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ON LIE ALGEBRAS WITH EXPONENTIAL GROWTH
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Abstract. We study the asymptotic behaviour of the codimension se-
quence of varieties of Lie algebras variety over a field of characteristic zero.
We construct an infinite series of such varieties with different fractional ex-
ponents. This extends the special cases known before.

1. Introduction. There are different ways to investigate linear algebras.
Instead to study an individual algebra one can analyze a class of algebras with
similar properties. As such a class one may consider the variety, defined as
the class of algebras satisfying fixed polynomial identities. One can specify the
identities explicitly, for example – the identity of commutativity, or implicitly –
studying the variety generated by a fixed algebra A. All algebras of the variety
satisfy the identities of A, even if they are not described explicitly. In this case,
the chosen algebra A is said to be a support of the variety. For a support of
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variety we can take its relatively free algebra of countable rank. This is the
countable generated algebra having no relations, except of the fixed identities
and their consequences. It is known that the variety is a class of algebras stable
under subquotients and Cartesian products.

In this paper we consider some numerical characteristics of varieties of Lie
algebras over a field of characteristic zero. Here we have constructed an infinite
series of varieties with different fractional exponents. This extends the special
cases known before. In the sequel we shall follow the work [1], [4], where the
necessary background was stated.

In the middle of the XX century it was discovered that over a field of
characteristic zero any polynomial identity is equivalent to a system of multilinear
identities [7]. So, any information about the variety V is contained in properties
of the sequence of vector spaces Pn(V), n = 1, 2, . . . , of the multilinear elements
of the relatively free algebra.

An important characteristic of the variety is the codimension sequence
cn(V) = dim Pn(V), n = 1, 2, . . . . The growth of this sequence determines
the growth of the variety. There are varieties with polynomial, exponential,
intermediate (between polynomial and exponential) and overexponential growth.
Unlike the associative case, for Lie algebras the sequence cn(V) is already not
necessarily exponentially limited. The existence of varieties of Lie algebras with
overexponential growth was established in [16]. In [12], [13] it was introduced
a scale to measure the overexponential growth for varieties of polynilpotent Lie
algebras.

In the case of exponential growth the sequence n
√

cn(V) is bounded and
has lower and upper limits, known as the lower and the upper exponents of the
variety, respectively. When they are equal, the limit of the sequence exists and
is called the exponent of the variety. For example, for the variety of associative
algebras generated by the Grassmann algebra the codimensions sequence has the
form cn(V) = 2n−1 (see [4], theorem 4.1.8) and the exponent is 2.

The question for the existence of the exponent of an arbitrary variety of
exponential growth is a very challenging and interesting problem. Up till now,
the proofs for the existence of the exponent and its evaluation are related with big
difficulties. Another interesting problem is to find varieties with integer exponents
and, in the contrary, examples of varieties with fractional exponents.

In the 1980’s S. A. Amitsur conjectured that any associative algebra sat-
isfying a polynomial identity has a non-negative integer exponent. His conjecture
was proved in the work [3].

The first example of a variety of Lie algebras with non-integer exponent
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was constructed in [19]. Then in [15] the existence of its exponent was proved
and its value was calculated. The integrity of the exponent of a variety of Lie
algebras generated by a finite dimensional algebra was proved in [17]. For Lie
algebras with nilpotent commutator the same was established in [10]. In general,
it was shown in [2] that for any real number α > 1 there exists a linear algebra
Aα whihc generates a variety with exponent equal to α. Note, that a similar
result for Lie algebras over a countable field would mean the affirmative answer
to the unsolved problem of the existence of a Lie algebra without finite basis of
its polynomial identities.

Another example of a variety of Lie algebras with fractional exponent was
constructed in [11]. It is generated by the infinite dimensional simple algebra of
Cartan type W2, in other words – by the Lie algebra of the vector fields on the
plane.

The latest known result in this direction is our work [8], where we have
announced and briefly justified the existence of a discrete series of varieties of
Lie algebras with different fractional exponents. In the present paper we give the
detailed exposition of the result.

2. Main definitions and notations. Let Φ be a field of charac-
teristic zero. We shall use left-normed arranging in the products, omitting the
parentheses, for example, (ab)c ≡ abc.

Let F (X) be a free algebra, generated by a countable set X = {x1, x2, . . . }.
We shall write the identities as equalities in F (X)

f(x1, . . . , xn) ≡ 0 or f(x1, . . . , xn) ≡ g(x1, . . . , xn),

where we use the equivalence instead of the ordinary equality.

