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ON THE SET-THEORETIC

COMPLETE INTERSECTION PROPERTY

FOR THE EDGE IDEALS OF WHISKER GRAPHS
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Abstract. We show that the edge ideals of some whisker graphs are set-

theoretic complete intersections.

1. Introduction. Given a Noetherian commutative ring with identity
R, the arithmetical rank (ara) of a proper ideal I of R is defined as the smallest
integer s for which there exist s elements a1, . . . , as of R such that the ideal
(a1, . . . , as) has the same radical as I. In this case we will say that a1, . . . , as

generate I up to radical. In general ht(I) ≤ ara(I). If equality holds, I is called a
set-theoretic complete intersection. We consider the case where R is a polynomial
ring over a field K and I is the so-called edge ideal of a graph whose vertices are
the indeterminates. Its set of generators is formed by the products of the pairs of
indeterminates that form the edges of the graph. Thus I is generated by squarefree
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monomials of degree 2, and is therefore a radical ideal. The arithmetical rank of
edge ideals has recently been studied by several authors (see e.g. Kummini [8])
and explicitly determined for some special types of graphs. In many cases it has
been proven that ara(I) coincides with the projective dimension of the quotient
ring R/I, which, in general, according to a well-known result by Lyubeznik [9],
provides a lower bound. This equality has been established for lexsegment edge
ideals by Ene, Olteanu, Terai [5], for the edge ideals of acyclic graphs (the so-called
forests) by Kimura and Terai [7] (extending a result by Barile [1]), for the graphs
formed by one or two cycles connected through a path (cyclic and bicyclic graphs)
by Barile, Kiani, Mohammadi and Yassemi [2], and for the graphs consisting of
paths and cycles with a common vertex by Kiani and Mohammadi [6]. In all these
cases, the arithmetical rank is independent of the field K.

As a consequence of the Auslander-Buchsbaum formula (see the proof of
Corollary 5.1 for further details on this point), whenever an ideal of R generated
by squarefree monomials is a set-theoretic complete intersection, it is a Cohen-
Macaulay ideal. Dochtermann and Engström [4] proved that this latter property
is fulfilled by the edge ideals of the graphs in which every vertex belongs to
exactly one terminal edge (equivalently: every vertex of degree greater than one
is adjacent to exactly one vertex of degree one). These graphs are those obtained
by adding a whisker to each vertex of a given graph, i.e., by attaching a terminal
edge to all its vertices. In the present paper we determine a large class of whisker
graphs (which can have any number of cycles) that are set-theoretic complete
intersections. This class includes all whisker graphs constructed on cyclic and
byciclic graphs. It also includes all trees that give rise to Cohen-Macaulay edge
ideals, and have been characterized by Villarreal [11]. The results presented in
this paper are independent of the field K.

2. Preliminaries. A useful technique that provides an upper bound for
the arithmetical rank of ideals is the following result due to Schmitt and Vogel.

Lemma 2.1 ([10], Lemma p. 249). Let R be a commutative ring with
identity and P be a finite subset of elements of R. Let P0, . . . , Pr be subsets of P
such that

(i)
⋃r

i=0 Pi = P ;

(ii) P0 has exactly one element;

(iii) if p and p′ are different elements of Pi (0 < i < r), there is an integer i′,
with 0 ≤ i′ < i, and an element in Pi′ which divides pp′.
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We set qi =
∑

p∈Pi
pe(p), where e(p) ≥ 1 are arbitrary integers. We will write (P )

for the ideal of R generated by the elements of P . Then
√

(P ) =
√

(q0, . . . , qr).

In the following we will consider squarefree monomial ideals arising from
graphs, the so-called edge ideals.

Definition 2.2. Let G be a graph with vertex set V (G) = {x1, . . . , xn},
with n ∈ N, n ≥ 1, and whose edge set is E(G). Suppose that x1, . . . , xn are
indeterminates over the field K. The edge ideal of G in the polynomial ring
R = K [x1, . . . , xn] is the squarefree monomial ideal

I(G) =
({

xixj

∣

∣ {xi, xj} ∈ E(G)
})

.

