

We consider here an age-structured model of a newly established firm which
produces a single product by means of capital goods (e.g. machines). The last
can be of various vintages. In order to ensure the manufacturing process the firm
has to invest in these capital goods being able to choose between a continuum of
generations of them. The model is as follows:

(41)

J (I, I0,K0) =

T
∫

0

ω
∫

0

e−rt
(

p(t− a)K(t, a) − b(t, a)I(t, a) −
c

2
I2(t, a)

)

dadt−

−

ω
∫

0

(

b(0, a)K0(a) +
c

2
K2

0 (a)
)

da−

T
∫

0

e−rt
(

b(t, 0)I0(t) +
c

2
I20 (t)

)

dt→ max

subject to the dynamics
(

∂

∂t
+

∂

∂a

)

K(t, a) = I(t, a)− δK(t, a) t ∈ [0, T ], a ∈ [0, ω],(42)

the boundary condition

K(t, 0) = I0(t) t ∈ [0, T ],(43)

the initial condition

K(0, a) = K0(a) a ∈ [0, ω],(44)

and the state constraint

(45) K(t, a) ≥ 0 for each (t, a) ∈ Q = [0, T ]× [0, ω].

In this model t denotes the time and a the age of a capital good. The
vintage of the last is the difference x = t− a. The capital goods can be used no
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more than ω years after the year in which they are produced, so a ∈ [0, ω]. The
firm wants to determine its optimal investment strategy for a period of T years,
hence t ∈ [0, T ]. We shall assume that this time period is sufficiently long, so
T > ω. The stock (which is the number) of capital goods of age a at time t is the
state variable in the model and is denoted by K(t, a). In order to represent the
fact that the stock can not be negative, we introduce the state constraint (45).
The distributed control variable I(t, a) is the investment in capital goods of age a
at time t and it is the number of units purchased (if I(t, a) > 0) or sold (if I(t, a) <
0). Since the firm can buy and sell the capital goods, the model does not include
any direct constraints on this control variable. Note however that the state
constraint (45) restricts this variable indirectly: the firm can sell only if it has a
positive stock of capital goods. Apart from the distributed control, we consider
the investments in new capital goods I0(t) as a boundary control variable and
the choice of the stock of capital goods at the moment of establishment of the
firm K0(a) as an initial control variable. We assume that the other functions
used in the model are sufficiently smooth and the constants used are positive.

In order to find the optimal investment strategy, the firm has to maximize
the objective functional (41), which is the discounted profit stream. The inte-
grand of the first term of (41) represents the discounted profit of the capital goods
(machines) of age a at time t via the difference between the revenues from their ex-

ploitation p(t− a)K(t, a) and the investment costs b(t, a)I(t, a) +
c

2
I2(t, a). The

latter are divided into acquisition costs b(t, a)I(t, a) and implementation costs
c
2I

2(t, a) (for example installation costs and uninstallation costs). In fact, the
first term is revenue when the firm sells. The descriptions of the other integrands

of (41) are analogous: b(0, a)K0(a) +
c

2
K2

0 (a) are the costs for initial capital of

age a and b(t, 0)I0(t) +
c

2
I20 (t) are the investment costs at the moment t for the

newest generation of the capital goods.

Due to technological progress the productivity of the capital goods is
increasing with respect to their vintage, therefore p′(x) ≥ 0. For the same reason
the price of each fixed generation of capital goods (the capital goods with fixed

vintage, i.e. t− a = const ) must decline with age, hence
∂

∂a
b(x + a, a) < 0. We

assume that anticipating the future technological progress the firm can estimate
the future productivity and prices of the capital goods. Besides we assume that
the price of each fixed generation of capital goods can be presented as a declining
exponent of the age:

(46) b(t, a) = b0(t− a)e−∆(t−a)a
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where b0(x) and ∆(x) are positive valued functions. Most of the capital goods are
durable, and according to Bayus [4] generally declining price is optimal for each
generation of goods. This has been supported in many empirical studies. Having
high coefficient of determination, the exponential trends fit to the optimal price
paths and also fit to the empirical examples. The rate of decline of the prices ∆(x)
increases for subsequent generations, therefore ∆′(x) > 0. But according to [4],
in some cases, penetration pricing strategy is optimal for the older generations
of the durable good. We stress that in these cases our assumption that prices
decline fails to hold.

The model is related to Feichtinger et al. [9]. Similar models have been
investigated in [2] and in [10]. The evolution law of the capital described by
(42)–(44) is the same as that one, described in the models of the cited papers.
The full description of this evolution law can be found in [2]. Our model does not
represent some features, represented in [9], such as the increase of the depreciation
rate δ with the age, the effect of the experience on the firm’s expenditures and the
saturation of the market of the firm’s product. However, through the introduction
of the state constraint we guarantee that the optimal solution for the capital
cannot be negative. As Feichtinger et al. have noted in [10], if the state constraint
fails to hold for the optimal solution, the last could not have economic meaning.