Let A be any Lie algebra over Φ. Recall that f(x1, . . . , xn) is a polynomial
identity of A if f(a1, . . . , an) = 0, for any a1, . . . , an ∈ A. Let Id(A) denote the set
of all identities of A. Then Id(A) is an ideal in F (X) invariant under substitutions,
i.e., f(g1, . . . , gn) ∈ Id(A) for any g1, . . . , gn ∈ F (X) and f(x1, . . . , xn) ∈ Id(A).
Such ideals are called fully invariant ideals or T-ideals.

For any n ≥ 1, Pn denotes the vector subspace of F (X) of multilinear
polynomials in x1, . . . , xn. Hence Pn ∩ Id(A) is the vector space of multilinear
identities of A of degree n. In characteristic zero the sequence of vector spaces
Pn ∩ Id(A), n = 1, 2, . . ., completely determines Id(A) and we define Pn(A) =
Pn/(Pn ∩ Id(A)), which in some sense corresponds to the non-identities of A of
n-th degree.
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The important characteristic of the identities of A is the codimensions
sequence

cn(A) = dim Pn(A), n = 1, 2, . . . .

If the algebra B satisfied all identities of the algebra A, then we have
Id(B) ⊇ Id(A) and cn(B) ≤ cn(A). So, cn(A) = n! when A is the free associative
algebra, and cn(A) = (n−1)! when A is the free Lie algebra. The fastest growing

sequence is realized when A satisfies no identities. Then cn(A) =

(
2n − 2

n − 1

)
· (n−

1)!, where

(
2n − 2

n − 1

)
/n is the n-th Catalan number, counting all arrangements of

parentheses on a word of length n. Notice that asymptotically

(
2n − 2

n − 1

)
/n ≃ 4n.

There is a wide class of algebras with exponentially bounded growth of
the codimensions, i.e., cn(A) ≤ an, for all n, with a a real number. Then the
sequence n

√
cn(A), n = 1, 2, . . . , is bounded: 0 ≤ n

√
cn(A) ≤ a. Its lower and

upper limits exist and are called the lower and upper exponent of A

exp(A) = lim inf
n→∞

n
√

cn(A), exp(A) = lim sup
n→∞

n
√

cn(A).

If the limit of the sequence n
√

cn(A) exists, then we call it the PI-exponent (poly-
nomial identity exponent) or just the exponent of A:

exp(A) = exp(A) = exp(A).

As we said, one of the main problems in the theory of codimensions is the existence
of the PI-exponent of A, when cn(A) is exponentially bounded.

There are other numerical characteristics of T-ideals which are closely
related to the action of the symmetric group Sn on Pn. Recall that if f =
f(x1, . . . , xn) ∈ Pn and σ ∈ Sn, then

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

This action defines a representation of the group Sn in the space Pn(A). Since
Id(A) is invariant under endomorphisms, it follows that Pn ∩ Id(A) is a ΦSn-
submodule of Pn and Pn(A) = Pn/(Pn ∩ Id(A)) is also a ΦSn-module. Explicitly,
two multilinear identities f ≡ 0 and g ≡ 0 are equivalent if and only if ΦSnf =
ΦSng.

Since char F = 0, the ΦSn-module Pn(A) is completely reducible and
can be decomposed into a direct sum of irreducible submodules. The number
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of irreducible summands, i.e., the length of the ΦSn-module Pn(A) is called the
n-th colength of A, and is denoted by ln(A). Hence a new numerical invariant of
Id(A) is given by the colength sequence ln(A), n = 1, 2, . . . .

The partitions λ = (λ1, . . . , λk) of n are in one-to-one correspondence
with the set of nonequivalent irreducible representations of Sn, that are Specht
modules Sλ.

Finite-dimensional representations of Sn are determined by their charac-
ters (the traces of the corresponding linear operators) which are central functions
on Sn. The characters of irreducible representations of Sn form an orthogonal
basis of the space of central functions and can be normalized if the field Φ is al-
gebraically closed (we refer the reader to [5] for an account of the representation
theory of the symmetric group).

For describing the decomposition of an Sn-module M into irreducibles it
is convenient to use characters. Hence if χλ denotes the character of Sλ, we write

χ(M) =
∑

λ⊢n

mλχλ,

where χ(M) is the character of M and mλ is the multiplicity of χλ in χ(M).
The Sn-character χn(A) of Pn(A) is said to be the n-th cocharacter of A.

