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Abstract. We consider a forced second order functional differential equa-

tion with γ-Laplacian, damping, and mixed nonlinearities in the form of

(r(t)φγ (x′(t)))′ + p(t)φγ(x′(t))

+ q0(t)φβ(x(t)) +

∫ b

a

q(t, s)φα(s)(x(g(t, s)))dζ(s) = e(t),

where γ, β ∈ [0,∞) ,−∞ < a < b ≤ ∞, α ∈ C [a, b) is strictly increasing

is such that 0 ≤ α (a) < µ < α (b−) with β > γ > µ > 0; r, p, q0, e ∈
C ([t0,∞),R) with r (t) > 0 on [t0,∞); q ∈ C ([0,∞) × [a, b)); and ζ :
[a, b) → R is nondecreasing. The function g ∈ C ([0,∞) × [a, b) , [0,∞)) is

such that lim
t→∞

g(t, s) = ∞, for s ∈ [a, b). Interval oscillation criteria of the

El-Sayed type and the Kong type are obtained. These criteria are further

extended to equations with deviating arguments.
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1. Introduction. We are concerned with the oscillatory behavior of
forced second order functional differential equations with γ-Laplacian, damping
and mixed nonlinearities in the form of

(1.1) (r(t)φγ(x′(t)))′ + p(t)φγ(x′(t))

+ q0(t)φβ(x(t)) +

∫ b

a
q(t, s)φα(s)(x(g(t, s)))dζ(s) = e(t),

where φα (u) := |u|α sgnu, γ, β ∈ [0,∞) ,−∞ < a < b ≤ ∞ , α ∈ C [a, b) is
strictly increasing such that 0 ≤ α (a) < µ < α (b−) with β > γ > µ > 0;
r, p, q0, e ∈ C ([t0,∞),R) with r (t) > 0 on [t0,∞); q ∈ C ([0,∞) × [a, b)); and
ζ : [a, b) → R is nondecreasing. The function g ∈ C ([0,∞) × [a, b) , [0,∞)) is
such that lim

t→∞
g(t, s) = ∞, for s ∈ [a, b). Our interest is to establish oscillation

criteria for Eq. (1.1) without assuming that p (t), q0(t), q (t, s), and e(t) are of

definite sign. Here

∫ b

a
f (s) dζ (s) denotes the Riemann-Stieltjes integral of the

function f on [a, b) with respect to ζ.
We note that as special cases, the integral term in the equation becomes

a finite sum when ζ (s) is a step function and a Riemann integral when ζ (s) = s.
As usual, a solution x(t) of Eq. (1.1) is said to be oscillatory if it is defined

on some ray [T,∞) with T ≥ 0, and has an unbounded set of zeros. Eq. (1.1)
is said to be oscillatory if every solution extendible throughout [tx,∞) for some
tx ≥ 0 is oscillatory.

In the last 50 years, there has been extensive work on oscillation and
nonoscillation of various differential equations, see [1, 3, 4, 5, 6, 7, 8, 10, 19, 20,
21, 22, 31, 26] and the references cited therein. Special cases of the equation

(1.2)
(
r(t)

(
x′(t)

)γ)′
+ q0 (t)xγ (t) +

N∑

j=1

qj(t)φαj (x(t)) = e(t),

where φα (u) := |u|α sgnu, γ is a quotient of odd positive integers and αj > 0,
j = 1, 2, . . . , N , such that

α1 > α2 > · · · > αm > γ > αm+1 > · · · > αn > 0.

has been studied by many authors. When γ = N = 1, r (t) = 1, p (t) = q0 (t) = 0,
and q1 (t) ≥ 0, Kartsatos [19, 20] initiated an approach for oscillation under the
assmption that e (t) is the second derivative of an oscillatory function. This
method was further developed by different authors, See Keener [21], Kong and
Wong [24], Kong and Zhang [25], Rankin [30], Skidmore and Leighton [32], Skid-
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more and Bowers [31], Teufel [39], and Wong [40].

Results were also obtained for oscillation of special cases of Eq. (1.2) with-
out imposing the assumption that e (t) is the second derivative of an oscillatory
function. Most of them were for the case when γ = 1, r(t) = 1, and p(t) = 0. For
instance, see Nasr [27] for N = 1 and α1 > 1, Sun and Wong [36] for αj < 1, and
Sun and Wong [37] and Sun and Meng [35] for mixed nonlinearities. Among them,
there were interval oscillation criteria which can be regarded as generalizations of
the one by El-Sayed [9] for second order forced linear differential equations, and
other interval oscillation criteria can be regarded as generalizations of the one
by Kong [22] established initially for the second order homogeneous linear equa-
tions, see also [23]. Hassan, Erbe and Peterson [15] discussed the oscillation of an
equation with p-Lapacian, more specifically, they established oscillation criteria
of El-Sayed-type for the equation (1.2)

