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1. Introduction. The question of existence of selections of set-valued
maps that inherit regularity properties of these maps has been attracting the
attention of researchers for a long time. The positive answers of this question
may have essential impact on analysis and numerics in various fields using set-
valued analysis (see e.g. [3, Chap. 9], [2, 1]). For instance, the question of existence
of continuous selections passing through every point of the graph of a continuous
set-valued function is well-known (see e.g. [3, Theorem 9.5.2]). In the case of
a Lipschitz multifunction with compact convex values, there exists a Lipschitz
selection through any point of the graph [3, Theorem 9.5.3], [15, 23, 1] with a
Lipschitz constant depending on the dimension and the Lipschitz constant of the
multifunction.

For a multifunction with only compact images (not necessarily convex),
this question has in general a negative answer [2, Sec. 1.6], [15, Sec. 3]. But,
for continuous mappings of one variable (univariate) having in addition bounded
variation, the answer is positive [19, 15]. In particular, a Lipschitz mapping (with
respect to the Hausdorff metric) defined on a compact interval has a Lipschitz
selection with the same Lipschitz constant [19, Theorem 2], which may also pass
through every point of its graph [15, 22], [17, Chap. 8].

Introducing a new general framework, we define various Lipschitz-type
properties of set-valued functions using various subtraction operations on sets.
Our approach is based on the representation of some distances in the space of
compact (or convex compact) subsets of R

n by set differences. To be more specific,
for any “good” notion of a difference of two sets, A⊖∆ B, we can define a distance
(or even a metric),

(1) d∆(A,B) := ‖A ⊖∆ B‖

with the common set norm ‖A‖ = supa∈A ‖a‖. The corresponding Lipschitz
continuity of the map F is defined as

‖F (x) ⊖∆ F (y)‖ ≤ L‖x − y‖.

In particular, the Hausdorff metric can be represented in (1) with the metric
difference of sets [16], [17, Sec. 2.1]. Another example is the Demyanov metric in
the set of convex compacts in R

n [14], which may be also expressed in the above
way with the Demyanov difference [6].

In this paper we focus our attention on Lipschitz properties induced by
various set differences. We review known notions of Lipschitz continuity and
present them with known set differences. We also obtain new Lipschitz notions
based on set differences. A main advantage of this approach is that the inclusion
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hierarchy between set differences or the inequality between their norms immedi-
ately implies the hierarchy of the corresponding Lipschitz conditions.

Special attention is given to Lipschitz conditions with respect to the metric
difference (identical to Lipschitz condition in the Hausdorff metric) or with respect
to the Demyanov difference of convex compacts in R

n. It is shown that Lipschitz
conditions on the set-valued functions with respect to metric or Demyanov differ-
ence of sets are equivalent to the same conditions satisfied uniformly by certain
families of special selections. For the metric difference, this is the family of the
so-called metric selections constructed initially by Hermes [19], [17, Sec. 8.1]. The
selections corresponding to the Demyanov difference are the generalized Steiner
selections (see [11, 6]).

The paper is organized as follows. In the next section we define some
notions of set differences and discuss some axioms (basic properties) of such dif-
ferences. In Section 3 various Lipschitz conditions with respect to given set differ-
ences are introduced and compared, and their properties are studied. Special cases
and properties, arithmetic operations, as well as the hierarchy of these notions
are studied. The characterization of D-Lipschitz mappings by their Lipschitzian
generalized Steiner selections in Section 4 is followed by the corresponding charac-
terization of Lipschitz univariate maps by uniform Lipschitzian metric selections
in Section 5. In the last section a collection of examples is presented illustrating
the hierarchy of different Lipschitz notions.

2. Set differences and their properties. We denote by K(Rn) the
set of nonempty compact subsets of R

n, and by C(Rn) the set of nonempty convex
compact subsets of R

n. By ‖·‖ we denote some vector norm in R
n and by ‖·‖2 the

Euclidean norm, the spectral norm of a matrix M ∈ R
n×n is denoted by ‖M‖2,

and for a set A ∈ K(Rn) we denote ‖A‖ := sup{‖a‖ : a ∈ A}. By definition,
‖∅‖ = −∞. The notation ‖·‖∞ is used for the maximum norm in R

n. The convex
hull of the set A is denoted by co(A), co(A) is the closed convex hull of A.

The support function for a set A ∈ K(Rn) is defined as

δ∗(l, A) := max
a∈A

〈l, a〉 (l ∈ R
n),

the supporting face

Y (l, A) := {a ∈ A : 〈l, a〉 = δ∗(l, A)}

is the set of maximizers (and the subdifferential of the support function). A
supporting point (an element of the supporting face) is denoted by y(l, A).
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Recall that the Hausdorff distance between two sets in K(Rn) is

dH(A,B) := max

{
max
a∈A

dist(a,B), max
b∈B

dist(b,A)

}
,

where the distance from a point a ∈ R
n to a set B ∈ K(Rn) is defined as

dist(a,B) := min
b∈B

‖a − b‖2.

It is well-known that the spaces K(Rn) and C(Rn) are complete metric
spaces with respect to the Hausdorff metric [26, Theorem 1.8.2 and 1.8.5]. We
will also use the Demyanov distance between the sets A,B, defined by

dD(A,B) := sup{‖y(l, A) − y(l, B)‖2 : l ∈ TA ∩ TB},(2)

where TA ⊂ Sn−1 is the set of full measure (in the unit sphere Sn−1 ⊂ R
n) such

that the supporting face Y (l, A) consists of a single point y(l, A) for all l ∈ TA

(see [14]).
Recall the notation of the multiplication of a set by a scalar and the

Minkowski sum of sets:

λA :=
⋃

a∈A

{λa} (λ ∈ R), −A := (−1) · A, A + B :=
⋃

a∈A
b∈B

{a + b}

The translation of a set A by a vector b ∈ R
n is denoted by A+b := A+{b}.

We now recall the definitions of some known differences of compact, nonempty
subsets of R

n, all of them do not lead to a vector space.

Definition 2.1. Let A,B ∈ K(Rn). We define the

(i) algebraic difference as

A ⊖A B := A + (−1) · B,

(ii) geometric/star-shaped/Hadwiger-Pontryagin difference [18, 25] as

A ⊖G B := {x ∈ R
n : x + B ⊂ A},

(iii) Demyanov difference [10, Subsec. III.1.5] as

A ⊖D B := co{y(l, A) − y(l, B) : l ∈ TA ∩ TB},

where TA, TB ⊂ Sn−1 are as in (2),
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(iv) metric difference of sets [16] and [17, Sec. 2.1]

A ⊖M B := {a − b : ‖a − b‖2 = dist(a,B) or ‖b − a‖2 = dist(b,A)}.(3)

Let us note that all these differences are compact sets. The geometric
difference can be empty, contrary to the other differences.