Then

(1) χn(A) = χ(Pn(A)) =
∑

λ⊢n

mλχλ,

Then clearly

ln(A) =
∑

λ⊢n

mλ, cn(A) =
∑

λ⊢n

mλdλ,

where dλ = χλ(e) = deg χλ is the degree of the irreducible character χλ.
The capital letter Y will denote the inner derivation ad y of the Lie algebra

A: ad y(x) = xY = xy, where x, y ∈ A. The bar or the tilde are used to denote
the alternation of the elements in the expression. For example,

x0X̄1Ỹ1X̄2Ỹ2Ỹ3X̄3X̄4 =
∑

p∈S4, q∈S3

(−1)p+qx0xp(1)yq(1)xp(2)yq(2)yq(3)xp(3)xp(4),

where (−1)r is the parity of the permutation r ∈ Sn. Note the equality

x0 . . . X̄1 . . . X̄2 . . . X̄m = (−1)px0 . . . X̄p(1) . . . X̄p(2) . . . X̄p(m), p ∈ Sm.

The above is explained on the following examples:

y1X̄1[X̄2, Ȳ ] = 2(y1x1x2y + y1x2yx1 + y1yx1x2 − y1x1yx2 − y1yx2x1 − y1x2x1y),
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X̄1[X̄2, X̄3][[X̄4, X̄5], Y ] =
∑

p∈S5

(−1)pXp(1)[Xp(2),Xp(3)][[Xp(4),Xp(5)], Y ].

Here the notation for the commutator for the associative composition of linear
operators is used. We also have applied the identity x(yz) ≡ xyz − xzy which
holds for any Lie algebra.

3. Main result. In this section we construct an infinite series of varieties
of Lie algebras with different fractional PI-exponents. It is the main result of this
paper.

Let A2 be the variety of all metabelian Lie algebras determined by the
identity

(x1x2)(x3x4) ≡ 0,

and let Ms−1 = Fs−1(A
2), s = 3, 4, . . . , denote the relatively free algebra of

this variety over the set of free generators {z1, z2, . . . , zs−1}. Consider the linear
transformation d of the vector space 〈z1, z2, . . . , zs−1〉 spanned by z1, z2, . . . , zs−1,
defined by the rule zid = zi+1, i = 1, 2, . . . , s − 2, zs−1d = 0. Then d can be
extended to a derivation of the algebra Ms−1, denoted by the same letter. Let
〈d〉 be the one-dimensional Lie algebra generated by d with zero-multiplication.
We may construct the semidirect product Ls = Ms−1⋋〈d〉. The variety generated
by the Lie algebra Ls is denoted by var(Ls), s = 3, 4, . . . .

Theorem. The following strict inequalities hold for the exponent of the
codimension sequences of the algebras Ls

3 = exp(L3) < · · · < exp(Ls) < exp(Ls+1) < · · · < 4, where s = 4, 5, . . . .

The proof of the theorem will require the following statement.

Lemma 1. If the multiplicity mλ from (1) is different from zero for
the Lie algebra Ls and then the following inequalities hold for the partition λ =
(λ1, . . . , λk) ⊢ n

∑

i>s

λi < 2,

s∑

i=1

(2 − i) · λi + (s − 1) · (s − 2) ≥ 0.

P r o o f. Let us establish the first inequality. Assume the contrary and
suppose that λ ⊢ n has more than two cells outside of the first s rows in the
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corresponding Young diagram. Let λ′
1, . . . , λ

′
l(λ) be the heights of the columns of

this diagram. Consider an element f of Pn(Ls) which generates an irreducible
Sn-module corresponding to λ ⊢ n. According to [9], the element f is equal to a
linear combination of summands on λ1 skew-symmetric sets with λ′

i variables in
the i-th set. But any multilinear Lie polynomial, containing either s + 2 skew-
symmetric variables or two sets with s + 1 skew-symmetric variables, vanishes in
algebra Ls, because the algebra contains the abelian ideal M2

s−1 of codimension s.

Really, let the multilinear polynomial contain s+2 or more skew-symmetric
variables. It is sufficient to check, that it vanishes on the basis of the algebra,
replacing the skew-symmetric variables by pairwise different elements of the ba-
sis. We shall construct the basis of Ls extending the basis of the abelian ideal
M2

s−1. But modulo this ideal there exist only s linearly independent elements
and we can choose the following basis elements {d, z1, z2, . . . , zs−1}. Hence we
shall replace the skew-symmetric variables by at least two elements from M2

s−1.
Therefore any monomial from our multilinear Lie polynomial vanishes, because
it can be presented as a product of two elements of the ideal M2

s−1 with zero
multiplication.

Now, let the multilinear polynomial contains two different skew-symmetric
sets of s + 1 variables. After the replacement of the skew-symmetric variables by
basis elements each skew-symmetric set gives rise to an element of M2

s−1. Again,
every monomial from our Lie polynomial will vanish.

In this way, the polynomial f corresponding of the partition λ vanishes
under any substitution by elements from Ls and the multiplicity mλ is equal to
zero.