Let us continue with solving the model (41)–(45). We will suggest a
numerical algorithm which is based on the shooting method (see for example
in [19] p. 502). Then we will show that the algorithm generates a sequence of pairs
of control and state variables, and this sequence converges to an optimal pair,
because the last satisfies the conditions of Theorem 2. First let us introduce the
Hamiltonians and the Lagrangians. For the adjoint variable ξ(t, a), which we’ll
introduce later, the distributed, the boundary and the initial Hamiltonians are

(47) H(t, a,K, I, ξ) = e−rt
(

p(t− a)K − b(t, a)I −
c

2
I2
)

+ ξ (I − δK) ,

(48) Hb (t, I0, ξ(t, ·)) = −e−rt
(

b(t, 0)I0 +
c

2
I20

)

+ ξ(t, 0)I0,

(49) H0 (a,K0, ξ(·, a)) = −
(

b(0, a)K0 +
c

2
K2

0

)

+ ξ(0, a)K0,

respectively.
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Obviously the conditions for concavity of Theorem 1 are satisfied for these
Hamiltonians. Since the pure local state constraint (45) is the only state con-
straint in the model, the side Lagrangians coincide with the corresponding Hamil-
tonians, that is Lb ≡ Hb and L0 ≡ H0, and the distributed Lagrangian is

(50) L(t, a,K, I, ξ, λ) = H(t, a,K, I, ξ) + λK.

Furthermore, it should be noted that the assumption for quasiconcavity
of Theorem 2 (assumption 1) is satisfied for the state constraint (45).

The Hamiltonians and the Lagrangians introduced here are regular, which
means that their maximizers with respect to the corresponding control variables
are unique. These maximizers of the Lagrangians are

(51) Î(t, a) =
ertξ(t, a)− b(t, a)

c
,

(52) Î0(t) =
ertξ(t, 0)− b(t, 0)

c
,

(53) K̂0(a) =
ξ(0, a) − b(0, a)

c
.

From the above equations we see that Î0(t) = Î(t, 0) for each t ∈ [0, T ]
and K̂0(a) = Î(0, a) for each a ∈ [0, ω]. It is known in the optimal control theory
for ODEs that if the Hamiltonian is regular and some constraint qualifications are
satisfied, then the adjoint variable is continuous, that is the adjoint variable has
no jumps in the interior of time interval (see in [13] or in [8, Chapter 6]). That
is what tells us to check the applicability of Theorem 2 for our age-structured
model. For this purpose we must find an absolutely continuous with respect to the
characteristic direction ~e solution for the adjoint variable ξ(t, a). In other words
the adjoint variable would not have jumps along the characteristic direction ~e at
points which are internal to the domain Q. This variable could have such jumps
only on the endpoints a = ω and t = T of the characteristic segments.

According to the definitions in the section 2 the adjoint variable ξ(t, a)
must be a solution of the adjoint equation

(54)

(

∂

∂t
+

∂

∂a

)

ξ(t, a) = −e−rtp(t− a) + δξ(t, a) − λ(t, a)
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for almost each (t, a) ∈ Q. To apply Theorem 2 and the remarks which are made
afterwards, we impose the following terminal conditions on the adjoint variable:

ξ(t, ω) = α(t), t ∈ [0, T ],(55)

ξ(T, a) = β(a), a ∈ [0, ω](56)

for some functions α ∈ L1 ([0, T ]) and β ∈ L1 ([0, ω]), for which the following
conditions must hold:

(57) α(t) ≥ 0, β(a) ≥ 0, α(t)K(t, ω) = β(a)K(T, a) = 0.

The Lagrange multiplier λ(t, a) must be integrable on the domain Q. Moreover
the following conditions for nonnegativity and for comlementary slackness must
hold:

(58) λ(t, a) ≥ 0, λ(t, a)K(t, a) = 0 for a.e. (t, a) ∈ Q.

Summarizing the above considerations we see that the conditions of The-
orem 2 would be satisfied if we prove the existence of an absolutely continuous
along the characteristic direction solution for the pair (K, ξ) of state and ad-
joint variables for the boundary value problem of the differential equations (42)
and (54) subject to the conditions (43)–(45), (51)–(53), (55)–(58). It turns out
that for each fixed vintage x = t− a, this problem is a two point boundary value
problem for ODEs. In the characteristic coordinates (t, x) this problem is:

(59) K̇(t) = I(t)− δK(t),

(60) ξ̇(t) = δξ(t)− pe−rt − λ(t),

(61) I(t) =
1

c

(

ertξ(t)− b0e
−∆t

)

,

(62) K(t) ≥ 0, K (t0) = I (t0) ,

(63) γ
def

= ξ (t1) ≥ 0, γK (t1) = 0,

(64) λ(t) ≥ 0, λ(t)K(t) = 0
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for some Lagrange multiplier λ(t) = λ(t, t − x) ∈ L1(Q) and some function
γ = γ(x) ∈ L1 ([−ω, T ]). Besides the solution for the adjoint variable ξ(t) =
ξ(t, t− x) must be measurable and bounded on Q.