In the special case when B = {b} is a singleton, all these differences
coincide and are equal to the translated set A − b := A + {−b}.

The Demyanov difference is always convex. Since for A,B ∈ K(Rn),
A ⊖D B = co(A) ⊖D co(B), we use this difference in practice for convex sets
A,B ∈ C(Rn).

Rewriting the algebraic difference and the geometric difference with the
help of the translations of A as

A ⊖A B =
⋃

b∈B

(A − b) , A ⊖G B =
⋂

b∈B

(A − b) ,

and with [5, proof of Lemma 3.17], we easily get the following inclusions between
the above differences:

A ⊖M B ⊆ A ⊖A B,(4)

A ⊖G B ⊆ A ⊖D B ⊆ A ⊖A B,(5)

δ∗(l, A ⊖G B) ≤ δ∗(l, A) − δ∗(l, B) ≤ δ∗(l, A ⊖D B) (l ∈ Sn−1)(6)

The following lemma does not provide any inclusion between the geometric dif-
ference and the metric one, but together with (4) it yields the norm inequalities

‖A ⊖G B‖2 ≤ ‖A ⊖M B‖2 ≤ ‖A ⊖A B‖2.(7)

Lemma 2.2. Let A,B ∈ K(Rn), then

‖A ⊖G B‖2 ≤ ‖A ⊖M B‖2 = dH(A,B).(8)

P r o o f. If the geometric difference A⊖GB is empty, then the norm equals
−∞ by convention and the inequality holds trivially.

Otherwise, let δ := ‖A ⊖G B‖2. Due to compactness, there is a vector
x ∈ A⊖G B ⊂ R

n with ‖x‖2 = δ such that x + B ⊂ A. We now prove that there
exist vectors â ∈ A, b̂ ∈ B with b̂ = â − x,

‖â − b̂‖2 = δ = dist(â, B).
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Consider an element b̂ ∈ Y (x,B), the supporting face of B, and define the
corresponding vector â := b̂ + x. Clearly, â ∈ A, since x + B ⊂ A.

We show that δ = ‖â − b̂‖2 = dist(â, B). Since b̂ ∈ Y (x,B), we have

〈x, b〉 ≤ δ∗(x,B) = 〈x, b̂〉 (b ∈ B)

and therefore 〈b − b̂, x〉 = 〈b − b̂, â − b̂〉 ≤ 0. Thus, we arrive at the estimate

‖â − b‖2
2 = ‖(â − b̂) + (̂b − b)‖2

2 = ‖â − b̂‖2
2 + 2〈â − b̂, b̂ − b〉 + ‖b̂ − b‖2

2

≥ ‖â − b̂‖2
2 + ‖b̂ − b‖2

2 ≥ ‖â − b̂‖2
2 = δ2.

Hence, b̂ is a projection of â on B and â − b̂ ∈ A ⊖M B so that

‖A ⊖G B‖2 = ‖â − b̂‖2 ≤ ‖A ⊖M B‖2. 2

Similarly, we can also establish a result analogous to (6) for the metric
difference.

Lemma 2.3. Let A,B ∈ K(Rn), then

δ∗(l, A ⊖G B) ≤ δ∗(l, A) − δ∗(l, B) ≤ δ∗(l, A ⊖M B) (l ∈ Sn−1),(9)

co(A ⊖G B) ⊂ co(A ⊖M B).(10)

P r o o f. The inclusion (10) follows from the inequality between the sup-
port functions in (9). To prove (9), consider an arbitrary direction l ∈ Sn−1.

The case that the geometric difference is empty yields the first inequality,
since the support function equals −∞ by convention. In this case it remains to
prove only the right inequality which is done in step (ii).

(i) Let A ⊖G B be nonempty and choose x̃ ∈ A ⊖G B such that

〈l, x̃〉 = δ∗(l, A ⊖G B).

Let us choose b̃ ∈ Y (l, B) so that 〈l, b̃〉 = δ∗(l, B). Clearly, x̃ + B ⊂ A so that
ã := x̃ + b̃ ∈ A and 〈l, ã〉 ≤ δ∗(l, A). Hence,

δ∗(l, A ⊖G B) = 〈l, x̃〉 = 〈l, ã〉 − 〈l, b̃〉 ≤ δ∗(l, A) − δ∗(l, B).

(ii) Now, take â ∈ Y (l, A) such that 〈l, â〉 = δ∗(l, A). Define b̂ ∈ B so that

‖â − b̂‖2 = dist(â, B).
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Then, â − b̂ ∈ A ⊖M B so that 〈l, â − b̂〉 ≤ δ∗(l, A ⊖M B). Thus,

δ∗(l, A) − δ∗(l, B) ≤ 〈l, â〉 − 〈l, b̂〉 = 〈l, â − b̂〉 ≤ δ∗(l, A ⊖M B). 2

There is no general result on an inclusion between the Demyanov and the
metric difference, which is illustrated by the following example.

Example 2.4. Let A = [3, 6] ⊂ R and B = [0, 1] ⊂ R. Then

A ⊖D B = [3, 5] ⊂ A ⊖M B = [2, 5],

while for A = [3, 4] ∪ [5, 6] ⊂ R and B = [0, 1] ⊂ R,

A ⊖D B = [3, 5], A ⊖M B = [2, 3] ∪ [4, 5].

The following example in R
2 shows that even for convex sets the Demyanov dif-

ference does not have to be a subset of the metric one:

A = {(x, y) : |x| ≤ 1

2
, |y| ≤ 1

2
}, B = co({(−1, 0), (1, 0)})

Then,

A ⊖M B = co

{(
−1

2
, 0

)
,

(
1

2
, 0

)}
∪ co

{(
0,−1

2

)
,

(
0,

1

2

)}
⊂ A = A ⊖D B.

Some of the properties of the set differences listed below, called here ax-
ioms, are used further in some proofs and allow to formulate the main conditions
independent from a specific set difference. For compact sets A,B,C,Ai, Bi ∈
K(Rn), i = 1, 2, the following axioms should hold:

A ⊖∆ B = {0} ⇐⇒ A = B,(A1)

‖B ⊖∆ A‖ = ‖A ⊖∆ B‖,(A2)

‖A ⊖∆ B‖ ≤ ‖A ⊖∆ C‖ + ‖C ⊖∆ B‖,(A3)

‖(αA) ⊖∆ (αB)‖ = |α| · ‖A ⊖∆ B‖ (α ∈ R),(A4)

‖(αA) ⊖∆ (βA)‖ ≤ |α − β| · ‖A‖ (α ≥ β ≥ 0),(A5)

‖(A1 + A2) ⊖∆ (B1 + B2)‖ ≤ ‖A1 ⊖∆ B1‖ + ‖A2 ⊖∆ B2‖(A6)

For all the above differences “⊖∆”, except for the geometric one, converting
the order of the sets A,B in (A2) leads to multiplying the difference by −1.