For the sake of simplicity, we will use the same notation xixj for the monomial
and for the corresponding edge.

Definition 2.3. Let G be a graph and x a vertex of G. Adding a whisker
to the vertex x of G means adding a new vertex y and the edge connecting x and
y to G.

For each vertex xi of a graph G, we consider a new vertex yi and add the
whisker xiyi to G. Let G′ be the graph obtained in this way. We will call it the
whisker graph on G.

Dochtermann and Engström [4] have shown the following result:

Theorem 2.4 ([4], Theorem 4.4). Let G′ be the graph obtained by adding
a whisker to all vertices of a graph on n vertices. Then the ideal I(G′) is Cohen-
Macaulay and ht(I(G′)) = n.

P r o o f. The Cohen-Macaulay property was proven in Theorem 4.4 [4].
For the second part of the claim it suffices to observe that I(G′) is pure (see
Bruns-Herzog [3], Cor. 5.1.5) and that the ideal generated by the vertices of G is
a minimal prime ideal of I(G′). �

3. The arithmetical rank of the edge ideals of whisker graphs

on paths and cycles. In this section, we show that the edge ideals of the
whisker graphs on line graphs and cycle graphs are set-theoretic complete inter-
sections.

Let n ∈ N, n ≥ 2, and let Ln be the line graph (path) of length n−1, with
vertex set V (Ln) = {x1, . . . , xn} and edge set E(Ln) = {x1x2, x2x3, . . . , xn−1xn}.
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For each vertex xi consider a new vertex yi and the whisker xiyi. We will adopt
this notation throughout the paper. Call L′

n the graph obtained in this way.

Lemma 3.1. With respect to the above notations,

ara(I(L′
n)) = ht(I(L′

n)) = |V (Ln)| = n,

thus I(L′
n) is a set-theoretic complete intersection.

P r o o f. If n = 2, set

q0 = x1x2

q1 = x1y1 + x2y2.

For each n ≥ 3, set

q0 = x1x2

q1 = x1y1 + x2x3

...

qn−2 = xn−2yn−2 + xn−1xn

qn−1 = xn−1yn−1 + xnyn.

Applying Lemma 2.1, we show that I(L′
n) =

√

(q0, . . . , qn−1), which implies the
claim. For i = 0, . . . , n − 1, we take Pi to be the set of the monomials of qi. The
assumptions of Lemma 2.1 are obviously fulfilled if n = 2. So let n ≥ 3. Then
(i) and (ii) hold true and, moreover, if i ∈ {1, . . . , n − 2}, the product of the two
monomials in Pi is xiyi · xi+1xi+2, which is a multiple of xixi+1 ∈ Pi−1, and the
product of the two monomials in Pn−1 is xn−1yn−1 · xnyn, which is a multiple of
xn−1xn ∈ Pn−2. �

Definition 3.2. Let n ∈ N, n ≥ 3. An n-sunlet graph (or n-sun graph)
is a graph G with 2n vertices, obtained by adding a whisker to each vertex of a
cycle graph Cn of length n.

Given a cycle Cn with vertex set V (Cn) = {x1, . . . , xn} and edge set
E(Cn) = {x1x2, x2x3, . . . , xn−1xn, xnx1}, we consider the n-sunlet graph Sn on
Cn, obtained by adding to each vertex xi of Cn a whisker, whose terminal vertex
is yi, for all i = 1, . . . , n. Thus, Sn has vertex set V (Sn) = {x1, . . . , xn, y1, . . . , yn}
and edge set E(Sn) = {x1x2, x2x3, . . . , xn−1xn, xnx1, x1y1, x2y2, . . . , xnyn}.

Lemma 3.3. For each n ∈ N, n ≥ 3, the edge ideal of the n-sunlet graph
Sn is a set-theoretic complete intersection, namely

ara(I(Sn)) = ht(I(Sn)) = |V (Cn)| = n.
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P r o o f. We distinguish the following cases.
If n = 3, consider the following sums of monomials

q0 = x1x2

q1 = x1x3 + x2x3

q2 = x1y1 + x2y2 + x3y3.