We have denoted the functions which depend on x by bold font in the
above system (59)–(64): K(t) = K(t, t− x), I(t) = I(t, t− x), ξ(t) = ξ(t, t− x),
λ(t) = λ(t, t− x), p = p(x), ∆ = ∆(x) and b(t) = b0e

−∆t = b0(x)e
∆(x)xe−∆(x)t.

By γ we have denoted the function γ = α (t1) = α(x + ω) when x ≤ T − ω and
the function γ = β (t1 − x) = β(T − x) when x ≥ T − ω in the formulas (63).
By t0 = max{x, 0} and t1 = min{x + ω, T} we have denoted the endpoints of
the characteristic segment of the domain Q which correspond to each fixed x ∈
[−ω, T ].

Before proving the existence of a solution and suggesting a numerical
method for finding it, we explore the properties of the solution to this two point
boundary value problem.

Proposition 1. Let (K, ξ) be a solution to the problem (59)–(64) which
corresponds to a fixed x ∈ [−ω, T ] and let I be the control variable which corre-

sponds to ξ. Let us define the function

(65) Λ(t)
def

= (r + δ +∆)b0e
−(r+∆)t − pe−rt.

The unique zero l of the above function is

(66) l
def

=
1

∆

(

ln b0 + ln(r + δ +∆)− lnp
)

.

The following assertions hold:

1. The values of the function γ introduced in (63) are bounded within the

interval
[

0, b0e
−(r+∆)t1

]

;

2. If [τ1, τ2] is a boundary interval with positive length, then the Lagrange

multiplier is λ(t) ≡ Λ(t) in the interior (τ1, τ2) of this interval;

3. The control variable I(t) is an absolutely continuous solution to the differ-

ential equation

(67) İ(t) = (r + δ)I(t) +
ert

c

(

Λ(t)− λ(t)
)

for some terminal condition I (t1) ∈

[

−
b0

c
e−∆t1 , 0

]

. Besides, if K (t1) >

0, then the terminal condition must be I (t1) = −
b0

c
e−∆t1 .
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P r o o f.
1. From the complementary slackness condition (63) it follows that if

K (t1) > 0 then γ must vanish. Let us suppose that K (t1) = 0. Then from
the continuity of the control variable I(t) and in order the state constraint (62)
to be retained, the inequality I (t1) ≤ 0 must hold. From (61) we obtain that
γ ≤ b0e

−(r+∆)t1 .
2. Let us suppose that there exists a boundary interval [τ1, τ2] of positive

length. Then K̇(t) ≡ 0 in the interior of this interval and therefore I(t) ≡ 0, but
then it follows from (61) that ξ(t) = e−rtb(t). Hence we obtain that the function
e−rtb(t) is a solution to the adjoint equation (60) in the open interval (τ1, τ2).
From this adjoint equation we also obtain that the Lagrange multiplier λ(t) ≡
Λ(t) within the interval (τ1, τ2).

3. From the representation of the control variable I(t) by the equality (61)
we can see that I(t) is absolutely continuous and moreover I(t) is differen-
tiable at time t if and only if ξ(t) is differentiable at the time t. Let these
functions be differentiable at time t. Differentiating (61) and using (60) we ob-
tain (67) immediately. Since γ = ξ (t1) ∈

[

0, b0e
−(r+∆)t1

]

we obtain from (61)
that I (t1) ∈

[

−
(

b0e
−∆t1

)

/c, 0
]

. Furthermore, from the complementary slack-
ness condition (63) it follows that ifK (t1) > 0 then γ must vanish. But from (61)
we see that the last holds true if and only if I (t1) = −

(

b0e
−∆t1

)

/c. �

We see that the problem (59)–(64) is equivalent to the problem (59),
(61)–(64), (67). On the other hand it turns out that instead of looking for a
solution (K, I) to the second boundary value problem it is more convenient to
look for the following “accumulated at interest” state variable and “discounted”
control variable:

(68) k(t)
def

= eδtK(t), i(t)
def

= e−(r+δ)tI(t).