372 Robert Baier, Elza Farkhi

If the set difference “⊖∆” satisfies the axioms (A1)–(A3), then the defini-
tion

(11) d∆(A,B) := ‖A ⊖∆ B‖ (A,B ∈ X )

gives a metric and this leads to the following lemma.

Lemma 2.5.

(i) The space X = K(Rn) is a metric space with the metric [16]

dH(A,B) = ‖A ⊖M B‖2 (A,B ∈ K(Rn)).(12)

The space X = C(Rn) is a metric space with the metric [14, Sec. 4], [6]

dD(C,D) = ‖C ⊖D D‖2 (C,D ∈ C(Rn)),(13)

since in both cases (A1)–(A3) are satisfied.

(ii) The metric difference also satisfies (A4)–(A5), the algebraic one satisfies
(A2)–(A4), (A6).

(iii) The Demyanov difference satisfies the axioms (A2)–(A6) in K(Rn) with

A ⊖∆ B = {0} ⇐⇒ co(A) = co(B)(14)

replacing (A1).
(iv) The geometric difference satisfies the axioms (A4)–(A5) for X = C(Rn).

We further present properties which are stronger forms of some of the
axioms listed above and indicate for which set difference they hold.

B ⊖∆ A = −(A ⊖∆ B),(A2’)

A ⊖∆ B ⊂ (A ⊖∆ C) + (C ⊖∆ B),(A3’)

(αA) ⊖∆ (αB) = α(A ⊖∆ B) (α ≥ 0),(A4’)

(αA) ⊖∆ (βA) = (α − β)A (α ≥ β ≥ 0),(A5’)

(A1 + A2) ⊖∆ (B1 + B2) ⊂ (A1 ⊖∆ B1) + (A2 ⊖∆ B2)(A6’)

The Demyanov difference satisfies (A2’)–(A6’) on K(Rn), for proving (A6’) we
use [14, Lemma 3.1]. (A2’) and (A4’) are satisfied by the metric and algebraic
difference. The algebraic difference also satisfies (A3’) and (A6’), the geometric
one fulfills (A4’) and (17), (A5’) holds only in C(Rn).
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The following property holds for ∆ ∈ {M,D,A} and follows from (A2’)
and (A4’):

(αA) ⊖∆ (αB) = |α|(B ⊖∆ A) (α < 0)(15)

We can also weaken axiom (A6) resp. (A6’) by only considering translation of
sets:

‖(A1 + a2) ⊖∆ (B1 + b2)‖ ≤ ‖A1 ⊖∆ B1‖ + ‖a2 − b2‖,(16)

(A1 + a2) ⊖∆ (B1 + b2) = (A1 ⊖∆ B1) + (a2 − b2),(17)

where a2, b2 ∈ R
n. (16) holds for the metric difference, whereas the stronger form

(17) is fulfilled by ∆ ∈ {G,D,A},
Instead of (A4’) the geometric difference satisfies

(αA) ⊖G (αB) = α(A ⊖G B) (α < 0).(18)

Furthermore, it satisfies (A6’) with the opposite inclusion “⊃” (while the algebraic
difference satisfies (A6’) even as an equality).

Example 2.6. The metric difference satisfies the weaker axioms (A5)
and (A6), but not the stronger forms (A5’) and (A6’).
To see this, consider in the special forms (16) resp. (17) of (A6) resp. (A6’)

A1 = [1, 2], B1 = [0, 1], a2 = 0, b2 = 1,

(A1 + a2) ⊖M (B1 + b2) = [1, 2] ⊖M [1, 2] = {0},
(A1 ⊖M B1) + (a2 − b2) = [0, 1] − 1 = [−1, 0],

so that equality in (17) does not hold. Nevertheless, the estimate (16) still holds,
since

‖(A1 + a2) ⊖∆ (B1 + b2)‖2 = 0

≤ 1 = ‖[−1, 0]‖2 = ‖(A1 ⊖M B1) + (a2 − b2)‖2.

For the following choices

A1 = [1, 2], B1 = [1, 2], a2 = 0, b2 = −1,

(A1 + a2) ⊖M (B1 + b2) = [1, 2] ⊖M [0, 1] = [0, 1],

(A1 ⊖M B1) + (a2 − b2) = {0} + 1 = {1},

even the inclusion “⊂” in (17) is prevented.
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We note that the remarkable property (A1), i.e.

(19) A ⊖M B = {0} ⇐⇒ A = B

holds for the metric difference in K(Rn), whereas for the Demyanov difference it
holds in C(Rn). For general compact sets we can only claim (A1’), i.e.

A ⊖D B = {0} ⇐⇒ co(A) = co(B).

For the geometric difference one can observe that A⊖G B = {0} whenever A ⊇ B
and there is no other nonempty set C such that B + C ⊆ A.
For the algebraic difference, it is straightforward to see that only

A ⊖A B = {0} ⇐⇒ A = B = {a}(20)

holds, i.e. both sets must be singletons.

Further, one can express the Hausdorff and the Demyanov metric in terms
of metric and Demyanov difference respectively.

Remark 2.7. Although one cannot establish an inclusion relation be-
tween the Demyanov and the metric difference of two given sets, one can get an
inequality between their norms. Namely, it is proved in [14, Lemma 4.1] and [24,
Proposition 2.4.5] that for A,B ∈ C(Rn), it holds

(21) dH(A,B) ≤ dD(A,B) = sup
l∈Sn−1

dH(Y (l, A), Y (l, B))

which implies that ‖A ⊖M B‖2 ≤ ‖A ⊖D B‖2. The topology induced by the
Demyanov metric is stronger than the Hausdorff one (see [14, Example 3.1 and
Sec. 4]).

Taking advantage of (12) or (13), we can express regularity notions of
multifunctions with respect to the Hausdorff metric in K(Rn) resp. the Demyanov
metric in C(Rn) in terms of the corresponding set differences. We discuss this in
a general setting in the next section.

3. Regularity notions for multimaps through set differences.

As remarked earlier in Lemma 2.5, the definition d∆(A,B) := ‖A ⊖∆ B‖ for
∆ ∈ {M,D} defines a metric space X = K(Rn) (resp. X = C(Rn)).

Throughout the paper we consider a closed set X ⊂ R
m and set-valued

maps F : X ⇒ R
n.
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3.1. Lipschitz continuity.

Definition 3.1. A set-valued function F : X → K(Rn) is called Lipschitz
on X with respect to the set difference “⊖∆” (or shortly ∆-Lipschitz) with a
constant L ≥ 0 if

‖F (x) ⊖∆ F (y)‖ ≤ L‖x − y‖ (for all x, y ∈ X).