Hassan and Kong [16] considered the forced second order differential equa-
tions with γ-Laplacian and damping in the form of

(1.3)
(
r(t)φγ

(
x′(t)

))′
+ p(t)φγ

(
x′(t)

)
+

N∑

j=0

qj(t)φαj (x(t)) = e(t),

where αj > 0, j = 0, 1, 2, . . . , N , such that

(1.4) αj > γ, j = 1, 2, . . . ,m; and αj < γ, j = m+ 1, l + 2, . . . , N.

and r, p, qj, e ∈ C ([0,∞),R) with r (t) > 0 on [0,∞). They established oscil-
lation criteria of El-Sayed-type and Kong-type for Eq. (1.3). Sun and Kong [34]
considered the equation

(r(t)x′(t))′ + q0(t)x(t) +

∫ b

0
q(t, s)φα(s)(x(t))dζ(s) = e(t).

Recently, Hassan and Kong [17] established interval oscillation criteria of both
the El-Sayed-type and the Kong-type for the more general equation

(r(t)φγ(x′(t)))′ + q0(t)φγ(x(t)) +

∫ b

0
q(t, s)φα(s)(x(g(t, s)))dζ(s) = e(t).

Motivated by above, in this paper, we will establish interval oscillation criteria of
both the El-Sayed-type and the Kong-type for the more general equation (1.1).

This paper is organized as follows: after this introduction, we state lem-
mas, in Section 2, we state oscillation criteria for (1.1) with g(t, s) ≡ t, in Section
3, we establish oscillation criteria for (1.1) with g(t, s) 6≡ t.
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2. Lemmas. We denote by Lζ (a, b) the set of Riemann-Stieltjes inte-
grables functions on [a, b) with respect to ζ. Let c ∈ (a, b) such that α (c) = µ.
We further assume that

α−1 ∈ Lζ (a, b) such that

∫ c

a
dζ (s) > 0 and

∫ b

c
dζ (s) > 0.

To state our main results, we begin with the following lemmas which we
will need in the proof of our main results. The following lemma generalizes [17,
Lemma 2.1].

Lemma 2.1. Let

m := µ

(∫ b

c
dζ (s)

)−1 ∫ b

c
α−1 (s) dζ (s)

and

n := µ

(∫ c

a
dζ (s)

)−1 ∫ c

a
α−1 (s) dζ (s) .

Then for any δ ∈ (m,n), there exists η ∈ Lζ (a, b) such that η (s) > 0 on [a, b) ,

(2.1)

∫ b

a
α (s) η (s) dζ (s) = µ and

∫ b

a
η (s) dζ (s) = δ.

P r o o f. Let

η1 (s) :=





0, s ∈ (a, c)

µα−1 (s)

(∫ b

c
dζ (s)

)−1

, s ∈ [c, b) ,

and

η2 (s) :=





µα−1 (s)

(∫ c

a
dζ (s)

)−1

, s ∈ (a, c)

0, s ∈ [c, b) .

Clearly for i = 1, 2, ηi ∈ Lζ (a, b) and

∫ b

a
α (s) ηi (s) dζ (s) = µ.

Moreover,
∫ b

a
η1 (s) dζ (s) = m and

∫ b

a
η2 (s) dζ (s) = n.
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For k ∈ [0, 1] let

η (s, k) := (1 − k) η1 (s) + kη2 (s) , s ∈ [a, b) .

Then it is easy to see that
∫ b

a
α (s) η (s, k) dζ (s) = µ.

Furthermore, since η (s, 0) = η1 (s) and η (s, 1) = η2 (s), we have

∫ b

a
η (s, 0) dζ (s) = m and

∫ b

a
η (s, 1) dζ (s) = n.

By the continuous dependence of η (s, k) on k there exists k∗ ∈ (0, 1) such that
η (s) := η (s, k∗) satisfies

∫ b

a
η (s) dζ (s) = δ.

Note that η (s) > 0 for s ∈ [a, b) and

∫ b

a
α (s) η (s) dζ (s) = µ and the definitions

of m and n gives 0 < m < 1 < n. �

The next Lemma is a generalized Arithmetic-Geometric mean inequality
established in [34].

Lemma 2.2. Let u ∈ C [a, b) and η ∈ Lζ (a, b) satisfying u ≥ 0, η > 0 on

[a, b) and

∫ b

a
η (s) dζ (s) = 1. Then

∫ b

a
η (s)u (s) dζ (s) ≥ exp

(∫ b

a
η (s) ln [u (s)] dζ (s)

)
,

where we use the convention that ln 0 = −∞ and e−∞ = 0.

3. Oscillation Criteria for (1.1) with g(t, s) ≡ t. In this section,
we establish oscillation criteria for equation (1.1) with g(t, s) ≡ t, namely,

(3.1)
(
r(t)φγ

(
x′(t)

))′
+ p(t)φγ

(
x′(t)

)
+ q0 (t)φβ (x(t))

+

∫ b

a
q (t, s)φα(s) (x(t)) dζ (s) = e(t).