If n = 4, set

q0 = x1x2

q1 = x1x4 + x2x3

q2 = x1y1 + x2y2 + x3x4

q3 = x3y3 + x4y4.

Finally, for n = 5, set

q0 = x1x2

q1 = x1x5 + x2x3

q2 = x1y1 + x4x5

q3 = x2y2 + x3x4 + x3y3x5y5

q4 = x3y3 + x4y4 + x5y5.

Now suppose that n ≥ 6. In this case set

q0 = x1x2

q1 = x1xn + x2x3

q2 = x2y2 + x3x4

...

qn−4 = xn−4yn−4 + xn−3xn−2

qn−3 = x1y1 + xn−1xn

qn−2 = xn−3yn−3 + xn−2xn−1 + xn−2yn−2xnyn

qn−1 = xn−2yn−2 + xn−1yn−1 + xnyn.

Then, in any case, we have I(Sn) =
√

(q0, . . . , qn−1) by Lemma 2.1. We
show that its assumptions are fulfilled by the sets P0, . . . , Pn−1, where, for all
i = 0, . . . , n − 1, Pi is the set of monomials appearing in qi. It is straightforward
to verify that conditions (i) and (ii) are satisfied. Evidently condition (iii) is
true if n ∈ {3, 4, 5}. We prove it for n ≥ 6. The product of the monomials
in P1 is x1xn · x2x3, which is a multiple of x1x2 ∈ P0. For i = 2, . . . , n − 4,
the product of the monomials of Pi is xiyi · xi+1xi+2, which is a multiple of
xixi+1 ∈ Pi−1. The product of the monomials of Pn−3 is x1y1 ·xn−1xn, a multiple
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of x1xn ∈ P1. In Pn−2, we can form three products: xn−3yn−3 · xn−2xn−1 and
xn−3yn−3·xn−2yn−2xnyn, which are multiples of xn−3xn−2 ∈ Pn−4, and xn−2xn−1 ·
xn−2yn−2xnyn, which is a multiple of xn−1xn ∈ Pn−3. As for Pn−1, we have
xn−2yn−2 · xn−1yn−1, which is a multiple of xn−2xn−1 ∈ Pn−2, xn−2yn−2 · xnyn,
which is an element of Pn−2, and xn−1yn−1 ·xnyn which is a multiple of xn−1xn ∈
Pn−3. This completes the proof. �

4. The arithmetical rank of a large class of whisker graphs.

Consider the following family of graphs. For some integer r ≥ 0, let S0, . . . , Sr

be pairwise disjoint finite sets of paths and cycles (blocks) fulfilling the following
conditions:

(a) |S0| = 1;

(b) for all i = 2, . . . , r, and all H ∈ Si,

V (H) ∩
⋃

K∈Sj

j∈{0,...,i−2}

V (K) = ∅;

(c) for all i = 1, . . . , r, and all H ∈ Si, there is v ∈ V (H) such that

V (H) ∩
⋃

K∈Sj, K 6=H

j∈{0,...,i}

V (K) = V (H) ∩
⋃

K∈Si−1

V (K) = {v}.

In other words, every H ∈ Si has exactly one vertex in common with the

union of the blocks belonging to

i
⋃

j=0

Sj , and this vertex belongs to some

block K ∈ Si−1, and to none of the blocks L ∈ Sj, with j ≤ i − 2.

(d) Two paths belonging to S can only intersect in their terminal vertices, and
a path belonging to S can intersect a cycle belonging to S only in one of its
terminal vertices.

Whenever H ∈ Si, we will say that H has rank i.
Note that, as a consequence of condition (c), if H and H ′ are different

blocks of rank i having one vertex in common, then this vertex belongs to some
block of rank i− 1, and is their unique common vertex. Moreover, if H is a block
of rank i, then the block K of rank i− 1 with which H has a vertex v in common
is unique: if there were another block K ′ of rank i− 1 containing v, then v would
belong to some block of rank i − 2, which would contradict condition (b).
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Let S0 = {G0} and consider the graph G =
⋃

K∈S

K.