Therefore, in view of (12), a multifunction is Lipschitz (in the Hausdorff
metric) resp. satisfies the Lipschitz condition (LC ) iff it is Lipschitz with respect to
the metric difference. Similarly, a multifunction F : X → C(Rn) is Lipschitz in the
Demyanov metric (D-Lipschitz ) iff it is Lipschitz with respect to the Demyanov
difference resp. Lipschitz with respect to geometric difference (G-Lipschitz ) iff the
geometric difference is chosen for the set difference and we set −∞ as the norm
of the empty set.

In a similar way one can introduce continuity, modulus of continuity and
the variation of multifunctions with respect to any given set difference by apply-
ing (11), e.g. with respect to the Demyanov differences of sets [6]. These notions
with respect to the metric difference coincide with the classical notions of variation
and moduli of continuity in the Hausdorff metric.

To demonstrate the power of regularity with respect to set differences, we
prove the single-valuedness of a set-valued map at the points of continuity with
respect to the algebraic difference (A-continuity), similarly to results on monotone
maps in [27, 20].

Proposition 3.2. Let F : X ⇒ R
n be continuous (with respect to ⊖A) at

the point x0 ∈ X with nonempty images. Then, F (·) is single-valued at x0.

P r o o f. Due to the A-continuity in x0, for ε > 0 there exists δ > 0 such
that for all x ∈ R

n with ‖x − x0‖ ≤ δ it follows that

‖F (x) ⊖A F (x0)‖ ≤ ε.

Clearly, ‖F (x0)⊖AF (x0)‖ = 0 and the algebraic difference F (x0)⊖AF (x0) equals
the origin. Thus, by (20), F (x0) is a singleton. �

Corollary 3.3. If F : X ⇒ R
n is Lipschitz with respect to the algebraic

difference (A-Lipschitz), then F (x) = {f(x)} (i.e. F (·) is single-valued) and f(·)
is Lipschitz.
If F (x) = {f(x)} and f : X → R

n is Lipschitz, then F (·) is A-Lipschitz.

Remark 3.4. If one closely looks at the proof of the theorem that every
monotone map is a.e. single-valued in [20], one can see that in fact it is proved
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there that F (x) ⊖A F (x) = {0} for a.e. x, which by (20) implies that F (x) is a
singleton for a.e. x.

Next we give examples of classes of set-valued maps which are D-Lipschitz
(a stronger property than Lipschitz continuity with respect to the Hausdorff dis-
tance as we will see in Proposition 3.10).

Lemma 3.5. Consider a convex, compact, nonempty set U ⊂ R
n and a

Lipschitz function r : X → [0,∞) with constant L.
Then, F (x) := r(x)U for x ∈ X is D-Lipschitz with constant L‖U‖2.

P r o o f. We rewrite the Demyanov metric by (21) as

dD(F (x), F (y)) = supl∈Sn−1
dH(Y (l, r(x)U), Y (l, r(y)U))

≤ |r(x) − r(y)| · supl∈Sn−1
‖Y (l, U)‖2 ≤ L · ‖U‖2 · ‖x − y‖2. 2

Setting r(x) = 1 we get that constant set-valued maps are D-Lipschitz
with constant 0. Another example class is given by moving ellipsoids.

Lemma 3.6. Let R : X → R
n×n be a Lipschitz function such that uniform

invertibility for the transposed matrices holds, i.e. there exists ε > 0 with

‖R(x)⊤l‖2 ≥ ε (x ∈ X, l ∈ Sn−1),(22)

and let us set U := PB1(0) with an invertible matrix P ∈ R
n×n and the closed

unit ball B1(0) ⊂ R
n.

Then, F (x) := R(x)U for x ∈ X is D-Lipschitz with constant Lε := L
(

1
ε2

)
.

P r o o f. Using [6, Remark 2.1] we use the formulas

Y (l, R(x)U) =

{
1

‖P⊤R(x)⊤l‖2
· R(x)PP⊤R(x)⊤l

}
,

M(x) := R(x)PP⊤R(x)⊤.

Hence, the assumptions guarantee Lipschitz continuity of the function x 7→ y(l, R(x)U)
uniformly in l ∈ Sn−1. Equation (21) yields

dD(F (x), F (y)) = sup
l∈Sn−1

dH(Y (l, R(x)U), Y (l, R(y)U))

= sup
l∈Sn−1

∥∥∥∥
1

‖P⊤R(x)⊤l‖2
M(x)l − 1

‖P⊤R(y)⊤l‖2
M(y)l

∥∥∥∥
2

≤ Lε‖x − y‖2. 2

Note that (22) holds e.g. for orthogonal matrices R(x) with ε = 1.
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3.2. Properties and hierarchy of Lipschitz maps. The properties in
the next proposition are well-known for the case of Lipschitz maps in the Hausdorff
metric.

Proposition 3.7. Let F1, F2 : X ⇒ R
n with images in K(Rn) be Lipschitz

with respect to the set difference “⊖∆” and α ∈ R. We set F (·) = αF1(·) and
G(·) = F1(·) + F2(·).
(i) If (A4) holds for the set difference “⊖∆”, then F (·) is Lipschitz with respect to
the set difference “⊖∆” for α ≥ 0.
(ii) If either (A2) with (A4) or (18) holds for the set difference “⊖∆”, then F (·)
remains Lipschitz with respect to the set difference “⊖∆” even for α < 0.
(iii) If (A6) holds for “⊖∆”, then G(·) = F1(·) + F2(·) is Lipschitz with respect to
the set difference “⊖∆”.

P r o o f. (i) For α ≥ 0

‖F (x) ⊖∆ F (y)‖ ≤ |α| · ‖F1(x) ⊖∆ F1(y)‖ ≤ |α| · L · ‖x − y‖.

(ii) For α < 0 and ∆ ∈ {G,D,A} we have the same estimate due to (A2) and
(A4) resp. (18), since

‖F (x) ⊖∆ F (y)‖ ≤ |α| · max{‖F1(x) ⊖∆ F1(y)‖, ‖F1(y) ⊖∆ F1(x)‖}.

(iii) The result for the sum follows from (A6):

‖G(x) ⊖∆ G(y)‖ ≤ ‖F1(x) ⊖∆ F1(y)‖ + ‖F2(x) ⊖∆ F2(y)‖ 2

Conditions (A2), (A4) resp. (18) hold for the geometric, the metric and
the Demyanov difference, hence for G-Lipschitz, Lipschitz and D-Lipschitz maps,
whereas condition (A6’) or (A6) holds for the Demyanov and algebraic difference
resp. metric one and not for the geometric difference (the opposite inclusion holds
for the latter).