The first result provides an oscillation criterion of the El-Sayed-type.
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Theorem 3.1. Suppose that for any T ≥ 0 and for i = 1, 2, there exist
constants ai and bi with T ≤ ai < bi such that, for i = 1, 2

(3.2) q0(t) ≥ 0 for t ∈ [ai, bi],

(3.3) q (t, s) ≥ 0, for (t, s) ∈ [ai, bi] × [a, b) ,

and

(3.4) (−1)i e (t) ≥ 0, for t ∈ [ai, bi] .

Assume further that for i = 1, 2, there exist ui ∈ C1 [ai, bi] satisfying ui (ai) =
ui (bi) = 0, ui (t) 6≡ 0 on [ai, bi] and a continuous positive function ρ(t) such that

(3.5)

sup
δ∈(m,1]

∫ bi

ai

[
Q(t)|ui(t)|γ+1 − ρ(t)r(t)

(γ + 1)γ+1
[(γ + 1)|u′i(t)| + |ui(t)| |P (t)|]γ+1

]
dt

> 0,

where

(3.6) P (t) :=
ρ′ (t)

ρ (t)
− p(t)

r (t)
,

and

(3.7) Q(t) := δ̂ρ(t) (q0(t))
(γ−µ)/(β−µ) (q̂(t))(β−γ)/(β−µ) ,

with

δ̂ := (β − µ)(β − γ)(γ−β)/(β−µ)(γ − µ)(µ−γ)/(β−µ),

and

q̂(t) :=

[ |e(t)|
1 − δ

]1−δ

exp

(∫ b

a
η (s) ln

[
q (t, s)

η (s)

]
dζ (s)

)
,

with η (s) is defined as in Lemma 2.1 based on δ. Here we use the convention that
ln 0 = −∞, e−∞ = 0, and 01−δ = 1 and (1 − δ)1−δ = 1 for δ = 1. Then Eq. (3.1)
is oscillatory.

P r o o f. Assume Eq. (1.1) has an extendible solution x(t) which is even-
tually positive or negative. Then, without loss of generality, assume x (t) > 0 for
all t ≥ T ≥ 0, where T depends on the solution x (t). When x (t) is eventually
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negative, the proof follows the same way except that the interval [a2, b2], instead
of [a1, b1], is used. Define

(3.8) z (t) := ρ (t)
r(t)φγ (x′(t))

φγ (x(t))
, t ≥ T.

Then

z′ (t) = ρ (t)

[
(r(t)φγ (x′(t)))′

φγ (x(t))
− r(t)φγ (x′(t)) (φγ (x(t)))′

(φγ (x(t)))2

]
+ ρ′ (t)

r(t)φγ (x′(t))

φγ (x(t))

= ρ (t)

[
(r(t)φγ (x′(t)))′

φγ (x(t))
− r(t)φγ (x′(t))

φγ (x(t))

γx′(t)

x(t)

]
+ ρ′ (t)

r(t)φγ (x′(t))

φγ (x(t))
.(3.9)

It follows from (1.1), (3.6) and (3.8) that for t ≥ T ,

z′ (t) =−ρ (t) q0 (t) xβ−γ (t) − ρ (t)

∫ b

a
q (t, s) [x (t)]α(s)−γ dζ (s) + ρ (t) e(t)x−γ(t)

+P (t) z (t) − γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

.(3.10)

From the assumption, there exists a nontrivial interval [a1, b1] ⊂ [T,∞) such that
(3.3) and (3.4) hold with i = 1.

(I) We first consider the case where the supremum in (3.5) is assumed at
δ = 1. From (3.4) and (3.10), we have that for t ∈ [a1, b1]
(3.11)

z′ (t) ≤ −ρ (t) q0 (t) xβ−γ (t) − ρ (t) xµ−γ (t)

∫ b

a
q (t, s) [x (t)]α(s)−µ dζ (s)

+P (t)z(t) − γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

.

Let η ∈ Lζ (a, b) be defined as in Lemma 2.1 with δ = 1. Then η satisfies (2.1)
with δ = 1. This implies that

∫ b

a
η (s) [α (s) − µ] dζ = 0.

Then, from Lemma 2.2, we get, for t ∈ [a1, b1]
∫ b

a
q (t, s) [x (t)]α(s)−µ dζ (s)

=

∫ b

a
η (s)

q (t, s)

η (s)
[x (t)]α(s)−µ dζ (s)
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≥ exp

(∫ b

a
η (s) ln

(
q (t, s)

η (s)
[x (t)]α(s)−µ

)
dζ (s)

)

= exp

(∫ b

a
η (s) ln

[
q (t, s)

η (s)

]
dζ (s) + ln (x (t))

∫ b

a
η (s) [α (s) − µ] dζ (s)

)

= exp

(∫ b

a
η (s) ln

[
q (t, s)

η (s)

]
dζ (s)

)
= q̂(t).