Let us prove the second inequality. Consider a partition λ = (λ1, λ2, . . . ) ⊢
n such that

∑

i≤s

λi ≥ n−1 and
∑

i≤s

(2−i)·λi+(s−1)·(s−2) < 0. We shall show that

this partition determines a polynomial identity of the algebra Ls. It is sufficient to
prove that any multilinear polynomial f depending upon l = λ1 skew-symmetric
sets of variables with λ′

1, . . . , λ
′
l, elements, respectively, takes only zero value in Ls.

Again, we fix a basis of the abelian ideal M2
s−1 and extend it to a basis

of Ls by the elements d, z1, z2, . . . , zs−1. We shall replace the variables of f with
some of the basis elements. The element d can enter not more than once in
each skew-symmetric set, otherwise f vanish. Let us identify the variables in
f which we replace by d, and denote them by b. The other variables will be
denoted by y1, . . . , yk. Taking into account that d is a derivation we can rewrite
the polynomial f as a linear combination of the following products

(2) (ys1b
α1)(ys2b

α2) . . . (ysk
bαk),
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where α1, . . . , αk ≥ 0. Note also, that α1 + · · · + αk ≤ λ1.
The elements yib

α, α ≥ 0, may be considered as new variables. Although
the polynomial f may be not multilinear in these variables, it can be written as
a sum f = f1 + · · ·+ fm, such that each fi is a multilinear polynomial in some of
the new variables. If f is skew-symmetric in y1 and y2, then those elements from
f1, . . . , fm, which depend on y1b, y2b are skew-symmetric in these variables too.
Similarly the skew-symmetry in y1b

j, y2b
j, where j = 2, 3, . . . will be preserved.

Now shall we prove, that each component f1, . . . , fm takes zero value.
For this purpose we write for example f1 as a linear combination of elements
of the form (2), and then fix the indices s1, s2. We shall show that the partial
sum f1

1 of f1 for these fixed s1, s2 at the first two positions equals zero. Really,
let f be skew-symmetric in y1, y2, . . . , yr, where 1, 2, . . . , r 6= s1, s2 and let f1

1

depend on y1, y2 or on y1b
j, y2b

j for some j = 1, 2, . . . . Then the evaluations
of ysi

bαi , i = 1, . . . , k, belong to the metabelian ideal Ms−1 of algebra Ls. We
shall use the identity x1x2xσ(3) . . . xσ(k) ≡ x1x2x3 . . . xk which holds in Ms−1 for

any permutation σ of 3, . . . , k. Hence the evaluations of y1b
j , y2b

j commute and
are skew-symmetric in the same time. This implies that the component f1

1 of f1

takes value zero.
In other words, if f1

1 depends on y1b
α1 , y2b

α2 , . . . , yib
αi and takes a non-

zero value, then all α1, α2, . . . , αi are pairwise different and α1 + α2 + · · · + αi ≥
i(i−1)/2, i = 2, 3, . . . . Recall, that the original polynomial f depends on λs skew-
symmetric sets of cardinality ≤ s (> s, when λs+1 = 1) and depends on λi −λi+1

skew-symmetric sets of cardinality i, where i = 3, . . . , s − 1. The variables ys1

and ys2 are used not more than twice in these sets and it is possible to substitute
by d only one variable from each set. So we have at most λs − 2 skew-symmetric
sets with s elements and λi−λi+1 sets with i−1 elements, where i = 3, . . . , s−1.
We have shown above that f1

1 may take non-zero values only if the following
condition holds

α1 + · · · + αk ≥
s−1∑

i=3

(i − 1)(i − 2)

2
· (λi − λi+1) +

(s − 1)(s − 2)

2
· (λs − 2).

But α1 + · · · + αk ≤ λ1 implies the inequality
s∑

i=1

(2 − i)·λi + (s − 1)·(s − 2) ≥ 0.

It means that if

s∑

i=1

(2 − i)·λi + (s − 1)·(s − 2) < 0, then f1
1 , f1 and hence f take

zero values only. Our Lemma 1 is proved. �

We return to the proof of the main theorem. Let Mn be set of partitions
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of n which, according to Lemma 1, may have non-zero multiplicities. It consists
of partitions λ ⊢ n which satisfy the inequalities

∑

i>s

λi ≤ 1,
∑

i≤s

(2 − i) · λi + (s − 1) · (s − 2) ≥ 0.

Denote by Tn the set of partitions satisfying the following conditions

(3)





λ1 + λ2 + · · · + λs = n
s∑

i=1

(2 − i) · λi ≥ 0

λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 0.

For the non-negative real variables α1, α2, . . . , αs we shall define the func-
tion

F (−→α ) = F (α1, α2, . . . , αs) =

s∏

i=1

α−αi

i .