Let us note that since all differences in Definition 2.1 coincide for single-
tons, the Lipschitz property with respect to any of these differences coincides with
the Lipschitz condition for single-valued F (·). Hence, there is no difference in the
Lipschitz notions with respect to various differences for single-valued maps.

Proposition 3.8 (single-valued case). Let f : X → R
n and set F (x) :=

{f(x)}. Then, the properties D-Lipschitz, Lipschitz and G-Lipschitz coincide with
the usual Lipschitz condition for f(·).

P r o o f. The claim follows from F (x) ⊖D F (y) = F (x) ⊖A F (y) and

F (x) ⊖G F (y) = F (x) ⊖M F (y) = F (x) ⊖D F (y) = {f(x) − f(y)},
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‖F (x) ⊖G F (y)‖2 = dH(F (x), F (y)) = dD(F (x), F (y)) = ‖f(x) − f(y)‖2

which shows that D-Lipschitz and Lipschitz condition coincide in this case and
the set-valued Lipschitz condition is equivalent to the pointwise case. �

In the 1d case several notions coincide.

Proposition 3.9 (1d case). Let F : I → C(R) be given with I ⊂ R closed.
Then,

(i) F (·) is G-Lipschitz with F (s) ⊖G F (t) 6= ∅ for s, t ∈ I if and only if F (·) is
Lipschitz.

(ii) The properties D-Lipschitz and Lipschitz coincide.

(iii) If F (·) is given with F (t) = [a(t), b(t)], then F (·) being Lipschitz is equivalent
to a(·), b(·) being both Lipschitz.

P r o o f. Consider C = [c1, c2], D = [d1, d2] with C,D ∈ C(R). Since the
geometric and the Demyanov difference in C(R) are equal by

C ⊖G D = {x ∈ I : ∀l = ±1 : l · x ≤ δ∗(l, C) − δ∗(l,D)}
= {x ∈ I : −x ≤ −c1 + d1, x ≤ c2 − d2} = [c1 − d1, c2 − d2]

= co{y(−1, C) − y(−1,D), y(1, C) − y(1,D)} = C ⊖D D

under the condition of nonemptiness in (i), we can apply this for C = F (x),
D = F (y) and (6) yields

dH(F (x), F (y)) = ‖F (x) ⊖G F (y)‖2 = ‖F (x) ⊖D F (y)‖2 = dD(F (x), F (y)).

Hence, we have equality in (6) so that (i)–(ii) follow.
(iii) follows from (ii), since y(1, F (t)) = b(t), y(−1, F (t)) = a(t). �

The assumption in (i) that the geometric difference is never empty is quite
restrictive and requires that the diameter of F (·) is constant. Example 6.1 shows
such an example.

The next proposition generalizes [6, Sec. 5] to multivariate maps and shows
the hierarchy of the Lipschitz notions.

Proposition 3.10 (hierarchy for Lipschitz maps). Let F : X ⇒ R
n be a

set-valued map with images in K(Rn). Then, the following implications hold:

D-Lipschitz ⇒ Lipschitz ⇒ G-Lipschitz
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P r o o f. The left implication follows from (21), the right implication holds
due to Lemma 2.2. �

4. Lipschitz generalized Steiner selections. We would like to
adapt some results in [4, 6] about the representation and on selections of set-
valued univariate maps to the multivariate case. Generalized Steiner selections are
introduced and studied in [11, 12, 13]. They are defined for set-valued maps with
convex images via generalized Steiner points which introduce a smooth measure
in the original definition of the Steiner point. Thus, a Castaing representation of
the set-valued map F : X ⇒ R

n can be obtained in [12, Theorem 3.4] for x ∈ X,
i.e.

F (x) =
⋃

α∈SM

{Stα(F (x))},(23)

where we define the generalized Steiner (GS) selection via the generalized Steiner
point of the corresponding image of the set-valued map, i.e.

Stα(F (·))(x) := Stα(F (x)).

Here as in [12], SM is the set of probability measures α with C1(B1(0))-density
functions. In [6] this representation result is extended to a set AM of atomic
measures α[l] which is concentrated in a single point l ∈ Sn−1 via

Stα[l]
(F (x)) := St(Y (l, F (x))).

For abbreviation we denote Msp to be either AM or SM. The representation (23)
also holds for AM as

F (x) = co

{ ⋃

l∈Sn−1

{Stα[l]
(F (x))}

}
.(24)

We first discuss Lipschitz continuous selections of special type which in-
herit the Lipschitz continuity of the set-valued function in the Hausdorff metric.
In [11, Theorem 3.6] it is proved that each GS-selection for smooth measures is Lip-
schitz with a varying Lipschitz constant depending on the measure provided that
the set-valued map is Lipschitz. If we require that the mapping F : X → C(Rn)
is even D-Lipschitz, the Lipschitz constant of all GS-selections will be uniformly
bounded which is proved for univariate maps in [6, Proposition 5.1].
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Proposition 4.1. The set-valued map F : X ⇒ R
n with images in

C(Rn) is D-Lipschitz with a constant L ≥ 0, if and only if the GS-selections
(Stα(F (·)))α∈Msp

are uniformly Lipschitz with the same constant, i.e.

sup
α∈Msp

‖Stα(F (x)) − Stα(F (y))‖2 ≤ L‖x − y‖2 (x, y ∈ X).

P r o o f. The assertion follows immediately from [6, Corollary 4.8], since

dD(F (x), F (y)) = sup
α∈Msp

‖Stα(F (x)) − Stα(F (y))‖2. 2

5. Lipschitz metric selections. We recall the known result (see
e.g. [9, Lemma 9.2]) that a Lipschitz univariate map F : R

1 → K(Rn) has a family
of selections, passing through every point of its graph, which are Lipschitz with
the same Lipschitz constant as F . We give here a proof which is a modification of
the proof of Hermes [19] for the existence of a Lipschitz selection of such a map
(see [16] and [17, Sec. 8.1]). The constructed selections using the Arzelà-Ascoli
theorem are called metric selections.

The GS selections from the previous section are uniformly Lipschitz only
if the stronger condition of D-Lipschitz continuity of the set-valued map F is sat-
isfied while the metric selections are uniformly Lipschitz whenever F is Lipschitz
in the Hausdorff metric.

Let us recall the construction of metric selections.