This together with (3.11) shows that

(3.12) z′ (t) ≤ −ρ (t) q0 (t)xβ−γ (t)− ρ (t) q̂(t)xµ−γ (t) +P (t)z(t)− γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

.

Define

X := q
1/(β−γ)
0 x and Y := q̂q

(γ−µ)/(β−γ)
0

and using the inequality in [11, Lemma 2.1]

Xβ−γ + Y Xµ−γ ≥ δ̂Y (β−γ)/(β−µ) for all β > γ > µ > 0,

where

δ̂ := (β − µ)(β − γ)(γ−β)/(β−µ)(γ − µ)(µ−γ)/(β−µ),

we have

(3.13) q0x
β−γ + q̂xµ−γ ≥ δ̂q̂(β−γ)/(β−µ)q

(γ−µ)/(β−µ)
0 .

Substituting (3.13) into (3.12) and using the definition of Q, we obtain

(3.14) z′ (t) ≤ −Q (t) + P (t)z (t) − γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

, for t ∈ [a1, b1] ,

where Q (t) is defined by (3.7) with δ = 1. Multiplying both sides of (3.14) by
|u1 (t)|γ+1, integrating from a1 to b1, and using integration by parts, we find that

∫ b1

a1

Q (t) |u1 (t)|γ+1 dt

≤
∫ b1

a1

{
(γ + 1)φγ(u1(t))u

′
1 (t) z (t) + |u1 (t)|γ+1 P (t)z(t)

−γ |u1 (t)|γ+1

(ρ (t) r(t))
1

γ

|z (t)|
γ+1

γ

}
dt
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≤
∫ b1

a1

{
|u1 (t)|γ

[
(γ + 1)

∣∣u′1 (t)
∣∣+ |u1 (t)| |P (t)|

]
|z (t)|

−γ |u1 (t)|γ+1

(ρ (t) r(t))
1

γ

|z (t)|
γ+1

γ

}
dt.(3.15)

Let λ :=
γ + 1

γ
. Define A and B by

Aλ :=
γ |u1 (t)|γ+1

(ρ (t) r(t))
1

γ

|z (t)|λ ,

and

Bλ−1 :=
(γρ (t) r(t))

1

γ+1

γ + 1

[
(γ + 1)

∣∣u′1 (t)
∣∣+ |u1 (t)| |P (t)|

]
.

Using the inequality in [13] we have

(3.16) λABλ−1 −Aλ ≤ (λ− 1)Bλ,

i.e.,

|u1 (t)|γ
[
(γ + 1)

∣∣u′1 (t)
∣∣+ |u1 (t)| |P (t)|

]
|z (t)| − γ |u1 (t)|γ+1

(ρ (t) r(t))
1

γ

|z (t)|λ

≤ ρ(t)r(t)

(γ + 1)γ+1

[
(γ + 1)

∣∣u′1 (t)
∣∣+ |u1 (t)| |P (t)|

]γ+1
,

which together with (3.15) implies that
∫ b1

a1

Q (t) |u1 (t)|γ+1 dt ≤
∫ b1

a1

ρ(t)r(t)

(γ + 1)γ+1

[
(γ + 1)

∣∣u′1 (t)
∣∣+ |u1 (t)| |P (t)|

]γ+1
dt.

This leads to a contradiction to (3.5).

(II) Now, we consider the case where the supremum in (3.5) is assumed
at δ ∈ (m, 1). Then from (3.4), we see that, for t ∈ [a1, b1],

z′ (t) = −ρ (t) q0 (t)xβ−γ (t)

−ρ (t)xµ−γ (t)

(∫ b

a
q (t, s) [x (t)]α(s)−µ dζ (s) − ρ (t) |e(t)| x−µ(t)

)

+P (t)z(t) − γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

.(3.17)
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Let η̃ (s) := δ−1η (s). Then, from (2.1), we have

(3.18)

∫ b

a
η̃ (s) dζ (s) = 1 and

∫ b

a
η̃ (s) [δα (s) − µ] dζ = 0.

Hence, for t ∈ [a1, b1]

∫ b

a
q (t, s) [x (t)]α(s)−µ dζ (s) + |e(t)| x−µ(t)

=

∫ b

a
η̃ (s)

(
δη−1 (s) q (t, s) [x (t)]α(s)−µ + |e(t)| x−µ(t)

)
dζ (s) .(3.19)

Using the Arithmetic-geometric mean inequality, see [2, Page 17],

ch+ dk ≥ chdk, where c, d ≥ 0, h, k > 0 and h+ k = 1,

with

c = η−1 (s) q (t, s) [x (t)]α(s)−µ , d =
1

1 − δ
|e(t)| x−µ(t), h = δ and k = 1 − δ,

we have that for t ∈ [a1, b1] and s ∈ [a, b)

δη−1 (s) q (t, s) [x (t)]α(s)−µ + (1 − δ)
|e(t)|
1 − δ

x−µ(t)

≥
[
q (t, s)

η (s)

]δ [ |e(t)|
1 − δ

]1−δ

[x (t)]δα(s)−µ .

