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Abstract. The paper addresses the problem if the n-dimensional Euclidean

space can be tiled with translated copies of Lee spheres of not necessarily

equal radii such that at least one of the Lee spheres has radius at least 2. It

will be showed that for n = 3, 4 there is no such tiling.

Introduction. It is known that the function d : Rn × Rn → R defined
by

d[(x1, . . . , xn), (y1, . . . , yn)] = |x1 − y1| + · · · + |xn − yn|

is a metric in Rn. Customarily it is called the octahedron or Manhattan metric.
The discrete analogue in coding theory it is referred to as Lee metric. The union
of the translated copies an n-dimensional unit cube whose centers are

(x1, . . . , xn), |x1| + · · · + |xn| ≤ ρ,
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is called an n-dimensional Lee sphere of radius ρ centered at (0, . . . , 0). Here, of
course, the xi’s are integer valued. The Lee spheres are particular cases of the
so-called cubical clusters defined in [12]. We describe this concept.

Let us fix an orthogonal coordinate system in the n-dimensional space.
The standard cube tiling consists of all n-dimensional unit cubes whose centers
are the points with integer coordinates. The union of finitely many members
of the standard cube tiling is defined to be a cubical cluster in [12]. Let L be
a set of vectors. A family of translated copies of a fixed cubical cluster by the
elements of L is called a tiling if the interiors of translated clusters are pair-wise
disjoint and if their union is equal to the whole n-dimensional space. The tiling is
termed integer if the coordinates of the vectors of L are all integers. The tiling is
called lattice-like if L forms an abelian group with the operation of the addition
of vectors.

In this paper we are interested in tiling the n-dimensional space by trans-
lated copies of Lee spheres. An n-dimensional Lee sphere of radius 0 is simply
an n-dimensional unit cube. Plainly the n-dimensional space can be tiled with
translated copies of an n-dimensional Lee sphere of radius 0. An n-dimensional
Lee sphere of radius 1 is a cross shaped body. It is composed of 2n+1 unit cubes.
One central cube and 2n arm cubes. E. Molnár [7] showed that the n-dimensional
space can be tiled with translated copies of an n-dimensional Lee sphere of radius
1. These tilings are lattice-like integer tilings. In fact it was shown that there are
essentially different tilings and the number of the tilings is equal to the number
of non-isomorphic abelian groups of order 2n + 1.

In 1-dimension the Lee sphere of radius ρ is a straight line section of length
2ρ+1. Plainly, the 1-dimensional space can be tiled with translated copies of this
Lee sphere. The reader can verify that, the 2-dimensional space can be tiled by
translated copies of a 2-dimensional Lee sphere of radius ρ for each ρ. In 1970 S.
W. Golomb and L. R. Welch [2] advanced the following conjecture.

Conjecture 1. If n ≥ 3 and ρ ≥ 2, then the n-dimensional space cannot

be tiled with translated copies of an n-dimensional Lee sphere of radius ρ.

Let us call a tiling of translated copies of Lee spheres a mixed tiling if the
radii of the spheres are not necessarily equal. One might wonder if Conjecture 1
can be replaced by the following more general conjecture about mixed tilings.

Conjecture 2. If n ≥ 3 and ρ ≥ 2, then the n-dimensional space cannot

be tiled with translated copies of n-dimensional Lee spheres of various radii ρ.

S. Gravier, M. Mollard and C. Payan in [3] verified Conjecture 2 for n = 3.
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S. Špacapan [10] settled the n = 4 case. Later in [11] he presented a computer
aided proof for this result. P. Horak [4] using an entirely different method proved
the n = 5 case. In this note we will give a new proof for the n = 5 case of
Conjecture 2. Using Špacapan’s ideas for each fixed n Conjecture 2 can be reduced
to a finite combinatorial problem to the set partitioning or exact cover problem. It
is known that the set partitioning problem is an NP complete problem. However,
an algorithm proposed by D. E. Knuth [6] is proved to be powerful enough to
successfully handle the set partitioning instances corresponding to the n ≤ 5
cases.

We propose a further generalization of Conjecture 2. If in a tiling of the
n-dimensional space with Lee spheres of mixed radii we can use Lee spheres of
radius 0, then clearly we can construct a tiling. We simply place the Lee spheres of
radii larger than 0 arbitrarily keeping their interiors disjoint. Then the remaining
uncovered n-dimensional unit cubes of the standard cube tiling can be covered
by Lee spheres of radius 0. The n-dimensional space can also be tiled with Lee
spheres of radius 1.