Definition 5.1. Let F : [a, b] → K(Rn). We take a uniform partition of
[a, b], a = x0 < x1 < · · · < xN = b with xi = a + i(b − a)/N , i = 0, . . . , N .
For a given (x, y), x ∈ [xk, xk+1], y ∈ F (x), we define yk as a projection of
y on F (xk), and then, starting from yk, we find subsequently for any given yi,
i ≥ k, a point yi+1 satisfying ‖yi+1 − yi‖2 = dist(yi, F (xi+1)). Similarly, starting
backwards from yk, we project for any i ≤ k the vector yi onto F (xi−1). Thus
we construct a sequence of points yi ∈ F (xi), i = 0, . . . , N , such that for any
i = 0, . . . , N − 1,

‖yi+1 − yi‖2 = dist(yi+1, F (xi)) or ‖yi+1 − yi‖2 = dist(yi, F (xi+1)).(25)

A sequence {(xi, yi)}i=0,...,N satisfying (25) is called metric chain. Any piecewise-
linear interpolant yN (x) of such points (xi, yi), i = 0, N , of a metric chain is
called metric piecewise-linear interpolant.
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Remark 5.2. If F : [a, b] → K(Rn) is Lipschitz continuous (with re-
spect to the Hausdorff metric), this piecewise linear function is also Lipschitz
continuous with the same Lipschitz constant. In this case, by Arzelà-Ascoli the-
orem, the constructed sequence of functions yN (·) has a uniformly convergent
subsequence. Then any (pointwise) limit function of a convergent subsequence
of metric piecewise-linear interpolants is a selection of F , and is called metric
selection. Since F is Lipschitz, it is easily verified that the metric selections are
also Lipschitz with the same Lipschitz constant as F (see e.g. [17, Sec. 8.1]).

One can formulate the following characterization of Lipschitz mappings
F : [a, b] → K(Rn).

Proposition 5.3. F : R → K(Rn) is Lipschitz (in the Hausdorff metric)
with constant µ if and only if all metric selections of F are uniformly Lipschitz
with constant µ.

P r o o f. We have sketched in Remark 5.2 the proof of one (the non-trivial)
direction of the claim. The second direction is easier. Indeed, let all metric
selections be Lipschitz with the constant L. We have to show that F is Lipschitz
in the Hausdorff metric with the same constant. Take arbitrary x′, x′′ ∈ [a, b],
and y′ ∈ F (x′), y′′ ∈ F (x′′) such that ‖y′ − y′′‖2 = dH(F (x′), F (x′′)), for instance
let ‖y′ − y′′‖2 = dist(y′, F (y′′)). There is a metric selection y(x) passing through
(x′, y′), such that y(x′) = y′ and ‖y(x′) − y(x′′)‖2 ≤ L|x′ − x′′|. Thus

dH(F (x′), F (x′′)) = ‖y(x′) − y′′‖2 ≤ ‖y(x′) − y(x′′)‖2 ≤ L|x′ − x′′|,

which completes the proof. �

Remark 5.4. In a similar way one can prove necessary and sufficient
conditions for a set-valued map to be of bounded variation (in the Hausdorff
metric) via the uniform bounded variation (with the same bound on the variation)
of its metric selections. In this case, in the proof of the necessity (the non-trivial
direction), one cannot use the Arzelà-Ascoli theorem, but the Helly’s selection
principle ([21, Chap. 10, Subsec. 36.5]). Results in this spirit can be found e.g. in
Chistyakov [9, 7, 8].
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6. Examples. In this section we present examples illustrating different
notions of Lipschitz continuity as well as the obtained theorems on Lipschitz
selections.

6.1. Examples for different Lipschitz notions.

Example 6.1. Set F : R → R as

F (t) = [sin(t), sin(t) + 1] (t ∈ R).

Then, F (·) is G-Lipschitz and Lipschitz, but not A-Lipschitz.

The Lipschitz property follows from Propositions 3.7, 3.8 and 3.9 for F (t) =
[0, 1] + sin(t), since the sine function is Lipschitz. Although Proposition 3.9 (i)
holds with

diam(F (t)) = (sin(t) + 1) − sin(t) = 1 (t ∈ R),

F (s) ⊖G F (t) = {sin(s) − sin(t)},

let us directly check the G-Lipschitz property:

‖F (s) ⊖G F (t)‖ = | sin(s) − sin(t)| ≤ |s − t|

Hence, F (·) is G-Lipschitz with constant L = 1. Since the map is not everywhere
single-valued, it cannot be A-Lipschitz (see Proposition 3.2).

We next state an example of a G-Lipschitz map which is not Lipschitz
which shows that G-Lipschitz is a weaker assumption than Lipschitz continuity.

Example 6.2. Set F : [0,∞) × R → R
2 as

F (x) = co

{(
0

0

)
,

(
x1√
|x1|

)}
(x ∈ R

2).

Then, F (·) is G-Lipschitz, but not Lipschitz.

(i) If we assume that F (·) is Lipschitz, there exists L ≥ 0 forming the Lipschitz
constant. The special choice

hm =
1

m
, xm =

(
2hm

0

)
, ym =

(
hm

0

)
(m ∈ N)

yields

dist

((
2hm√
2
√

hm

)
, co

{(
0

0

)
,

(
hm√
hm

)})
=

∥∥∥∥
(

2hm√
2
√

hm

)
−

(
hm√
hm

)∥∥∥∥
2
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=

∥∥∥∥
(

hm

(
√

2 − 1)
√

hm

)∥∥∥∥
2

≤ dH(F (xm), F (ym)) ≤ L‖xm − ym‖2.

This leads to the contradiction

√
2 − 1 ≤

√
hm + (

√
2 − 1)2 ≤ L

√
hm

for large m ∈ N.

(ii) F (·) is G-Lipschitz with constant L = 0, since for x = (x1, x2) and
y = (y1, y2) ∈ R

2

F (x) ⊖G F (y) =

{
∅ for x, y with x1 6= y1,

{0} for x, y with x1 = y1,

‖F (x) ⊖G F (y)‖ =

{
−∞ for x, y with x1 6= y1

0 for x, y with x1 = y1

}
≤ 0.

There exist Lipschitzian maps which are not D-Lipschitz, see [14, Exam-
ple 3.1] and [6, Example 5.2].

6.2. Examples for Lipschitz selections. In [11, Theorem 3.6] it is
shown that a Lipschitz set-valued map generates Lipschitz continuous general-
ized Steiner selection for smooth measures, but the Lipschitz constants of these
selections are not uniformly bounded. The stronger requirement of D-Lipschitz
continuity implies that the Lipschitz constants of the GS selections are the same
as for the set-valued map. There is a Lipschitzian set-valued map F : [a, b] ⇒ R

2

in [6, Example 5.2] which has even discontinuous generalized Steiner selections
for an atomic measure. Obviously (in the view of Proposition 4.1), this set-valued
map cannot be D-Lipschitz. The next example shows that the GS-selections cor-
responding to atomic measures need not be Lipschitz for a Lipschitz set-valued
map (in the Hausdorff metric).

Example 6.3 ([14, Example 3.1]). Set F : R
2 → R

2 as

F (x) = co

{(
0

0

)
,

(
cos(x1)

sin(x1)

)}
(x ∈ R

2).