An easy induction on the rank yields the following

Lemma 4.1. We have

|V (G)| = |V (G0)| +
∑

H∈S
H 6=G0

(|V (H)| − 1) .

Consider a graph G as above and let G′ the graph obtained by adding
a whisker to each vertex of G. As usual, call xk the vertices of G and yk the
terminal vertices connected to xk.

Theorem 4.2. With respect to the notations introduced above,

ara(I(G′)) = ht(I(G′)) = |V (G)|,

so that I(G′) is a set-theoretic complete intersection.

P r o o f. Let S and Si be the sets defined above. Fix an element G0 ∈ S.
Let r be the maximum rank of the elements of S. If r = 0, the claim follows from
Lemma 3.1 if G0 is a path, and from Lemma 3.3 if G0 is a cycle. So assume that
r > 0. Suppose that V (G0) =

{

x0
1, . . . , x

0
n0

}

, and call y0
k the terminal vertex of

the whisker attached to x0
k. Suppose that x0

a1
, . . . , x0

as
are the vertices that G0

has in common with the elements of S1. For all j = 1, . . . , s, let G(1,j) ∈ S1 be
one of the blocks that has x0

aj
among its vertices (in Figure 1, j = 1). Let x1

aj
be

a vertex of G(1,j) that is adjacent to x0
aj

(the one following x0
aj

in the clockwise
order, if G(1,j) is a cycle). Let G′

0 be the subgraph of G′ induced on the vertex
set

V (G0) ∪
{

y0
k

∣

∣ k /∈ {a1, . . . , as}
}

∪
{

x1
a1

, . . . , x1
as

}

.

Then G′
0 is a whisker graph on G0. More precisely, the terminal vertex of the

whisker attached to x0
k is x1

k if k ∈ {a1, . . . , as}, and is y0
k otherwise. Hence, for

all j ∈ {1, . . . , s}, the edge x0
aj

x1
aj

of G(1,j) is a whisker of G′
0.

Now let i > 0. Let G(i,1), . . . , G(i,β) be all graphs of Si that have a certain
vertex xi−1 in common with a given element Gi−1 of Si−1 (see Figure 2). Fix
an index j ∈ {1, . . . , β − 1}, and set Gi = G(i,j) (in Figure 2, j = 1). Let
V (Gi) =

{

xi
1, . . . , x

i
ni

}

, and call yi
k the terminal vertex of the whisker attached

to xi
k. We may assume that xi

1 = xi−1. Let xi
b1

, . . . , xi
bt

be the vertices of Gi

that Gi has in common with some elements G(i+1,1), . . . , G(i+1,t) of Si+1. This set
of vertices may be empty (which is certainly the case if i = r). Note that these
vertices are all different from xi

1 because, by definition of Si+1, G(i+1,j) has no

vertex in common with Gi−1. For all j = 1, . . . , t, let xi+1
bj

be a vertex of G(i+1,j)
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adjacent to xi
bj

(the one following xi
bj

in the clockwise order, if G(i+1,j) is a cycle).

Moreover, let zj be a vertex of G(i,j+1) adjacent to xi
1. Let G′

i be the subgraph
of G′ induced on the vertex set

V (Gi) ∪
{

yi
k

∣

∣ k /∈ {1, b1, . . . , bt}
}

∪
{

xi+1
b1

, . . . , xi+1
bt

}

∪ {zj}.

Thus G′
i is a whisker graph on Gi. More precisely, the terminal vertex of the

whisker attached to xi
k is zj if k = 1, is xi+1

k if k ∈ {b1, . . . , bt}, and is yi
k

otherwise. Hence, the edge xi
1zj of G(i,j+1), and for all j ∈ {1, . . . , t}, the edge

xi
bj

xi+1
bj

of G(i+1,j) are whiskers of G′
i.