Substituting this into (3.19) and using Lemma 2.2 and (3.18), we see that,for
t ∈ [a1, b1] ,

∫ b

a
q (t, s) [x (t)]α(s)−µ dζ (s) + |e(t)| x−µ(t)

≥ exp

(∫ b

a
η̃ (s) ln

([
q (t, s)

η (s)

]δ [ |e(t)|
1 − δ

]1−δ

[x (t)]δα(s)−µ

)
dζ (s)

)

= exp

(∫ b

a
η̃ (s)

(
ln

[
q (t, s)

η (s)

]δ

+ ln

[ |e(t)|
1 − δ

]1−δ

+ [δα (s) − µ] lnx (t)

)
dζ (s)

)

=

[ |e(t)|
1 − δ

]1−δ

exp

(∫ b

a
η (s) ln

q (t, s)

η (s)
dζ (s)

)
= q̂(t).(3.20)
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It follows from (3.17) and (3.20), that we get, for t ∈ [a1, b1],

z′ (t) ≤ −ρ (t) q0 (t)xβ−γ (t) − ρ (t) q̂(t)xµ−γ (t) + P (t)z(t) − γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

(3.13)

≤ −Q(t) + P (t)z(t) − γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

,(3.21)

where Q is defined by (3.7) with δ ∈ (m, 1) . The rest of the proof is similar to
Part (I) and hence is omitted. �

Example 3.1. Consider the second order differential equation

(3.22)
(
(2 + cos 4t) (x′(t))2

)′ − sin t (x′(t))2 + cos t (x(t))3

+

∫ 1

0
cos t φ5s(x(t))ds = −et cos 2t.

Here we have

(i) α (s) = 5s, ξ (s) = s, γ = 2, β = 3, µ = 1 a = 0 and b = 1;

(ii) r (t) = 2 + cos 4t, p(t) = − sin t, q0 (t) = q (t, s) = cot s, and e (t) =
−et cos 2t.

Note that

m =

(∫ 1

1

5

ds

)−1(∫ 1

1

5

1

5s
ds

)
= ln

4
√

5.

For any δ ∈
(
ln

4
√

5, 1
]
, we set

η (s) :=
δ

5δ − 1
s

2 − 5s

5δ − 1 ,

then (2.1) is satisfied. For any T ∈ R, we choose n ∈ N so large that 2nπ ≥ T
and let

a1 = 2nπ, a2 = b1 = 2nπ +
π

4
, b2 = 2nπ +

π

2
.

Let ρ (t) = 2 + cos 4t, and for i = 1, 2 let ui (t) = sin 4t.Then
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∫ π
4

0

(
ρ(t)r(t)

(γ + 1)γ+1

[
(γ + 1)

∣∣u′i (t)
∣∣+ |ui (t)| |P (t)|

]γ+1
)
dt

= 4

∫ π
4

0
(2 + cos 4t)2 cos3 4tdt =

3

2
π.

Therefore, it is easy to see that (3.5) is satisfied and hence Eq. (3.22) is oscillatory
if

sup
δ∈(ln 4

√
5,1]

∫ π
4

0
2(2 + cos 4t)

√
cos t q̂(t) sin3 4tdt >

3

2
π,

where

q̂(t) =

[∣∣et cos 2t
∣∣

1 − δ

]1−δ

exp

(∫ b

a
η (s) ln

[
cos t

η (s)

]
ds

)
.

Following Philos [27], Kong [22], and Kong [23], we say that for any a, b ∈
R such that a < b, a function Hi (t, s) , i = 1, 2, belongs to a function class H(a, b),
denoted by Hi ∈ H(a, b), if Hi ∈ C (D,R), where D := {(t, s) : b ≥ t ≥ s ≥ a},
which satisfies

(3.23) Hi (t, t) = 0, Hi (b, s) > 0 and Hi (s, a) > 0 for b > s > a,

and Hi (t, s) has continuous partial derivatives ∂Hi (t, s) /∂t and ∂H i(t, s)/∂s on
[a, b] × [a, b] such that for i = 1, 2,

(3.24)
∂Hi (t, s)

∂t
+ P (s)Hi (t, s) = (γ + 1)hi1 (t, s)H

γ

γ+1 (t, s)

and

(3.25)
∂Hi (t, s)

∂s
+ P (s)Hi (t, s) = (γ + 1)hi2 (t, s)H

γ

γ+1 (t, s) ,

where hi1, hi2 ∈ Lloc (D,R). Next, we use the function class H(a, b) to establish
an oscillation criterion for Eq. (1.1) of the Kong-type.