For these variables the boundary value problem (59), (61)–(64), (67) becomes:

k̇(t) = e(r+2δ)ti(t), k (t0) = e(r+2δ)t0 i(t0),(69)

i̇(t) =
e−δt

c

(

Λ(t)− λ(t)
)

, η
def

= i (t1) ∈

[

−
b0

c
e−(r+δ+∆)t1 , 0

]

,(70)

(71) k(t) ≥ 0, λ(t) ≥ 0, λ(t)k(t) = 0.

Besides, if k (t1) > 0 then i (t1) = ηmin
def

= −
b0

c
e−(r+δ+∆)t1 must hold true.
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Proposition 2.

1. If t1 ≤ l then K(t) ≡ I(t) ≡ 0, λ(t) ≡ Λ(t) is a solution to the two point

boundary value problem (59), (61)–(64), (67);

2. If t1 > l then the solution to the problem (59), (61)–(64), (67) has no

boundary intervals of positive lengths in the interval [l, t1] and we can as-

sume that the solution has no more than one boundary interval in [t0, l].
Besides, we can assume that the entry time of this boundary interval is t0.

P r o o f. Let us note first that the values of the function Λ(t) are positive
for t < l and negative for t > l, Λ′(l) < 0, lim

t→−∞

Λ(t) = +∞ and lim
t→+∞

Λ(t) = 0.

✲r

l t

Fig. 1. The graph of the function Λ(t)

1. According to the assertions proven in the previous proposition if
K(t) ≡ I(t) ≡ 0 then λ(t) ≡ Λ(t) ≥ 0. We obtain from (61) that ξ(t) =
b0e

−(r+∆)t. Through direct verification we find out that ξ(t) and λ(t) satisfy the
equation (60) and that γ = ξ (t1) = b0e

−(r+∆)t1 . Thus we see that all conditions
of the problem (59), (61)–(64), (67) are satisfied.

2. We have proven in the previous proposition that if [τ1, τ2] is a bound-
ary interval of positive length then in the interior of the interval λ(t) ≡ Λ(t).
Since Λ(t) < 0 in (l, t1] and the Lagrange multiplier cannot be negative then the
solution of the problem (59), (61)–(64), (67) has no boundary intervals of positive
length in [l, t1].

Let us suppose that τ ∈ (t0, l] belongs to a boundary interval or it is a
contact time. Then K(τ) = 0. From the continuity of the control variable it
follows that I(τ) = 0. We see that the conditions (59), (61)–(64), (67) would not
be violated if we assume that K(t) ≡ 0 within the interval [t0, τ ]. �

Having found a solution to the problem (59)–(64) for these characteristics
for which t1 ≤ l we must find the solution in the remaining cases, that is in the



Mangasarian-type sufficient optimality conditions . . . 179

cases when t1 ≥ l. As we have mentioned, by suggesting a numerical algorithm
based on the shooting method we will prove that the boundary problem (59)–
(64) has a solution in the remaining cases. For that purpose let us first define
the notion of shot.

Definition of shot. We choose a value for η ∈

[

−
b0

c
e−(r+δ+∆)t1 , 0

]

.

For the chosen value for η we find a “discounted” control i(t) as a solution to the

equation (70) with λ(t) ≡ 0 and the terminal condition i (t1) = η.

Let us introduce the curve Γ as the line Γ
def

= {(t0, v) : v ∈ R} in the

case l ≤ t0 and as the curve Γ
def

= {(t, v)} = {(t0, v) : v ≥ 0}∪{(t, 0) : t0 ≤ t ≤ l}∪
{(l, v) : v ≤ 0} in the case t0 < l ≤ t1. The graph of the “discounted” control i(·)
(with λ(t) ≡ 0 and i (t1) = η) intersects Γ at the point P (tp, vp).

After the determination of the point P (tp, vp) we find the “accumulated

at interest” state variable k(t) for the time interval [tp, t1] as a solution to the

equation (69) with the initial condition k (tp) = e(r+2δ)tpvp.

We will associate the notion of shot with the function Σ(η)
def

= k (t1).

Thus, we will say that for each value η ∈

[

−
b0

c
e−(r+δ+∆)t1 , 0

]

there is a corre-

sponding value of the shot Σ(η).

Fig. 2. The graphs of the “discounted” control i(t) for different shots:

in the case l ≤ t0 (left); in the case t0 < l ≤ t1 (right)
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Proposition 3. The function Σ(η) defined above as a shot is continuous

and strictly increasing.
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P r o o f. Let us show the correctness of the above definition first, before
proving the properties of the function Σ(η). The function Λ(t) is defined and con-
tinuous on R, therefore its values are bounded for each bounded interval [t0, t1]
of values of its argument. Therefore, the equation (70) with λ(t) ≡ 0 has an
unique solution for each particular terminal value η, and the integral curve of the
solution intersects Γ. It is obvious that the point of intersection with Γ is unique
in the case l ≤ t0. We see from the equation (70) with λ(t) ≡ 0 and from the
properties of the function Λ(t) that i(t) is strictly increasing on t < l. Therefore
in the case t0 < l ≤ t1 the integral curve of the solution i(t) cannot intersect
twice the curve Γ.