We claim that Stα[l]
(F (·)) is not Lipschitz for l =

(
1
0

)
in x = π

2

(
1
−1

)
, it is even

discontinuous while F (·) is Lipschitz.

From the example above we can calculate

Stα[l]
(F (x)) = St(Y (l, F (x)))
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=





(cos(x1)
sin(x1)

)
, if l1 cos(x1) + l2 sin(x1) > 0,

St(F (x)) = 1
2

(cos(x1)
sin(x1)

)
, if l1 cos(x1) + l2 sin(x1) = 0,

(0
0

)
, else.

(i) Stα[l]
(F (·)) is not Lipschitz:

Let us consider the sequence (xm)m with xm = (π
2 − 1

m
)
( 1
−1

)
for m ∈ N which

converges to x = π
2

(
1
−1

)
.

For l =
(1
0

)
the above formula shows that

Stα[l]
(F (xm)) =

(
cos(π

2 − 1
m

)

sin(π
2 − 1

m
)

)
−→

m→∞

(
0

1

)
.

But the value of the generalized Steiner selection for x does not coincide with this
limit:

Stα[l]
(F (x)) =

1

2

(
cos(π

2 )

sin(π
2 )

)
=

1

2

(
0

1

)

As claimed the generalized Steiner selection is discontinuous, hence F (·) cannot
be D-Lipschitz by Proposition 4.1.

Motivated by Lemma 3.5 we next give a D-Lipschitzian map which has
uniform Lipschitz continuous GS-selections.

Example 6.4. Consider the set-valued map F (t) = r(t)U for t ∈ R with

U = [−1, 1] × {1} and r : R → [0,∞), e.g. r(t) = |t|, and l =
(cos(φ)
sin(φ)

)
∈ S1. Then,

the GS-selections are uniformly Lipschitz.

From Lemma 3.5 we know that F (·) is D-Lipschitz. By

Stα[l]
(U) =





St(Y (l, U)) = St(U) =
(0
1

)
(φ ∈ {−π

2 , π
2}),

y(l, U) =
(1
1

)
(φ ∈ (−π

2 , π
2 )),

y(l, U) =
(
−1
1

)
(φ ∈ (π

2 , 3π
2 ))

and the calculus rules in [6, Lemma 4.1] for generalized Steiner points we see that

Stα[l]
(F (t)) = r(t) Stα[l]

(U) = r(t) St(Y (l, U)).

Hence, the generalized Steiner selections

Stα[l]
(F (t)) =





|t| ·
(0
1

)
(φ ∈ {−π

2 , π
2}),

|t| ·
(1
1

)
(φ ∈ (−π

2 , π
2 )),

|t| ·
(
−1
1

)
(φ ∈ (π

2 , 3π
2 ))
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are different for various directions l, but uniformly Lipschitz with constant
√

2
which also follows from

‖Stα[l]
(F (s)) − Stα[l]

(F (t))‖2 = ‖r(s) St(Y (l, U)) − r(t) St(Y (l, U))‖2

≤ | |s| − |t| | · ‖St(Y (l, U))︸ ︷︷ ︸
∈U

‖2 ≤ ‖U‖2 · |s − t|.

The following example is a slight variant of [17, Example 8.1.3]. One single
metric selection which is not Lipschitz is enough to prevent a set-valued map from
being Lipschitz as the following example demonstrates.

Example 6.5. Consider F : [0,∞) ⇒ R with images in K(Rn) defined as

F (t) =

{
[−1, 1 −

√
1 − t2] for t ∈ [0, 1],

[−1, 1] for t > 1.

F (·) is not Lipschitz and has metric selections which are Lipschitz and at least
one which is not Lipschitz.

(i) There exists a metric selection which is not Lipschitz.
The metric selection η(·) passing through the point (1, 1) of the graph is not
Lipschitz (compare Figure 1), since

η(t) =

{
1 −

√
1 − t2 for t ∈ [0, 1],

1 for t > 1.

For hm = 1
m

we have

|η(1) − η(1 − hm)| =
∣∣∣1 −

(
1 −

√
1 − (1 − hm)2

)∣∣∣ =
√

2hm − h2
m.

Assuming the Lipschitz continuity in t = 1, this expression must be bounded by
L|1 − (1 − hm)| = Lhm which leads to the contradiction

√
2 − hm ≤ L

√
hm for

large m ∈ N. Hence, |η(1) − η(1 − hm)| ≤ Lhm cannot hold.

(ii) All other metric selections would be Lipschitz, but if they approach the point
(1, 1) in the graph with constant first coordinate t = 1, their Lipschitz constants
will explode.

(iii) F (·) is not Lipschitz
This follows directly from Proposition 3.9 (iii).
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Fig. 1. Non-Lipschitz metric selection (left) and other metric selections (right) in
Example 6.5

Only one metric selection of this map is non-Lipschitz (left picture in
Figure 1), all the other metric selections are Lipschitz (right picture).

We consider a variant of Example 6.5 with a Lipschitz map that has
uniform Lipschitz metric selections.

Example 6.6. Consider F : [0,∞) ⇒ R with images in K(Rn) defined as

F (t) =

{
[−1, t] for t ∈ [0, 1],

[−1, 1] for t > 1.

F (·) is Lipschitz and has metric selections which are uniformly Lipschitz.

(i) F (·) is Lipschitz
Obviously, F (·) = [a(t), b(t)] has Lipschitz functions a(t) = −1 and

b(t) =

{
t for t ∈ [0, 1],

1 for t > 1.

By Proposition 3.9 (iii) this assures the Lipschitz property (with constant 1).

(ii) all metric selections are uniformly Lipschitz
The metric selections ηα(·) passing through the point (0, α) with α ∈ [−1, 0] of
the graph equal ηα(t) = α (Lipschitz with constant 0). The ones passing through
(2, β) with β ∈ (0, 1] are

ηβ(t) =

{
t for t ∈ [0, β],

β for t ≥ β.
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Hence, all selections are Lipschitz with uniform constant 1 (coinciding with the
Lipschitz constant of F (·)) which is guaranteed by Proposition 5.3.

All metric selections are Lipschitzian including the boundary selection (left
picture in Figure 2). Other metric selections are depicted in the right picture.

Fig. 2. Boundary metric selection (left) and other metric selections (right) in
Example 6.6

Conclusions. In this paper we investigated the characterization of a
set-valued Lipschitz map by uniformly Lipschitz selections in the two cases: for
D-Lipschitz maps with convex images or for univariate Lipschitz (in the Hausdorff
metric) maps with only compact images.

Part of our results may be easily extended to Hölder-continuous set-valued
mappings (as Proposition 4.1). The case of metric selections is more complicated
and requires more investigation.