By continuity from the right we set 00 = 1 for the zero values of the variables.
Let T be the compact subset of the real space R

s defined by the conditions

(4)





α1 + α2 + · · · + αs = 1
s∑

i=1

(2 − i) · αi ≥ 0

α1 ≥ α2 ≥ · · · ≥ αs ≥ 0.

The function F (−→α ) is continuous and takes its maximal value on T at some
−→α (0) ∈ T

Fmax = F (−→α (0)) = max−→α∈T
F (−→α ).

The maximal values of these functions depend on s. We denote them by
F (s), s = 3, 4, . . . . Next we need the following property of F (α1, α2, . . . , αs).

Proposition. If the function F (α1, α2, . . . , αs) reaches the maximal value
on the compact subset T of R

s, then the last variable αs is different from zero
and the second condition of (4) becomes an equality. Besides, lim

s→∞
F (s) = 4 and

the following inequalities hold:

3 = F (3) < · · · < F (s) < F (s + 1) < · · · < 4.

The proof of the proposition will be given in the next section.
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P r o o f o f t h e m a i n t h e o r em. Lemma 1 asserts that if λ has at
least two cells outside the first s rows or

∑

i≤s

(2− i) ·λi + (s− 1)·(s− 2) < 0, then

the multiplicity mλ is equal to 0. In particular, the variety var(Ls) satisfies the
system of Capelli identities in m = s + 2 skew-symmetric variables of the form:

∑

p∈Sm

(−1)pxp(1)y11 . . . y1n1xp(2)y21 · · · y2n2xp(3) · · · xp(m) ≡ 0,

where some ni may be equal to zero. As it was proved in [18] if the Lie algebra
A satisfies a system of Capelli identities, then the colength of the variety ln(A) is
polynomially bounded. Therefore, the upper and lower the limits of the exponen-
tial functions Ls can be found by analyzing the dimensions dλ of the irreducible
modules of the symmetric group occurring in the decomposition of Pn(Ls).

Let us recall the “hook-formula” ([6], p. 81) for the dimension of the
irreducible representations Sλ of the symmetric group Sn corresponding to the
partition λ = (λ1, . . . , λs) ⊢ n

dλ = dim Sλ = n!/
∏

hij(λ).

Here the “length of the (i, j)-hook” is defined by hij(λ) = (λi − j)+ (λ′
j −

i) + 1, where λ′
j = |{λi ≥ j}| is the j-th part of the dual partition λ′ and the

product in the denominator is taken over all natural pairs {(i, j) | i ≤ λ′
j , j ≤ λi}

from the “Young diagram” of the partition λ.

The hook-formula can be reduced to a more convenient form. It is proved
in ([14], p. 28) that in the above notation we have the equality

∏
hij(λ) = λ1!λ2! · · · λs! ·

s−1∏

i=1

s−i∏

j=1

λi + j

λi + j − λi+j
.

This implies the following connection between the dimensions of the representa-
tions and the generalized binomial coefficients:

(5) dλ =
n!

λ1!λ2! · · · λs!

s−1∏

i=1

s−i∏

j=1

λi + j − λi+j

λi + j
=

n!

λ1!λ2! · · · λs!

s−1∏

i=1

s−i∏

j=1

(
1 − λi+j

λi + j

)
.

For a positive integer t we define the partition λ·t = (λ1t, λ2t, . . . , λst) ⊢
nt. Let dλ·t be the dimension of the irreducible Snt-modules Sλ·t. Next, we use
the following known fact.
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Remark. Under the above conditions we have the equality

lim
t→∞

nt
√

dλ·t = F (α1, α2, . . . , αs), where αi = λi/n.

Really, by (5) the dimension dλ·t and the generalized binomial coefficient
differ by a rational factor of t of degree which does not depend on t. So, we
can estimate the generalized binomial coefficient by the Stirling formula for the
factorials

n! =
√

2πn ·
(n

e

)n
·
(

1 + O

(
1

n

))
.

For fixed n and λi > 0, and for t → ∞ we obtain the equalities
(

nt

λ1t, . . . , λst

)
=

(
√

2πnt

(
nt

e

)nt
/

s∏

i=1

√
2πλit

(
λit

e

)λit
)
·(1 + O(1/t))

= (2πt)
1−s
2 ·

√
n

λ1 · · ·λs
· nnt

λλ1t
1 · · ·λλst

s

·
(e

t

)(λ1+...+λs−n)t
·(1 + O(1/t))

= (2πt)
1−s
2 ·

√
n

λ1 · · ·λs
·

s∏

i=1

(
n

λi

)λit

·(1 + O(1/t)).