Finally, set Gi = G(i,β). Let V
(

Gi

)

=
{

xi
1, . . . , x

i
mi

}

, and call yi
k the

terminal vertex of the whisker attached to xi
k. We may assume that xi

1 = xi−1.
Let xi

c1
, . . . , xi

cu
be the vertices of Gi that Gi has in common with some elements

G(i+1,1), . . . , G(i+1,u) of Si+1. For all j = 1, . . . , u, let xi+1
cj

be a vertex of G(i+1,j)

adjacent to xi
cj

(the one following xi
cj

in the clockwise order, if G(i+1,j) is a cycle).

Let G
′
i be the subgraph of G′ induced on the vertex set

V
(

Gi

)

∪
{

yi
k

∣

∣ k /∈ {c1, . . . , cu}
}

∪
{

xi+1
c1

, . . . xi+1
cu

}

.

Thus G
′
i is a whisker graph on Gi. More precisely, the terminal vertex of

the whisker attached to xi
k is xi+1

k if k ∈ {c1, . . . , cu}, and is yi
k otherwise. Hence,

for all j ∈ {1, . . . , u}, the edge xi
cj

xi+1
cj

of G(i+1,j) is a whisker of G
′
i.

In Figure 2 the edges of the whisker graph G′
(i,1) are dashed lines and

the edges of the whisker graph G
′
i are dotted lines. By means of the above

construction, G′ is subdivided in subgraphs that are whisker graphs and have
pairwise no edge in common. Each of them is a whisker graph H ′ on an element
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H of S. Moreover, whenever H 6= G0, exactly one of the edges of H is a whisker
of K ′ for some other K ∈ S, which has a vertex in common with H and whose
rank is equal to the rank of H, or to the rank of H minus one.

Now we construct a set of |V (G)| polynomials that generate I(G′) up to
radical. This set will be obtained by attaching a certain set of polynomials to
each H ∈ S, and then taking the union of all this sets. First consider H = G0.
The set of polynomials attached to G0 is Q0, a set of |V (G0)| polynomials that
generate I(G′

0) up to radical, and are defined as in Lemma 3.1 if G0 is a path,
and as in Lemma 3.3 if G0 is a cycle. Now let H be an element of S other than
G0. We will attach to H a set of |V (H)| − 1 polynomials. To this end, we will
first apply Lemma 3.1 or Lemma 3.3 to construct a set of |V (H)| polynomials
that generate I(H ′) up to radical, and then we will cancel one polynomial. Let
us describe the procedure. Note that H ∈ Sk for some k ≥ 1. The elements of
Sk that share a vertex with the same element Gk−1 of Sk−1 will be denoted, as
above, G(k,1), . . . , G(k,j), . . . , G(k,β). Call Qk−1 the set of polynomials attached to
Gk−1.

First suppose that H = G(k,1) (k = i + 1 in Figure 2). The edge xk−1
b1

xk
b1

of G(k,1) is a whisker of G′
(k−1,1). Arrange the vertices of G(k,1) in such a way

that xk−1
b1

, xk
b1

are the first two (those corresponding to x1 and x2 in the proofs

of the aforementioned lemmas). Note that if G(k,1) is a path, xk−1
b1

is a terminal
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vertex, as is x1 in the proof of Lemma 3.1, because xk−1
b1

is the vertex shared
by G(k,1) and G(k−1,1). Then, applying the construction described in one of the

lemmas, we obtain a set of
∣

∣V
(

G(k,1)

)∣

∣ polynomials that generate I
(

G′
(k,1)

)

up

to radical, the first of which is q0 = xk−1
b1

xk
b1

. We then omit this polynomial, and
let Q(k,1) be the resulting set of polynomials. The quadratic monomials appearing
in these polynomials are those corresponding to all edges of G(k,1) (with the only

exception of the edge xk−1
b1

xk
b1

) and all whiskers of G′
(k,1).