As we already mentioned, in one dimension, the class of D-Lipschitz maps
coincides with the class of Lipschitz convex-valued maps.

Generalized Steiner selections for the convex case give an interesting way
to derive new selection results for set-valued maps. They are closely related to
the Demyanov difference of sets. Uniformly Lipschitz GS selections provide a
characterization of the class of D-Lipschitz set-valued maps. As we show in the
second part of this paper, uniformly OSL generalized Steiner selections provide
a characterization of the class of D-OSL mappings, for properly defined D-OSL
condition for set-valued maps, with respect to the Demyanov difference.

Results for the rather weak notions G-Lipschitz and G-OSL set-valued
maps remain a future task. The collection of examples presented here illustrates
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the established hierarchies and hopefully provide more insight in the various reg-
ularity classes for set-valued maps.

R EFER EN CES

[1] Z. Artstein. Extensions of Lipschitz selections and an application to dif-
ferential inclusions. Nonlinear Anal. 16, 7–8 (1991):701–704.

[2] J.-P. Aubin, A. Cellina. Differential Inclusions. Grundlehren der math-
ematischen Wissenschaften vol. 264, Berlin–Heidelberg–New York–Tokyo,
Springer-Verlag, 1984.

[3] J.-P. Aubin, H. Frankowska. Set-Valued Analysis. Systems & Control:
Foundations & Applications vol. 2, Boston, MA, Birkhäuser Boston Inc.,
1990.

[4] R. Baier. Generalized Steiner selections applied to standard problems of set-
valued numerical analysis. In: Differential Equations, Chaos and Variational
Problems. (Ed. V. Staicu) Conference “View on ODEs” in Aveiro, Portugal,
June 2006 (VODE 2006), Progress in Nonlinear Differential Equations and
Their Applications vol. 75, Basel, Birkhäuser, 2007, 49–60.

[5] R. Baier, E. Farkhi. Differences of Convex Compact Sets in the Space of
Directed Sets. Part II: Visualization of Directed Sets. Set-Valued Anal. 9, 3

(2001), 247–272.

[6] R. Baier, E. Farkhi. Regularity and integration of set-valued maps repre-
sented by generalized Steiner points. Set-Valued Anal. 15, 2 (2007), 185–207.

[7] S. A. Belov, V. V. Chistyakov. A selection principle for mappings of
bounded variation. J. Math. Anal. Appl. 249, 2 (2000), 351–366.

[8] S. A. Belov, V. V. Chistyakov. Regular selections of multifunctions of
bounded variation. Dynamical systems, vol. 10. J. Math. Sci. (New York)
110, 2 (2002), 2452–2454.

[9] V. V. Chistyakov. On mappings of bounded variation. J. Dyn. Control
Syst. 3, 2 (1997), 261–269.



Regularity of maps and selections. I. Lipschitz continuity 389

[10] V. F. Demyanov, A. M. Rubinov. Foundations of Nonsmooth Analysis,
and Quasidifferential Calculus. Moscow, Nauka, 1990 (in Russian); English
translation in: Constructive Nonsmooth Analysis. Approximation and Op-
timization vol. 7. Frankfurt am Main–Berlin–Bern–New York–Paris–Wien,
Peter Lang, 1995.

[11] D. Dentcheva. Differentiable selections and Castaing representations of
multifunctions. J. Math. Anal. Appl. 223, 2 (1998), 371–396.

[12] D. Dentcheva. Regular Castaing representations of multifunctions with
applications to stochastic programming. SIAM J. Optim. 10, 3 (2000),
732–749.

[13] D. Dentcheva. Approximation, expansions and univalued representations
of multifunctions. Nonlinear Anal. 45, 1 (2001), 85–108.

[14] P. Diamond, P. Kloeden, A. Rubinov, A. Vladimirov. Comparative
properties of three metrics in the space of compact convex sets. Set-Valued
Anal. 5, 3 (1997), 267–289.

[15] G. Dommisch. On the existence of Lipschitz-continuous and differentiable
selections for multifunctions. In: Parametric Optimization and Related Top-
ics. (Eds J. Guddat, H. Th. Jongen, B. Kummer, F. Nožička,) Mathematical
Research vol. 35, Berlin, Akademie-Verlag, 1987, 60–73.

[16] N. Dyn, E. Farkhi, A. Mokhov. Approximations of set-valued functions
by metric linear operators. Constr. Approx. 25, 2 (2007), 193–209.

[17] N. Dyn, E. Farkhi, A. Mokhov. Approximation of Set-Valued Functions:
Adaptation of Classical Approximation Operators. Imperial College Press,
London, UK, 2014 (to appear).

[18] H. Hadwiger. Minkowskische Addition und Subtraktion beliebiger Punk-
tmengen und die Theoreme von Erhard Schmidt. Math. Z., 53, 3 (1950),
210–218.

[19] H. Hermes. On continuous and measurable selections and the existence of
solutions of generalized differential equations. Proc. Amer. Math. Soc 29, 3

(1971), 535–542.

[20] P. S. Kenderov. The set-valued monotone mappings are almost everywhere
single-valued. C. R. Acad. Bulgare Sci. 27 (1974), 1173–1175.



390 Robert Baier, Elza Farkhi

[21] A. N. Kolmogorov, S. V. Fomin. Introductory real analysis. New York,
Dover Publ., 1975. (Translated from the second Russian edition and edited
by R. A. Silverman. Corrected reprinting).

[22] A. Mokhov. Approximation and Representation of Set-Valued Functions
with Compact Images. PhD thesis, Sackler Facult of Exact Sciences, Tel
Aviv University, Tel Aviv, Israel, 2011.

[23] M. S. Nikol’skij. Viable parametrization of continuous many-valued map-
pings. Math. Notes 50, 4 (1991), 1043–1045.

[24] G. Perria. Set-valued interpolation. Dissertation, Universität Bayreuth,
Bayreuth, 2007, Bayreuth. Math. Schr. No 79, 2007, vi+153 pp.

[25] L. S. Pontryagin. Linear differential games. II. Dokl. Akad. Nauk SSSR
175 (1967), 764–766 (in Russian); English translation in: Sov. Math., Dokl.
8 (1967), 910–912.

[26] R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia
of Mathematics and Applications vol. 44, Cambridge, Cambridge University
Press, 1993.

[27] E. H. Zarantonello. Dense single-valuedness of monotone operators. Is-
rael J. Math. 15 (1973), 158–166.

Robert Baier

Chair of Applied Mathematics

University of Bayreuth

95440 Bayreuth, Germany

e-mail: robert.baier@uni-bayreuth.de

Elza Farkhi

School of Mathematical Sciences

Tel-Aviv University

Tel-Aviv 69978, Israel

e-mail: elza@post.tau.ac.il Received July 31, 2013