If λs = 0, the expression for the binomial coefficient is similar, but the products
contain only the non-zero λi. Then we get the value of the desired limit

(
nt

λ1t, . . . , λst

) 1
nt

= F (α1, α2, . . . , αs)·(1 + o(1)) → F (α1, α2, . . . , αs), for t → ∞.

Let the maximal value F (s) of the function F (α1, . . . , αs) on the compact set T be

reached in a point −→α (0) = (α
(0)
1 , . . . , α(0)

s ). According to the proposition above,

it satisfies the conditions: α(0)
s > 0 and

∑

i≤s

(2 − i) · α
(0)
i = 0. in We construct

a sequence −→α (j), j = 1, 2, . . . , with similar conditions and rational components

α
(j)
i , such that

lim
j→∞

−→α (j) = −→α (0), lim
j→∞

F (−→α (j)) = F (s).

Let n(j) be the common denominator of components of −→α (j). Define the parti-
tions: λ(j) = −→α (j)·n(j) ⊢ n(j) and λ(j)·t ⊢ n(j)·t, for positive integers t.

Now we shall take free generators x1, . . . , xs−1, x01, and x02 of the rela-
tively free algebra F (var(Ls)). Recall that the capital letter denotes an appro-
priate inner derivation of the algebra. Denote

Rk = [. . . [X̄1,X01], . . . X01︸ ︷︷ ︸
k−2

][. . . [X̄2,X01], . . . X01︸ ︷︷ ︸
k−3

] . . . [X̄k−2, X̄01]X̄k−1,
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where k = 3, . . . , s. Let also R1 = X01, R2 = X1. For example, R3 = [X̄1, X̄01]X̄2

and R4 = [[X̄1,X01],X01][X̄2, X̄01]X̄3.
Consider the following element of the relatively free algebra F (var(Ls)),

using for simplicity αi instead of α
(j)
i

gt = x02R
(α1−

P
s

i=2(i−2)·αi)nt

1 R
(α2−α3)nt
2 · · ·R(αk−αk+1)nt

k · · ·Rαsnt
s .

In the element gt we additionally alternate the variable X1 from R2 with X01

from Rk, where 4 ≤ k ≤ s. Since
∑s

i=1
(2 − i) · αi = 0, we obtain that

gt = x02R
(α2−α3)nt
2 · · ·R(αk−αk+1)nt

k · · ·Rαsnt
s .

Remark that if s = 3 then α1 = α2 = α3 =
1

3
and gt = x02

(
[X̄1, X̄01]X̄2

)nt

3

without the additional alternating pair X1,X01.
The degree of gt is m = nt + 1, because the degree of Rk, k ≥ 2, equals

k · (k−1)/2.
Let ft be the complete linearization of the element gt, and let Vt be the

submodule of the Snt+1-module Pnt+1(Ls), generated by ft. The element gt con-
tains αsnt alternating sets of s variables {x01, x1, x2, . . . , xs−1} and (αi −αi+1)nt
alternating sets of i variables {x01, x1, . . . , xi−1} in each, where i = 2, . . . , s − 1.
All other variables, except x02, which are not included in alternating sets, are
equal to the same x01. Therefore, the decomposition of the module Vt into a
direct sum of irreducible components has only modules indexed by Young dia-
grams with nt+1 cells which contain a subdiagram corresponding to the partition
λ(j) · t ⊢ nt, that is consisting of nt cells.

We shall prove that at least one of these irreducible submodules of the
module of multilinear polynomials Pnt+1(Ls) is not zero. Consider the elements
hi = x02Rk, k = 2, . . . , s and make the following substitution in h2, . . . , hs

x02 = z1Z
m
s−1, x1 = zs−1, x2 = zs−2, . . . , xs−1 = z1, x01 = d.

If two elements zi, zj in the summation participate in the same commutator
bracket, then such a term is zero, because M is a metabelian ideal of L. Hence
only one from the k! terms is not equal to zero and the result of this substitution
is be equal to z1Z

k−1+m
s−1 .

Thus, if in the element gt we make the following substitution of ele-
ments of L

x02 = z1Z
m, x1 = zs−1, x2 = zs−2, . . . , xs = z1, x01 = d,
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then the result of the substitution is not zero.

In this way we have proved that

lim inf
t→∞

nt+1
√

cnt+1(Ls) ≥ F (s),

and, therefore, the inequality exp(Ls) ≥ F (s) holds.

To complete the proof we shall show that exp(Ls) ≤ F (s). Consider the
sequence of partitions λ(n) ⊢ n, λ(n) ∈ Mn, i.e., λ(n) is a partition with nonzero

multiplicity. In this case, in particular, λ
(n)
s+1 ≤ 1 and λ

(n)
s+2 = 0.