Let us return to the proof of the properties of the function Σ(η). To
prove that the function is strictly increasing let us consider two shots with the
arguments η1 and η2, and let η1 < η2. These two shots determine the control
variables i1(t) and i2(t), the points P1

(

tp1, vp1
)

and P2

(

tp2, vp2
)

, and the state
variables k1(t) and k2(t) respectively. Since i(t) = η + Π(t) for some primitive
integral Π(t) of the right hand side of (70) it is clear that i1(t) < i2(t) for each t.
Therefore if tp1 = tp2, which holds for example in the case l ≤ t0, then the
inequality k2

(

tp1
)

> k1
(

tp1
)

holds true for the initial values of the state variables.
Let us consider the other case, that is the case in which tp1 6= tp2. This case is
possible when t0 < l ≤ t1. From the inequality i1

(

tp1
)

< i2
(

tp1
)

and from the
fact that i2(t) is an increasing function on t ≤ tp1, it follows that tp2 < tp1 ≤ l.
We see from the equation (69) that the state variable k2(t) is strictly increasing on
the interval

(

tp2, tp1
)

, therefore in this case the inequality k2
(

tp1
)

> k1
(

tp1
)

also
holds true. Again from (69) we see that the phase speed of k2(t) is greater than the
phase speed of k1(t). Then k2(t) > k1(t) for each t ≥ tp1, and therefore Σ(η2) >
Σ(η1).

Let us continue with the proof of the continuity of the function Σ(η). Here
we will denote by i(t; η) the solution of the Cauchy problem (70) with λ(t) ≡ 0
and terminal condition i (t1) = η. By k(t; η) we will denote the solution of
the Cauchy problem (69) which corresponds to i(t; η). By tp(η) and vp(η) we will
denote the coordinates of the intersection point of the integral curve of i(t; η) with
the curve Γ. First we will show that the coordinates of the point P (tp(η), vp(η))
depend continuously on η. This is obvious for the ordinate vp(η) because the
solution of the equation (70) with λ(t) ≡ 0 depends continuously on the terminal
condition. The abscissa tp(η) is determined implicitly by the formula
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(72) tp(η) =















t0, if l ≤ t0,

l, if t0 < l and vp(η) < 0,

max {t0, {t : i(t; η) = 0, t ≤ l}} otherwise.

The continuity of tp(η) is obvious in the first two cases of (72). Let us
start with the consideration of the third case of (72) when i (tp (η̄) ; η̄) > 0. In
this case tp (η̄) = t0. If there exists a value t̄ for which i (t̄; η̄) = 0 then t̄ < t0.
But then t̄ < l. From the equation (70) with λ(t) ≡ 0 and from the proper-
ties of the function Λ(t) it follows that i (t; η) is strictly increasing with respect
to t on t < l. The conditions of the implicit function theorem are satisfied
(see in [11, p. 502, Theorem 1]). According to this theorem there exists a con-
tinuous function t = t(η) determined in a neighborhood (η1, η2) of η̄ for which
i (t(η); η) = 0 and t̄ = t (η̄). We can assume, eventually by decreasing the neigh-
borhood, that t(η) < t0 for each η ∈ (η1, η2). Thus we see that tp(η) is continuous
at η = η̄ since tp(η) ≡ t0 for each η ∈ (η1, η2).

Let us now consider the third case of (72) when i (tp (η̄) ; η̄) = 0 and
tp (η̄) < l. The implicit function theorem again holds and according to this
theorem there exists a continuous function t = t(η) which is uniquely determined
in a neighborhood of the point (tp (η̄) , η̄) and for which i (t(η); η) = 0. Since
the maximum of two continuous functions is a continuous function then tp(η) is
continuous at η = η̄.