Conjecture 3. If n ≥ 3 and ρ ≥ 1, then the n-dimensional space cannot

be tiled with translated copies of n-dimensional Lee spheres of various radii ρ such

that one ρ is at least 2.

We will show that Conjecture 3 holds for n ≤ 4.

2. The exact cover problem. Let U be a set and let B1, . . . , Bt be
subsets of U . If B1, . . . , Bt are pair-wise disjoint and B1 ∪ · · · ∪ Bt = U , then we
say that the family of subsets B1, . . . , Bt of U forms a partition or exact cover
of U . The following problem is commonly referred to as the set partitioning or
exact cover problem.

Problem 1. Given a finite ground set U and a family of subsets A1, . . . , Ar

of U . Decide if there are B1, . . . , Bt ∈ {A1, . . . , Ar} that form a partition of U .

By the theory of computations, Problem 1 falls in the NP complete com-
plexity class. This can be interpreted loosely such that there are computationally
hard instances of Problem 1.

The set U will be identified by {1, . . . , s}. The family of subsets A1, . . . , Ar

of U can be conveniently described by an r by s incidence matrix A. Let ai,j be
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the entry of A in the i-th row and j-th column. Now

ai,j =

{

1, if j ∈ Ai,

0, if j 6∈ Ai.

D. E. Knuth [6] proposed an algorithm for solving Problem 1. He also illustrated
that the algorithm is capable of solving highly non-trivial size instances. The
utility of the algorithm was demonstrated by further applications for instance in
[8] and [9].

Knuth pointed out that with slight modifications his algorithm can also be
used to solve a little more general problem. Suppose that the set U is partitioned
into the subsets U1 and U2. We call these subsets primary and secondary subsets
of U .

Problem 2. Given a finite ground set U that is partitioned into primary

and secondary subsets U1 and U2. Given further a family of subsets A1, . . . , Ar

of U . Decide if there are subsets B1, . . . , Bt ∈ {A1, . . . , Ar} such that the sets

B1 ∩ U1, . . . , Bt ∩ U1 form a partition of U1 and the subsets B1 ∩ U2, . . . , Bt ∩ U2

are pair-wise disjoint.

The sets U , U1, U2 can be identified by the sets {1, . . . , s}, {1, . . . , p},
{p + 1, . . . , s} respectively. The r by s incidence matrix A associated with the
subsets A1, . . . , Ar of U in Problem 2 now is partitioned into the submatrices A1

and A2. Knuth calls the columns of A1 and A2 primary and secondary columns
of A. This is why we named the subsets U1 and U2 of U primary and secondary
subsets. This extended version of the exact cover problem can be called the
generalized exact cover problem.

3. Reducing tilings. In order to verify Conjecture 2 for a fixed n ≥ 3
suppose that there is a mixed tiling of the n-dimensional space by translates of
n-dimensional Lee spheres of radii at least 2. We would like to point out that
without any further reasoning we cannot assume that our counter example is an
integer tiling. In fact in [13] it was shown that if n ≥ 2 and 2n+1 is not a prime,
then there is an n-dimensional non-integer tiling consisting of n-dimensional Lee
spheres of radius 1. However, one can use the ideas of [1] to prove the following
result.

Theorem 1. Each n-dimensional mixed tiling consisting of n-dimensional

Lee spheres can be modified with certain shifting of the spheres to get an integer

tiling.
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P r o o f. We only sketch the proof. Let e1, . . . , en be coordinate unit
vectors in the n-dimensional space parallel to the unit cube whose translates form
the n-dimensional Lee spheres of the original tiling. We introduce a relation ∼ on
the Lee spheres of the tiling. Two distinct Lee spheres are in relation ∼ if and only
if they abut along an (n − 1)-dimensional face perpendicular to the coordinate
unit vector e1. It turns out that the relation ∼ is an equivalence relation. (To
guarantee reflexivity we declare each Lee sphere to be in relation ∼ with itself.)
As a consequence the Lee spheres of the tiling are partitioned into equivalence
classes.

It can be shown that each equivalence class can be shifted freely in the
direction of the coordinate unit vector e1 without destroying the tiling. Using
suitable shifts we can make the 1-st coordinates of all Lee spheres in the tiling
to be an integer number. Repeating the procedure in connection with the other
coordinates finally we get an integer tiling. �

In order to verify Conjecture 2 for a fixed n we may assume that there is
an integer n-dimensional counter example consisting of n-dimensional Lee spheres
with mixed radii. In short the original counter example which had a continuous
nature can be reduced to a counter example having a discrete nature. S. Špacapan
[11] established that for a fixed n we can further reduce this discrete problem to
a finite problem.