Theorem 3.2. Suppose that for any T ≥ 0 and for i = 1, 2, there exist
constants ai and bi with T ≤ ai < bi such that (3.3) and (3.4) hold. Assume fur-
ther that for i = 1, 2, there exist ci ∈ (ai, bi) and Hi ∈ H(ai, bi) and a continuous
positive function ρ(t) such that

sup
δ∈(m,1]

{
1

Hi (ci, ai)

∫ ci

ai

[
Q (s)Hi (s, ai) − ρ (s) r(s) |hi1 (s, ai)|γ+1

]
ds
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(3.26) +
1

Hi (bi, ci)

∫ bi

ci

[
Q (s)Hi (bi, s) − ρ (s) r(s) |hi2 (bi, s)|γ+1

]
ds

}
> 0,

where P (t) and Q (t) are defined by (3.6) and (3.7), respectively. Then Eq. (3.1)
is oscillatory.

P r o o f. Assume Eq. (3.1) has an extendible solution x(t) which is even-
tually positive or negative. Then, without loss of generality, assume x (t) > 0 for
all t ≥ T ≥ 0, where T depends on the solution x (t). Define z(t) by (3.8). From
(3.14) and (3.21), we get that

(3.27) z′ (t) ≤ −Q (t) + P (t)z(t) − γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

.

Multiplying both sides of (3.27), with t replaced by s, byH1 (b1, s) and integrating
with respect to s from c1 to b1, we find that

∫ b1

c1

Q (s)H1 (b1, s) ds

≤ −
∫ b1

c1

z′ (s)H1 (b1, s) ds+

∫ b1

c1

P (s) z(s)H1 (b1, s) ds

−
∫ b1

c1

γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

H1 (b1, s) ds.

Using integration by parts and from (3.23) and (3.25), we obtain

∫ b1

c1

Q (s)H1 (b1, s) ds

≤ z (c1)H1 (b1, c1) +

∫ b1

c1

[
(γ + 1)h12 (b1, s)H

γ

γ+1

1 (b1, s) z (s)

−γ |z (s)|
γ+1

γ H1 (b1, s)

(ρ (s) r(s))
1

γ

]
ds

≤ z (c1)H1 (b1, c1) +

∫ b1

c1

[
(γ + 1) |h12 (b1, s) |H

γ

γ+1

1 (b1, s) |z (s) |

−γ |z (s)|
γ+1

γ H1 (b1, s)

(ρ (s) r(s))
1

γ

]
ds.(3.28)
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Let λ =
γ + 1

γ
. Define A and B by

Aλ :=
γ |z (s)|λH1 (b1, s)

(ρ (s) r(s))
1

γ

and Bλ−1 := (γρ (s) r(s))
1

γ+1 |h12 (b1, s)| .

Then, using the inequality (3.16), we get that

(γ + 1) |h12 (b1, s)|H
γ

γ+1

1 (b1, s) |z (s)|

− γ |z (s)|
γ+1

γ H1 (b1, s)

(ρ (s) r(s))
1

γ

≤ ρ (s) r(s) |h12 (b1, s)|γ+1 .

This together with (3.28) shows that

(3.29)
1

H1 (b1, c1)

∫ b1

c1

[
Q (s)H1 (b1, s) − ρ (s) r(s) |h12 (b1, s)|γ+1

]
ds ≤ z (c1) .

Similarly, multiplying both sides of (3.27), with t replaced by s, by H1 (s, a1) and
integrating by parts from a1 to c1, we see that
(3.30)

1

H1 (c1, a1)

∫ c1

a1

[
Q (s)H1 (s, a1) − ρ (s) r(s) |h11 (s, a1)|γ+1

]
ds ≤ −z (c1) .

Combining (3.29) and (3.30) we get that

1

H1 (c1, a1)

∫ c1

a1

[
Q (s)H1 (s, a1) − ρ (s) r(s)hγ+1

11 (s, a1)
]
ds

+
1

H1 (b1, c1)

∫ b1

c1

[
Q (s)H1 (b1, s) − ρ (s) r(s)hγ+1

12 (b1, s)
]
ds ≤ 0.

This contradicts (3.26) with i = 1. This completes the proof. �

4. Oscillation Criteria for (1.1) with g(t, s) 6≡ t. In this section
we prove oscillation criteria for Eq. (1.1) with both cases of delay and advanced
types. In the follwoing, we will use the notations:

g∗ (t) = inf
s∈[a,b)

{t, g (t, s)} and g∗ (t) = sup
s∈[a,b)

{t, g (t, s)} ;

ψi (t, s) :=





δi (t, s) , g (t, s) < t,

ζi (t, s) , g (t, s) > t;
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with

δi (t, s) :=
R (g (t, s) , g (ai, s))

R (t, g (ai, s))
;

and

ζi (t, s) :=
R (g (bi, s) , g (t, s))

R (g (bi, s) , t)
,

R (t, t0) :=

∫ t

t0

r̃−
1

γ (u) du, r̃(t)

:= r (t)

[
exp

∫ t

0

p (v)

r (v)
dv

]
and q̂ (t, s) := q (t, s) [ψ1 (t, s)]α(s) .