Now suppose that H = G(k,j) with j ∈ {2, . . . , β} (k = i, j = 2 in Figure

2). The edge xk
i zj of G(k,j) is a whisker of G′

(k,j−1). Arrange the vertices of G(k,j)

in such a way that xk
1 , zj are the first two. Then, as in the previous case, construct

∣

∣V
(

G(k,j)

)
∣

∣ polynomials that generate I
(

G′
(k,j)

)

up to radical, the first of which

is q0 = xk
1zj . We then omit this polynomial, and let Q(k,j) be the resulting set of

polynomials. The quadratic monomials appearing in these polynomials are those
corresponding to all edges of G(k,j) (with the only exception of the edge xk

1zj) and
all whiskers of G′

(k,j).

Let Q be the union of the sets of polynomials defined above. Then, by
Lemma 4.1, |Q| = |V (G)|. The claim follows if one can prove that I(G′) =
√

(Q). We show that this equality is a consequence of Lemma 2.1. Consider any
arrangement of the sets of polynomials such that

(i) Q0 is the first element,

(ii) for all indices k, j, Qk−1 precedes Q(k,j),

(iii) for all indices k, j, Q(k,j−1) precedes Q(k,j).

Let T 0, . . . , TN be such an arrangement. For all i, call Hi the element of S
associated with the set T i in the construction described above. Moreover, for all

r, let G′
r =

r
⋃

i=0

H ′
i, so that G′ = G′

N . We show, by (finite) induction on r ≥ 0,

that, for all r,

I(G′
r) =

√

√

√

√

(

r
⋃

i=0

T i

)

,

whence, in particular, I(G′) =
√

(Q), as claimed. For r = 0, the claim is true
by the first step of the above construction, which, in view of condition (i), yields
I(G′

0) =
√

(Q0) =
√

(T 0). So assume that r ≥ 1 and that the claim is true
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for r − 1. Let M be a set of minimal monomial generators of I(G′
r−1), and let

q1, . . . , qs be the polynomials of T r. Then, by induction
√

√

√

√

(

r
⋃

i=0

T i

)

=
√

I(G′
r−1) + (T r) =

√

(M) + (q1, . . . , qs).

Now, with respect to the notation used in the above construction, Hr is either
of the form G(k,1) or G(k,j), with j ∈ {2, . . . , β}. In the first case, in view of
condition (ii), we have that Qk−1 = T i for some i < r. Hence the mono-
mial xk−1

b1
xk

b1
(which corresponds to a whisker of Gk−1) belongs to M . Now,

as shown in the proofs of Lemmas 3.1 and 3.3, for all j = 1, . . . , s, the product
of any two monomials of qj is either divisible by a monomial appearing in qh,
for some h < j, or is divisible by xk−1

b1
xk

b1
. Recall that, according to the above

construction,

√

(

xk−1
b1

xk
b1

, q1, . . . , qs

)

= I(H ′
r). By Lemma 2.1 it thus follows that

√

(M) + (q1, . . . , qs) = I(G′
r−1)+I(H ′

r) = I(G′
r). The second case can be treated

similarly, using condition (iii). �

Example 4.3. Let us give an application of the preceding result. Con-
sider the following graph G:
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The edge ideal of G is

I(G) = (x1x2, x2x3, x3x4, x4x5, x5x6, x1x6, x3x7, x7x8, x8x9, x3x9, x3x10, x10x11,

x11x12, x3x13, x13x14, x3x14, x6x15, x15x16, x16x17, x6x17, x12x18, x18x19,

x19x20, x12x20, x12x21, x21x22, x12x22, x16x23, x23x24, x16x25, x25x26,

x26x27, x16x27, x17x28, x28x29, x17x29, x28x30, x30x31, x31x32, xiyi

| i = 1, . . . , 32).

We define eleven sets of polynomials.
• The first set is:

q0 = x1x2

q1 = x1x6 + x2x3

q2 = x2y2 + x3x4

q3 = x3x7 + x4x5

q4 = x4y4 + x5x6 + x1y1x5y5

q5 = x1y1 + x5y5 + x6x15 .