Theorem 2. If there is an n-dimensional counter example for Conjecture

2, then there is a bounded domain C of the n-dimensional space and finitely many

Lee spheres of radii at most 2n− 1 such that the centers of the spheres are in the

bounded domain C and the restricted parts of the Lee spheres form a tiling of the

domain C.

P r o o f. Let us consider an n-dimensional integer tiling T that is counter
example for Conjecture 2. Pick a Lee sphere S0 from this tiling. Let (c1, . . . , cn)
be the center and let ρ be the radius of S0. Clearly ρ ≥ 2. The n-dimensional
unit cube centered at (c1+ρ, c2, . . . , cn) belongs to S0. Consider an n-dimensional
cube C of side length 5 whose center is (c1 +ρ, c2, . . . , cn). Plainly C is composed
of 5n n-dimensional unit cubes. One may introduce a new coordinate system such
that the center of C became (2, . . . , 2). Now C consists of all n-dimensional unit
cubes whose centers are

(a1, . . . , an), 0 ≤ a1 ≤ 4, . . . , 0 ≤ an ≤ 4.

The center of S0 is (0, 2, . . . , 2).
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The tiling T may contain Lee spheres that are disjoint to the interior of
C. We simply discard these spheres. Pick a Lee sphere S1 from the remaining
spheres. We replace S1 by a Lee sphere S′

1. If the center of S1 is in C then set
S′

1 to be S1. Since the central cube of C is covered by S0, if S1 is not identical
to S0, then there are only finitely many choices for the radius ρ of S1. Namely,
ρ < 2n must hold. Let us turn finally to the case when the center (d1, . . . , dn) of
S1 is not in C. This means that di < 0 for some i or dj > 4 for some j. If di < 0,
then replace di by 0 and replace ρ by r − |di|. If dj > 4, then replace dj by 4 and
replace ρ by ρ − (dj − 4). The center of the modified Lee sphere S′

1 is in C and
S′

1 ⊆ S1. In fact S1∩C = S′

1∩C. There are only finitely many Lee spheres whose
center are in C and whose radii are at most 2n − 1. Now consider the modified
Lee spheres and note that the restrictions of the modified Lee spheres to C form
a tiling of C. �

We would like to point out that S. Špacapan experimented with various
high dimensional boxes in place of C. In 4-dimension he found useful the box
whose first dimension is equal to 4 and the other dimensions are all equal to 3.

3. The exact cover reformulation. The content of this section is to
describe how the veracity of Conjecture 2 can be tested by the generalized exact
cover problem.

Claim 1. The existence of a tiling in Theorem 2 can be expressed in terms

of the existence of a set partition.

The 5n n-dimensional unit cubes of C play the role of the elements of the
ground set U . The restrictions of the modified Lee spheres to C will correspond to
the family of subsets A1, . . . , Ar. If for a fixed n an exhaustive inspection reveals
that there are no subsets B1, . . . , Bt ∈ {A1, . . . , Ar} that form a partition of U ,
then we can conclude that Conjecture 2 holds for this particular n. On the other
hand if there are B1, . . . , Bt ∈ {A1, . . . , Ar} that form a partition of U , then one
cannot conclude that the whole n-dimensional space can be tiled by Lee spheres
of radii at least 2. First of all there is no guarantee that a tiling of C can be
extended to a tiling of the whole space. Secondly the tiling of C may contain
reduced Lee spheres of radii less than 2. If for example S1 contains only one cube
in C then S′

1 will be a single n-dimensional unit cube that is a Lee sphere of
radius 0.

In the generalized version of the exact cover problem the ground set U

is partitioned into the primary and secondary subsets U1 and U2. We will take
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advantage of this possibility. The n-dimensional unit cubes of C whose centers
are

(a1, . . . , an), 1 ≤ a1 ≤ 3, . . . , 1 ≤ an ≤ 3

will play the role of U1 and the remaining unit cubes of C will play the role of
U2. For the sake of a simpler terminology we partition C into the subsets C1 and
C2 corresponding to U1 and U2.