It remains to prove the continuity of tp(η) for the values of η for which
tp(η) = l > t0 and vp(η) = i (tp(η); η) = 0. Let these two conditions be satisfied
for η = η̄. Since in this case the inequality tp(η) ≤ l holds for each η (see the
right side of the figure 2), the function tp(η) is upper semicontinuous with re-
spect to η at η = η̄. Suppose that tp(η) is not lower semicontinuous with respect
to η at η = η̄. Then there exists ε > 0 and we can find a sequence {ηn}

∞

n=1

for which |ηn − η̄| < 1/n and tp (ηn) < tp (η̄) − ε. Since tp(η) ≥ t0 for each η
and t0 = max {x, 0} ≥ 0 the members of the sequence {tp (ηn)}

∞

n=1 are bounded
within the interval [0, tp (η̄)− ε]. Therefore we can choose a convergent subse-
quence. Without changing the notations we have obtained that there exists a
sequence {ηn}

∞

n=1 for which |ηn − η̄| < 1/n and limn→∞ tp (ηn) = s ≤ tp (η̄) − ε.
The inequality vp (ηn) = i (tp (ηn) ; ηn) ≥ 0 holds true for each member of this
sequence. From the continuous dependence of the solution to the equation (70)
with λ(t)≡0 on the terminal condition and from the continuity of tp(η) when
tp(η) < l it follows that the inequality i (s; η̄) ≥ 0 also holds true. But in the case
considered now, we have i (tp (η̄) ; η̄) = 0, therefore i (s; η̄) ≥ i (tp (η̄) ; η̄). The last
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is impossible because i (t; η̄) is strictly increasing for t < l = tp (η̄). The contra-
diction obtained proves the continuity of the function tp(η).

From the continuous dependence of the solution to a differential equation
on parameters and on initial conditions it follows that k(t; η) is also continuous
with respect to η. Therefore the terminal value k (t1; η) is also continuous with
respect to η. So the continuity of the function Σ(η) is proven and all assertions
in this proposition are proven too. �

Algorithm for solving the boundary value problem. We find a

solution to the boundary value problem (59)–(64) for these characteristics for

which t1 ≥ l, by finding a solution (i(t), k(t)) to the problem (69)–(71). The

steps are as follows:

1. We shoot with the minimal value of η, that is with η=ηmin
def

=−
b0

c
e−(r+δ+∆)t1 .

If Σ (ηmin) ≥ 0 then we go to the final step 3. Otherwise, we have to look

for a solution of the problem (69)–(71) with η > ηmin. According to the

condition in the line after (71), the value of the shot Σ(η) = k (t1) must

vanish. Therefore we go to the step 2.

2. We have received Σ (ηmin) < 0 in the previous step. So we shoot with the

maximal value of η, that is with ηmax
def

= 0. In this shot i(t) ≥ 0 for each

t ∈ [tp, t1] and therefore Σ (ηmax) ≥ 0. If Σ (ηmax) = 0 we go to the final

step 3.

Let Σ (ηmax) > 0. According to the Bolzano’s intermediate value theorem

there exists η ∈ (ηmin, ηmax) for which Σ(η) = 0. Since Σ(η) is a strictly

increasing and continuous function this value is unique. It can be found

by the bisection method: We divide the current interval [η1, η2] for which

Σ (η1) < 0 and Σ (η2) > 0, and shoot with the midpoint (η1 + η2) /2. Hav-

ing the value of Σ
(

(η1 + η2) /2
)

we determine the next interval and so on

until we approximate the value of η, for which Σ(η) = 0.

3. We extend the control and state variables (i(t) and k(t)) found in the last

shot determining them as i(t) ≡ k(t) ≡ 0 for t ∈ [t0, tp]. Then we deter-

mine the Lagrange multiplier as λ(t) ≡ Λ(t) for t ∈ [t0, tp] and as λ(t) ≡ 0
for t ∈ (tp, t1]. From the definitions (68) we find the control variable I(t)
and the state variable K(t). Finally from (61) we find the adjoint vari-

able ξ(t).
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From the above algorithm it becomes clear that the boundary value prob-
lem (59)–(64) has a solution for these characteristics for which t1 ≥ l. Remember
that according to the Proposition 2, the boundary value problem has also a solu-
tion for the remaining characteristics that are the characteristics for which t1 ≤ l.
The solution in these cases is K(t) ≡ I(t) ≡ 0. In order to prove the applicability
of Theorem 2 to the solution of the problem (59)–(64) it remains to prove that the
following conditions are satisfied for the functions found: γ = γ(x) ∈ L1 ([−ω, T ]),
λ(t) = λ(t, t − x) ∈ L1(Q) and ξ(t) = ξ(t, t − x) ∈ L∞(Q). We will prove these
conditions in the next proposition.

Proposition 4. The function ξ(t, t− x) is continuous with respect to x,
therefore this function is continuous on the compact domain Q and the func-

tion γ(x) is integrable on the interval [−ω, T ]. The function λ(t, t−x) is integrable
on the domain Q.