Theorem 4.1. Suppose that for any T ≥ 0 and for i = 1, 2, there exist
constants ai, bi ∈ [T,∞) with ai < bi, such that

(4.1) q0(t) ≥ 0 for t ∈ [g∗ (ai) , g
∗ (bi)],

(4.2) q (t, s) ≥ 0 for (t, s) ∈ [g∗ (ai) , g
∗ (bi)] × [a, b) ,

and

(4.3) (−1)i e (t) ≥ 0, for t ∈ [g∗ (ai) , g
∗ (bi)] .

Assume further that for i = 1, 2, there exist ui ∈ C1 [ai, bi] satisfying ui (ai) =
ui (bi) = 0, ui (t) 6≡ 0 on [ai, bi] and a continuous positive function ρ(t) such that

sup
δ∈(m,1]

∫ bi

ai

[
Q̂(t)|ui(t)|γ+1 − ρ(t)r(t)

(γ + 1)γ+1
[(γ + 1)|u′1(t)| + |u1(t)| |P (t)|]γ+1

]
dt>0,

where P (t) is defined by (3.6) and

(4.4) Q̂(t) := δ̂ρ(t) (q0(t))
(γ−µ)/(β−µ) (q̄(t))(β−γ)/(β−µ) ,

with

δ̂ := (β − µ)(β − γ)(γ−β)/(β−µ)(γ − µ)(µ−γ)/(β−µ),

and

q̄(t) :=

[ |e(t)|
1 − δ

]1−δ

exp

(∫ b

a
η (s) ln

[
q̂ (t, s)

η (s)

]
dζ (s)

)
,
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with η (s) is defined as in Lemma 2.1 based on δ. Here we use the convention that
ln 0 = −∞, e−∞ = 0, and 01−δ = 1 and (1 − δ)1−δ = 1 for δ = 1. Then Eq. (1.1)
is oscillatory.

P r o o f. Assume Eq. (1.1) has an extendible solution x(t) which is even-
tually positive or negative. Then, without loss of generality, we may assume x (t) ,
x(g(t, s)) > 0, for t ∈ [T,∞) and s ∈ [a, b]. Define z(t) by (3.8). From (1.1) and
(3.9), we have for t ≥ T ,

z′ (t) = −ρ (t) q0 (t) xβ−γ (t)

−ρ (t)

∫ b

a
q (t, s)

[x (g (t, s))]α(s)

[x (t)]γ
dζ (s) + ρ (t) e(t)x−γ(t)

+P (t) z (t) − γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

.(4.5)

From the assumption, there exist constants a1 and b1 with a1 < b1 and
[g∗ (a1) , g

∗ (b1)] ⊂ [t0,∞) such that (4.1), (4.2) and (4.3) hold with i = 1. From
(1.1), we get, for t ∈ [g∗ (a1) , g

∗ (b1)] ,

(
r̃(t)φγ

(
x′(t)

))′

=

[
exp

∫ t

0

p (v)

r (v)
dv

] (
r(t)φγ

(
x′(t)

))′
+

[
exp

∫ t

0

p (v)

r (v)
dv

]
p(t)φγ

(
x′(t)

)

=

[
exp

∫ t

0

p (v)

r (v)
dv

] [
−q0 (t)φβ (x(t)) −

∫ b

a
q (t, s)φα(s) (x(g(t, s))) dζ (s) + e(t)

]

≤ 0.

Then r̃(t)φγ

(
x′(t)

)
is nonincreasing on [g∗ (a1) , g

∗ (b1)]. Now we consider the
following two cases:

Case (a): Delay type, i.e. g (t, s) ≤ t, for t ∈ [a, b] and s ∈ [a, b]. Since
r̃(t)φγ

(
x′(t)

)
is nonincreasing on [g∗ (a1) , g

∗ (b1)]. Then

x (t) − x (g (t, s)) =

∫ t

g(t,s)
φ−1

γ (r̃(u)φγ(x′(u)))r̃
− 1

γ (u) du

≤ φ−1
γ

[
r̃φγ(x′) (g (t, s))

] ∫ t

g(t,s)
r̃−

1

γ (u) du

= φ−1
γ

[
r̃φγ(x′) (g (t, s))

]
R (t, g (t, s)) ,
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where φ−1
γ is the inverse function of φγ , and so

(4.6)
x (t)

x (g (t, s))
≤ 1 +

φ−1
γ [r̃φγ(x′) (g (t, s))]

x (g (t, s))
R (t, g (t, s)) .