Let us consider an n-dimensional integer counter example tiling T for
Conjecture 2. As before we have a Lee sphere S0 that cover the central unit cube
of C. We may assume that the center of S0 is (0, 2, . . . , 2) and that the radius
of S0 is 2. We construct a subset A0 of U associated with S0. Namely, A0 will
consists of all unit cubes of C that are contained by S0. Pick another Lee sphere
S1 in T . If the center of S1 in the primary cube C1, then as S1 is a Lee sphere in
the counter example T , the radius of S1 is at least 2. As the central unit cube of
C is covered by S0, the radius of S1 is at most n − 1. There are |C1| choices for
the center of S1 as the centers of S1 must come from C1. There are n− 2 choices
for the radius of S1 as the radius of S1 is in the range 2, . . . , n−1. We construct a
subsets Ai for each choice of the center and the radius of S1. Namely, Ai consists
of all cubes of C contained in S1. We discard Ai if it is not disjoint to A0 and
keep it if it is disjoint to A0.

Assume next that the center of S1 is in the secondary cube C2. As the
central unit cube of C is covered by S0, the radius of S1 is at most 2n− 1. There
are |C2| choices for the center of S1 as the centers of S1 are in C2. There are 2n−1
choices for the radius of S1 as the radius of S1 is in the range 1, . . . , 2n − 1. We
construct a subsets Aj for each choice of the center and the radius of S1. Namely,
Aj consists of all unit cubes of C contained in S1. We keep only those Aj subsets
that are disjoint to A0.

We have now an instance of the generalized exact cover problem. The
ground set U consists of all the unit cubes of C. The primary and secondary
subsets U1, U2 contain the unit cubes of C1, C2 respectively. The given family of
subsets of U corresponds to the subsets A0, Ai, Aj constructed above.

It is plain that if there is a counter example for Conjecture 2, then this
instance of the exact cover problem has a solution. In other words checking that
the exact cover problem does not have any solution verifies Conjecture 2.

5. The computations. The main results of this section can be sum-
marized in the following two theorems
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Theorem 3. Conjecture 2 holds for dimensions 3, 4, and 5.

Theorem 4. Conjecture 3 holds for dimensions 3 and 4.

P r o o f o f Th e o r em 3. As we have pointed out earlier the result in
Theorem 3 has already been proven. The novelty of our approach is that the result
has an independent computer assisted proof which uses the exact cover algorithm.
It seems likely that the technique used in [4] is suitable to settle further cases of
Conjecture 3. The point we wanted to make in this paper is that an independent
computer aided proof using the exact cover algorithm is available. The existing
exact cover algorithms are capable of solving highly nontrivial instances.

We describe the exact cover searches to verify Conjecture 2 for dimensions
3, 4, 5 again. This time we focus on the computational aspects. The side length
of the n-dimensional test cube C is chosen to be 5 and so it consists of 5n n-
dimensional unit cubes whose centers are

(a1, . . . , an), 0 ≤ a1 ≤ 4, . . . , 0 ≤ an ≤ 4.

The side length of the primary test cube C1 is chosen to be 3 and consequently
C1 consists of 3n n-dimensional unit cubes whose centers are

(a1, . . . , an), 1 ≤ a1 ≤ 3, . . . , 1 ≤ an ≤ 3.

The center of the initial Lee sphere S0 is (0, 2, . . . , 2) and the radius of S0 is 2.
The incidence matrix of the exact cover problem was constructed row by

row in the following manner. We picked an n-dimensional unit cube of C1 and we
picked an integer ρ in the range 2, . . . , 5n. We marked each n-dimensional unit
cube of C whose distance from the fixed cube was at most ρ. These cubes form
Si ∩C, where Si is a Lee sphere of the tentative tiling centered at the fixed cube
and having radius ρ. In this way we get a row of the incidence matrix of the exact
cover problem. From the 3n(5n− 1) possible choices for Si we kept only those for
which S0 ∩ Si = ∅ holds.