• The second set is:

q6 = x3x9 + x7x8

q7 = x3x10 + x7y7 + x8x9

q8 = x8y8 + x9y9.

• The third set is:

q9 = x3x13 + x10x11

q10 = x10y10 + x11x12

q11 = x11y11 + x12x18 .

• The fourth set is:

q12 = x3x14 + x13x14

q13 = x3y3 + x13y13 + x14y14

• The fifth set is:

q14 = x6x17 + x15x16

q15 = x6y6 + x15y15 + x16x17

q16 = x16x23 + x17x28 .

• The sixth set is:

q17 = x12x20 + x18x19

q18 = x12x21 + x18y18 + x19x20

q19 = x19y19 + x20y20.

• The seventh set is:

q20 = x12x22 + x21x22

q21 = x12y12 + x21y21 + x22y22.

• The eighth set is:

q22 = x16x25 + x23x24

q23 = x23y23 + x24y24.

• The nineth set is:

q24 = x16x27 + x25x26

q25 = x16y16 + x25y25 + x26x27

q26 = x26y26 + x27y27.

• The tenth set is:

q27 = x17x29 + x28x29

q28 = x17y17 + x28x30 + x29y29.

• The eleventh set is:

q29 = x28y28 + x30x31

q30 = x30y30 + x31x32

q31 = x31y31 + x32y32.

We have that I(G) =
√

(q0, . . . , q31), whence ara(I(G)) = 32.
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5. Final remarks. The graphs G considered in Theorem 4.2 are some-
times referred to as cactus graphs. This class includes all bicyclic graphs. It
also includes all trees, which can be characterized as the cactus graphs where all
blocks are paths. The whisker graph on a tree is again a tree (and, conversely,
if a whisker graph is a tree, it is obviously a whisker graph on a tree). In [11]
Villarreal has shown that the edge ideal of a tree is Cohen-Macaulay if and only
if it is a whisker graph. In view of the results presented by Kimura and Terai [7]
we have the following characterization, which clarifies the role of whisker graphs
in combinatorial commutative algebra.

Corollary 5.1. Let G be a tree. The following conditions are equivalent.

(a) I(G) is a set-theoretic complete intersection.

(b) I(G) is Cohen-Macaulay.

(c) I(G) is a pure.

(d) G is a whisker graph.

P r o o f. According to the Auslander-Buchsbaum formula, we have

pd(R/I(G)) = depthR − depth(R/I(G)) ≥ dim R − dim(R/I(G)) = ht(I(G)),

and, on the other hand, ara(I(G)) ≥ pd(R/I(G)). Hence, whenever ara(I(G)) =
ht(I(G)), one has that depth(R/I(G)) = dim(R/I(G)). This shows that (a) ⇒
(b). The implication (b) ⇒ (c) follows from [3], Cor. 5.1.5. According to [7],
Theorem 1.1, we also have that ara(I(G)) = bight(I(G)), where the latter number
(the so-called big height) denotes the maximum height of the minimal prime ideals
of I(G). This shows that (c) ⇒ (a). Finally, the equivalence (b) ⇔ (d) is Theorem
2.4 in [11]. �

In the case where G is any tree, Kimura and Terai give an explicit de-
scription of ara(I(G)) polynomials generating I(G) up to radical, which form a
so-called tree-like system. For the whisker trees, a system of polynomials of the
same type has been obtained in the present paper through a recursive construc-
tion.

Remark 5.2. All graphs G considered in this paper are supposed to be
connected, but this assumption is by no means restrictive. In fact, in the general
case, if G1, . . . , Gs are the connected components of G, then the whisker graphs
G′

1, . . . , G
′
s are the connected components of the whisker graph G′. Since

ht(I(G′)) =

s
∑

i=1

ht(I(G′
i)) ≤ ara(I(G′)) ≤

s
∑

i=1

ara(I(G′
i)),

if I(G′
1), . . . , I(G′

s) are set-theoretic complete intersections, then so is I(G′).
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