Define a constant k = (s − 1)·(s − 2) and a partition µ(n+k) ⊢ n+k in

s parts by the following equalities: µ
(n+k)
1 = λ

(n)
1 +k, µ

(n+k)
i = λ

(n)
i for i =

2, 3, . . . , s. According to Lemma 1, the partition µ(n+k) belongs to Tn+k. Note
that the Young diagram corresponding to the partition λ(n) is a subdiagram of

the diagram corresponding to the partition ν(n+k+1) = (µ
(n+k)
1 , . . . , µ(n+k)

s , 1) of
n+k+1. Therefore, the next relations follow from the representation theory of
the symmetric groups

dλ(n) ≤ dν(n+k+1) ≤ (n + k + 1) · dµ(n+k) , n = 1, 2, . . . .

Sincet k does not depend on n, we derive from these inequalities that

lim sup
n→∞

n

√
dλ(n) ≤ lim sup

n→∞
n

√
dµ(n+k) ≤ lim sup

n→∞
n+k

√
dµ(n+k) ≤ F (s).

Therefore exp(Ls) ≤ F (s), and the proof of the theorem is completed. �

4. Investigation of the function F (α1, . . . , αs). Now we shall
prove the results about the maximum of the function F (α1, . . . , αs) in stated in
the previous section.

Lemma 2. If s > 3, then for the maximum value of the function
F (α1, . . . , αs) all inequalities in the third condition of (4) are strict

α1 > · · · > αs > 0.

P r o o f. Instead of the function F (α1, . . . , αs) we can consider its loga-
rithm

ln(F (α1, . . . , αs)) = −α1 · ln(α1) − · · · − αs · ln(αs).
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We shall show that if some of the inequalities α1 ≥ · · · ≥ αs ≥ 0 in the third
condition of (4) are equalities, then some of the variables αi can be changed with
saving the other conditions of (4) in such a way that the number of the equalities
will decrease, and the value of ln(F ) as well of F will increase. Thus after a finite
number of changes we can remove all of the equalities increasing the value of the
function in each step. Really, we can consider the few possible cases.

Case 1 (leftmost and center). There is a fragment of the form:

αl−1 > αl = · · · = αk > αk+1 ≥ 0, where 1 ≤ l < k < s and α0 := 1 if l = 1.

Then we change three of the variables α in the following way:

(α̃l, α̃k, α̃k+1) = (αl + β, αk − 2β, αk+1 + β).

If β is small and positive, the variation also respects (4). We consider F as a
function of the variable β: F = F (β). For small positive β the function F (β)
increases, because the function ln(F ) and its derivative have the form

ln(F (β)) = C − (αl + β) · ln(αl + β) − (αk − 2β) · ln(αk − 2β)

−(αk+1 + β) · ln(αk+1 + β),

(ln(F (β)))′ = − ln(αl + β) − 1 + 2 ln(αk − 2β) + 2 − ln(αk+1 + β) − 1

= ln
(αk − 2β)2

(αl + β) · (αk+1 + β)
= ln

(αk − 2β)2

(αk + β) · (αk+1 + β)
.

Hence (ln(F (β)))′β=0+ = ln(αk/αk+1) > 0, and for small positive β the function
F (β) increases (this is true also for αk+1 = 0, when this derivative tends to +∞).

Case 2 (right extreme trivial). There is a fragment of the form

αk−2 > αk−1 > αk > αk+1 = · · · = αs = 0, where k ≥ 2 and α0 := 1 if k = 2.

Then the variation (α̃k−1, α̃k, α̃k+1) = (αk−1 + β, αk − 2β, αk+1 + β) for small
positive β respects (4). It also increases both F (β) and the number of strict
inequalities in the line.

Case 3 (the rightmost positive). There is a fragment of the form

αk−2 ≥ αk−1 > αk = · · · = αs > 0, where 2 ≤ k < s and α0 := 1 if k = 2.

The changing of the variables (α̃k−1, α̃k, α̃s) = (αk−1 − β, αk + 2β, αs − β) re-
specting (4). Then the value of the function F (β) increases for small positive β
as its partial derivative is as follows

(ln(F (β)))′ = ln
(αk−1 − β) · (αs − β)

(αk + 2β)2
= ln

(αk−1 − β)·(αk − β)

(αk + 2β)2
;
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(ln(F (β)))′β=0+ = ln(αk−1/αk) > 0.

There are still two cases to be considered

• α1 > α2 = · · · = αs = 0;

• α1 = α2 = · · · = αs > 0.

In the former case, if s ≥ 2, the function does not achieve its maximum

F (−→α ) = F (1, 0, . . . ) = 1 < 2 = F (0.5, 0.5, 0, . . . ).