P r o o f. Let us remind that the functions and the constants, denoted
by bold font in the boundary value problem (69)–(71) with λ(t) ≡ 0, depend
continuously on x. For convenience, here we will represent this dependence and
the dependence on the terminal condition η = i (t1) by the denotations t0(x)
and t1(x) for the ends of the time interval, i (t; η, x) and k (t; η, x) for the control
and state variables, tp (η, x) and vp (η, x) for the coordinates of the point P de-
termined by the shot, and Σ (η;x) for the function associated with the shot. Of
course, the terminal condition η = i (t1) of the equation (70) depends on x, too.
We will denote by l(x) the zero l represented by (66) of the function Λ(t) defined
by (65) (clearly l(·) is continuous in x). In order to prove the assertions, first
we will prove that i (t; η, x), tp (η, x), vp (η, x), k (t; η, x) and Σ (η;x) are contin-
uous in x and that the terminal condition η in the solution of (69)–(71) depends
continuously on x.

Let us first begin with the proof of the continuity of the functions con-
sidered with respect to x. For this purpose let us fix the value of η. Here we
will repeat the same arguments which we have used in the proof of the continuity
in Proposition 3. From the continuous dependence on parameters and on initial
conditions it follows that i (t; η, x) is continuous with respect to x, therefore the
ordinate vp (η, x) of the point P is continuous with respect to x, too. As in the
proof of Proposition 3 we see that the abscissa tp (η, x) is determined implicitly
by the formula

(73) tp(η, x) =















t0(x), if l(x) ≤ t0(x),

l(x), if t0(x) < l(x) and vp(η, x) < 0,

max {t0(x), {t : i(t; η, x) = 0, t ≤ l(x)}} otherwise.
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In the first two cases of (73) the continuity of tp (η, x) on x is an obvious
consequence from the continuity of the functions t0(x), l(x) and vp (η, x). Let us
begin with the consideration of the third case of (73) when i (tp (η, x̄) ; η, x̄) > 0.
In this case tp (η, x̄) = t0 (x̄). If there exists a value t̄ for which i (t̄; η, x̄) = 0
then t̄ < t0 (x̄). But then t̄ < l (x̄), therefore the conditions of the implicit
function theorem are satisfied for the function (t, x) → i (t; η, x). According to
this theorem there exists a continuous function t = t(x) defined on a neighborhood
of x̄ and for this function i (t(x); η, x) = 0. Decreasing the neighborhood we can
assume that t(x) < t0 (x̄) for each x of the neighborhood which we consider.
Therefore in this neighborhood tp(η, x) = t0(x) and from here in turn it follows
that x→ tp(η, x) is continuous at x = x̄.

Let us continue with the consideration of the third case of (73) when
i (tp (η, x̄) ; η, x̄) = 0 and tp (η, x̄) < l (x̄). The conditions of the implicit function
theorem again hold for the function (t, x) → i (t; η, x). According to this theorem
the equality i (t; η, x) = 0 determines uniquely a continuous function t = t(x)
in a neighborhood of x̄ and i (t(x); η, x) = 0. Since the maximum of continuous
functions is a continuous function then the function x → tp(η, x) determined
through the third case of (73) is continuous with respect to x at x = x̄.

To complete the proof of the continuity of tp(η, x) with respect to x in the
case t1 ≥ l which we consider so far, it remains to prove the continuity for the
values of x for which tp(η, x) = l(x) and vp(η, x) = i (tp (η, x) ; η, x) = 0. Let these
equations hold for x = x̄, that is tp (η, x̄) = l (x̄) and vp (η, x̄) = i (tp (η, x̄) ; η, x̄) =
0. Since tp(η, x) ≤ l(x) for each x and the function l(x) is continuous, then
x→ tp(η, x) is upper semicontinuous at x = x̄. Suppose that x→ tp(η, x) is
not lower semicontinuous at x = x̄. Then there exists ε > 0 and we can find
a sequence {xn}

∞

n=1 for which |xn − x̄| < 1/n and tp (η, xn) < tp (η, x̄)− ε. Since
t0(x) = max {x, 0} ≥ 0 the members of the sequence {tp (η, xn)}

∞

n=1 are bounded
within the interval [0, tp (η, x̄)− ε]. Therefore we can choose a convergent sub-
sequence. Without changing the notations we have obtained that there exists a se-
quence {xn}

∞

n=1 for which |xn − x̄| < 1/n and limn→∞ tp (η, xn) = s ≤ tp (η, x̄)−
ε = l (x̄)− ε. From the continuity of the function l(x) it follows that l(x̄) − ε <
l(xn) − ε/2 for all sufficiently large numbers n, therefore tp(η, xn) < l(xn) −
ε/2 for these sufficiently large numbers. But then the inequality vp(η, xn) =
i(tp(η, xn); η, xn) ≥ 0 holds true for these sufficiently large numbers. From the
continuity of the functions t → i(t; η, x̄) and x→ tp(η, x) when tp(η, x) < l(x) it
follows that the inequality i(s; η, x̄) ≥ 0 also holds true. But in the case consid-
ered now, we have i(tp(η, x̄); η, x̄) = 0, therefore i(s; η, x̄) ≥ i(tp(η, x̄); η, x̄). The
last is impossible because i(t; η, x̄) is strictly increasing for t < tp(η, x̄) = l(x̄).
This contradiction proves the continuity of x→ tp(η, x).
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From the continuous dependence on parameters and initial conditions it
follows that k(t; η, x) is continuous with respect to x and therefore Σ(η;x) is also
continuous with respect to x.