Similarly, we picked an n-dimensional unit cube of C2 = C \ C1 and an
integer ρ from the range 1, . . . , 5n. We marked each n-dimensional unit cube
of C whose distance from the fixed cube did not exceed ρ. These cubes form
Sj ∩ C, where Sj is a Lee sphere of the tentative tiling centered at the fixed
cube and having radius ρ. In this way we get a row of the exact cover problem.
However, from the possible (5n − 3n)(5n) choices for Sj we kept only those for
which S0 ∩ Sj = ∅ holds.
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Table 1. Conjecture 2

n r s p v w

3 153 106 21 99 0

4 1 199 592 73 4 109 0

5 8 449 3 074 233 777 289 0

The details are summarized in Table 1. Here n is the dimension of the
space. The incidence matrix of the exact cover problem has r rows and s columns.
The number of the primary columns is p. The number of the nodes of the search
tree is v and the number of the solutions found is w. We would like to emphasize
that these results are not new. However, an independent computation employing
a well tested standard algorithm increases our confidence in a computer assisted
proof. �

P r o o f o f Th e o r em 4. Let us turn our attention to the exact cover
search to verify Conjecture 3 for dimensions 3, 4. This is the new result of this
note. In dimension 3 the side length of the test cube C is chosen to be 9. Therefore
C consists of 93 unit cubes whose centers are

(a1, a2, a3), 0 ≤ a1 ≤ 8, 0 ≤ a2 ≤ 8, 0 ≤ a3 ≤ 8.

The side length of the test cube C1 is chosen to be 7 and so C1 is constructed of
73 unit cubes whose centers are

(a1, a2, a3), 1 ≤ a1 ≤ 7, 1 ≤ a2 ≤ 7, 1 ≤ a3 ≤ 7.

We picked an integer x from the range 0, . . . , 4. The center of the initial Lee
sphere S0 is (4 − x, 4, 4) and the radius of S0 is 2 + x. The incidence matrix of
the exact cover problem was constructed in the following way. We picked a unit
cube of C and an integer ρ in the range

{

1, . . . , 2 + x if x ≤ 3,

1, . . . , 3 · 9 if x = 4.

We marked each unit cube of C whose distance from the chosen unit cube was at
most ρ. This provided us with Si∩C, where Si is a Lee sphere of the tentative tiling
centered at the chosen unit cube having radius ρ. In other words this provided us
with a row of the exact cover problem. Out of the (93)(2+ x)+ (93)(3 · 9) choices
of Si we kept only those for which S0 ∩ Si = ∅ holds.
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This construction is motivated by the following consideration. Suppose
there is a counter example tiling T for Conjecture 3. The radii of the Lee spheres in
T do not necessarily admit a maximum value. But if they do, then we distinguish
two cases depending on whether this maximum value is at most 5 or if it is larger
than 5. If the maximum of the radii of the Lee spheres in T is 2, then we identify
S0 with a Lee sphere in T of radius 2. In this case T does not contain any Lee
sphere of radius larger than 2. If the maximum of the radii of the Lee spheres
in T is 3, then we identify S0 with a Lee sphere of radius 3. (Reducing the first
coordinate of the center by one in the same time.) We repeat this argument
until the largest among the radii among the Lee spheres in T reaches 5. This
correspond to the x = 0, . . . , 3 cases. If T contains a Lee spheres of radius larger
than 5, then we use Špacapan’s reduction and identify S0 with a Lee sphere of
radius 6. This corresponds to the x = 4 case. The details of the computation are
summarized in Table 2.

Table 2. Conjecture 3 in dimension 3

x r s p v w

0 1 166 704 318 1 021 0

1 1 405 666 281 1 478 0

2 1 377 606 237 322 0

3 1 369 546 217 277 0

4 1 493 518 217 228 0

In 4-dimension the side length of the 4-dimensional test cube C is chosen
to be 6. This means that C is composed of 64 copies of 4-dimensional unit cubes
whose centers are

(a1, . . . , a4), 0 ≤ a1 ≤ 5, . . . , 0 ≤ a4 ≤ 5.

The side length of the test cube C1 is chosen to be 4 and consequently C1 consists
of 44 copies of 4-dimensional unit cubes whose centers are

(a1, . . . , a4), 1 ≤ a1 ≤ 4, . . . , 1 ≤ a4 ≤ 4.

In order to construct a particular row of the incidence matrix of the exact cover
problem we picked an integer x from the range 0, 1, 2. The center of the initial
Lee sphere S0 is selected to be (2−x, 2, 2, 2) and the radius of S0 was taken to be
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2 + x. We picked a 4-dimensional unit cube of C and an integer ρ from the range
{

1, . . . , 2 + x if x ≤ 1,

1, . . . , 4 · 6 if x = 2.

The details of the computation are summarized in Table 3.

Table 3. Conjecture 3 in dimension 4

x r s p v w

0 1 510 1 255 219 13 029 751 0

1 1 803 1 174 189 3 099 107 0

2 2 374 1 045 184 832 656 0
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