We also see that for t ∈ [a1, g
∗ (b1)]

x (g (t, s)) > x (g (t, s)) − x (g (a1, s)) =

∫ g(t,s)

g(a1,s)
φ−1

γ (r̃(u)φγ(x′(u)))r̃
− 1

γ (u) du

≥ φ−1
γ

[
r̃φγ(x′) (g (t, s))

] ∫ g(t,s)

g(a1,s)
r̃−

1

γ (u) du

= φ−1
γ

[
r̃φγ(x′) (g (t, s))

]
R (g (t, s) , g (a1, s)) ,

which implies that for t ∈ (a1, g
∗ (b1)]

(4.7)
φ−1

γ [r̃φγ(x′) (g (t, s))])

x (g (t, s))
<

1

R (g (t, s) , g (a1, s))
.

Therefore, the combination of (4.6) and (4.7) shows that for t ∈ (a1, g
∗ (b1)]

x (t)

x (g (t, s))
< 1 +

R (t, g (t, s))

R (g (t, s) , g (a1, s))
=

R (t, g (a1, s))

R (g (t, s) , g (a1, s))
=

1

δ1 (t, s)
.

Hence

(4.8) x (g (t, s)) > δ1 (t, s) x (t) , for t ∈ [a1, g
∗ (b1)] .

Case (b): advanced type, i.e. g (t, s) > t, for t ∈ [a, b] and s ∈ [a, b]. Since
r̃(t)φγ

(
x′(t)

)
is nonincreasing on [g∗ (a1) , g

∗ (b1)], we have, for t ∈ [g∗ (a1) , b1]

x (g (t, s)) − x (t) =

∫ g(t,s)

t
φ−1

γ (r̃(u)φγ(x′(u)))r̃−
1

γ (u) du

≥ φ−1
γ

[
r̃φγ(x′) (g (t, s))

] ∫ g(t,s)

t
r̃−

1

γ (u) du

= φ−1
γ

[
r̃φγ(x′) (g (t, s))

]
R (g (t, s) , t) ,

and so

(4.9)
x (t)

x (g (t, s))
≤ 1 −

φ−1
γ [r̃φγ(x′) (g (t, s))]

x (g (t, s))
R (g (t, s) , t) .

Also, we see that, for t ∈ [g∗ (a1) , b1]

−x (g (t, s)) < x (g (b1, s)) − x (g (t, s)) =

∫ g(b1,s)

g(t,s)
φ−1

γ (r̃(u)φγ(x′(u)))r̃−
1

γ (u) du
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≤ φ−1
γ

[
r̃φγ(x′) (g (t, s))

] ∫ g(b1,s)

g(t,s)
r̃
− 1

γ (u) du

= φ−1
γ

[
r̃φγ(x′) (g (t, s))

]
R (g (b1, s) , g (t, s)) ,

which implies for t ∈ [g∗ (a1) , b1), that

(4.10) −
φ−1

γ [r̃φγ(x′) (g (t, s))]

x (g (t, s))
<

1

R (g (b1, s) , g (t, s))
.

Thus, (4.9) and (4.10) imply, for t ∈ [g∗ (a1) , b1)

x (t)

x (g (t, s))
< 1 − R (g (t, s) , t)

R (g (b1, s) , g (t, s))
=

R (g (b1, s) , t)

R (g (b1, s) , g (t, s))
=

1

ζ1 (t, s)
.

Hence

(4.11) x (g (t, s)) > ζ1 (t, s)x (t) , for t ∈ [g∗ (a1) , b1] .

From (4.8) and (4.11), we get

x (g (t, s)) ≥ ψ1 (t, s) x (t) , for t ∈ [a1, b1] and s ∈ [a, b) .

Then (4.5) becomes, for two caes (a) and (b),

z′ (t) ≤ −ρ (t) q0 (t)xβ−γ (t) − ρ (t)

∫ b

a
q̂ (t, s) [x (t)]α(s)−γ dζ (s) + ρ (t) e(t)x−γ(t)

+P (t) z (t) − γ |z (t)|
γ+1

γ

(ρ (t) r(t))
1

γ

,

where q̂ (t, s) = q (t, s) [ψ1 (t, s)]α(s) . The rest of the proof is similar to that of
Theorem 3.1 after (3.11) and hence is omitted. �

Theorem 4.2. Suppose that for any T ≥ 0 and for i = 1, 2, there
exist constants ai and bi with T ≤ ai < bi such that (4.1), (4.2) and (4.3) hold.
Assume further that for i = 1, 2, there exist ci ∈ (ai, bi) and Hi ∈ H(ai, bi) and a
continuous positive function ρ(t) such that

sup
δ∈(m,1]

{
1

Hi (ci, ai)

∫ ci

ai

[
Q̂ (s)Hi (s, ai) − ρ (s) r(s) |hi1 (s, ai)|γ+1

]
ds

+
1

Hi (bi, ci)

∫ bi

ci

[
Q̂ (s)Hi (bi, s) − ρ (s) r(s) |hi2 (bi, s)|γ+1

]
ds

}
> 0,
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where P (t) and Q̂ (t) are defined by (3.6) and (4.4), respectively. Then Eq. (3.1)
is oscillatory.
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