Now let us continue with the proof that the terminal condition η in the
solution of (69)–(71) depends continuously on x. First let’s consider the case when
for a fixed x = x̄ the solution is obtained in the first shot of the algorithm and
Σ (ηmin (x̄) ; x̄) > 0. Here by ηmin(x) we have denoted the continuous function of

the variable x which is ηmin(x)
def

= −1
c
b0(x)e

−(r+δ+∆(x))t1(x). From the continuity
of the function x→ Σ (ηmin(x);x) it follows that x̄ has a neighborhood in which
Σ (ηmin(x);x) > 0. It is clear that in this neighborhood the choice of η depends
continuously on x, besides η(x) = ηmin(x). Let us continue with the cases in which
for the fixed value x̄ either Σ (ηmin (x̄) ; x̄) = 0 or the parameter η is determined
in the second step of the algorithm. In these cases the value of η (x̄) which
corresponds to x̄ is determined implicitly by the formula

(74) η (x̄) = max {ηmin (x̄) , {η : Σ (η; x̄) = 0, η ≤ 0}}

We saw that in these cases the equation Σ (η, x̄) = 0 has a unique solu-
tion η̄. In Proposition 3 and in the present proposition we have proven that the
function Σ(η;x) is continuous with respect to η and x, and it is strictly increasing
with respect to η. Then according to the implicit function theorem there exists
a continuous function η = η(x) which is uniquely determined in a neighborhood
of the point (η̄, x̄), and for which both η̄ = η (x̄) and Σ (η(x);x) = 0 hold. We
saw in the algorithm that η ≤ 0. Since the maximum of continuous functions
is a continuous function then the function η(x) determined implicitly by (74) is
continuous.

We have proven so far that the functions x → i (t; η(x), x), tp (η(x), x),
vp (η(x), x), x → k (t; η(x), x) and Σ (η(x);x) are continuous with respect to x
on the domain {x : l(x) ≤ t1(x)} for each t ∈ [t0(x), t1(x)]. On the other hand,
according to Proposition 2 the state and the control variables are continuous with
respect to x on the domain {x : l(x) ≥ t1(x)} for each t ∈ [t0(x), t1(x)] because
in this domain i(t) ≡ k(t) ≡ 0. Therefore, in order to prove the continuity of the
state and the control variables as well as the correctness of their determination, it
remains to prove that the values of these variables determined by the algorithm
vanish at the values of x for which l(x) = t1(x). But the last fact is obvious. Let
the equality l(x) = t1(x) hold for x = x̄. Then Σ(η) ≤ 0 for each η ∈ [ηmin, ηmax]
besides Σ(η) = 0 if and only if η = ηmax, that is if η = 0. Therefore we will
receive η = 0 in the last step of the algorithm. Hence tp (η (x̄) , x̄) = l (x̄),
vp (η (x̄) , x̄) = 0, i (l (x̄) ; η (x̄) , x̄) = 0 and k (l (x̄) ; η (x̄) , x̄) = 0. Thus the
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continuity with respect to x of the state and the control variables is proven. It
follows from (61) that the adjoint variable ξ(t, t−x) is also continuous with respect
to x and therefore it is continuous on the compact domain Q. Since the function
γ(x) = ξ (t1(x)), this function is continuous on the bounded interval [−ω, T ].

It remains to prove that λ(t, t− x) is integrable. Remember that we have
determined the Lagrange multiplier as λ(t, t− x) ≡ Λ(t;x) on the set Q ∩ {(t, x) :
t ≤ tp (η(x), x)} and as λ(t, t− x) ≡ 0 on the set Q ∩ {(t, x) : t > tp (η(x), x)}.
Here Λ(t;x) is the continuous function which is defined by the equality (65). We
saw that the function x → tp (η(x), x) is continuous, therefore the above two
sets are measurable as curvilinear trapezoids. Since the multiplier λ(t, t − x) is
continuous upon each of the two sets considered, then λ(t, t − x) is measurable
upon the set Q. Thus, the proposition is completely proven. �

From the proposition proven above it follows that the solution of the
boundary value problem (59)–(64), which we find by the algorithm and by Propo-
sition 2, satisfies all conditions of the Theorem 2. Therefore, this solution is
optimal for the model (41)–(45).
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