In the latter case we have αi = 1/s, and the second inequality of (4) implies the
restriction s ≤ 3

s∑

i=1

(2 − i) · αi =
s∑

i=1

(2 − i) · 1

s
=

3 − s

2
≥ 0.

Lemma 2 is proved. �

Remark. If s = 1, 2, 3 the condition (4) reduces to the first equality and
the non-negativity of the variables. In these cases the maximum Fmax is achieved
for equal variables αi, and it is 1, 2, and 3, respectively.

Corollary 1. The maximum of F (α1, . . . , αs) on the domain satisfying
(4) is attained only at a point satisfying αs > 0. Therefore these maximums
strictly increase with s:

max
(4)

F (α1, . . . , αs−1, αs) > max
(4), αs=0

F (α1, . . . , αs−1, αs) = max
(4)

F (α1, . . . , αs−1).

Lemma 3. When s > 3, then the condition (4) can be replaced by more
exact

(6)





α1 + α2 + . . . + αs = 1
s∑

i=1

(2 − i) · αi = 0

α1 > α2 > . . . > αs > 0

P r o o f. First, we shall find the maximum of F (α1, . . . , αs) = α−α1
1 · . . . ·

α−αs

s subject to the single condition α1 + . . . + αs = 1, αi > 0. We form the
Lagrangian

L(α1, . . . , αs;λ) = ln(F (α1, . . . , αs)) + λ · (α1 + · · · + αs − 1),
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and write the equations for stationarity




∂L

∂αi
= − ln(αi) − 1 + λ = 0, i = 1, . . . , s

α1 + α2 + · · · + αs = 1

Hence all αi are equal and we have the only point of stationarity −→α =(1/s, . . . , 1/s).
Study it for extremality

d2L(−→α ;λ) = −s
s∑

i=1

dα2
i ,

d2L(−→α ;λ)|T = −s ·
(

s−1∑

i=1

dα2
i + (−

s−1∑

i=1

dαi)
2

)
= −2s ·

∑

1≤i≤j≤s−1

dαi · dαj ,

where T : dα1 + · · · + dαs = 0 is the equation for the tangent space.
The (s−1)×(s−1)-matrix of the last quadratic form is negative definite

−s ·




2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2


 ∼ −s ·




s 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 < 0.

So (1/s, . . . , 1/s) is the unique local maximum of F and F (1/s, . . . , 1/s) = s. But
we have

lim
α→0+

α−α = 1, lim
α→+∞

α−α = 0, α−α ≤ e1/e,

then on the boundary of the domain by the continuity the corresponding factors
become unit, and the maximal value of F decreases. If some of the αi grows
infinitely the function F converges to zero. Hence, the obtained stationary point
is a strict global maximum.

The domain U :

s∑

i=1

(i−2) ·αi < 0 for s > 3 does not include the extremal

point (1/s, . . . , 1/s). Thus, the local maximum of F for the conditions (4) belongs
to the boundary of the domain U , – otherwise it would be another local extremum
of the more general problem with the single restriction which we consider. So it
satisfies (6) and Lemma 3 is proved. �

Lemma 4. If s > 3, then max
(6)

F (α1, . . . , αs) = s · q2−s/(2 − q), where q

is a root of the polynomial

P (x) = −xs−1 + xs−3 + 2xs−2 + · · · + (s − 1)x + (s − 2).
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P r o o f. The Lagrangian function of the problem has the form (6)

L(α1, . . . , αs;λ, µ) = ln(F (α1, . . . , αs))+λ · (α1 + · · ·+αs − 1)+µ ·
s∑

i=1

(i− 2) ·αi.

The equations of stationarity are





∂L

∂αi
= − ln(αi) − 1 + λ + (i − 2) · µ = 0, i = 1, . . . , s

α1 + α2 + · · · + αs = 1
s∑

i=1

(i − 2) · αi = 0

α1 > α2 > · · · > αs > 0.

Hence
∂L

∂αi+1
− ∂L

∂αi
= ln(αi) − ln(αi+1) + µ = ln

αi

αi+1
+ µ = 0.

Let us define the constant q

α1

α2
=

α2

α3
= · · · =

αs−1

αs
=: q, where q = e−µ > 1, and αi = qs−i · αs.

The condition on q is determined by the substitution of αi in the second equation
of (6)

s∑

i=1

(i − 2) · αi =

s∑

i=1

(i − 2) · qs−i · αs = 0, αs > 0:

s∑

i=1

(i − 2) · qs−i = −qs−1 + qs−3 + 2 · qs−4 + · · · + (s − 2) = 0.

The variable αs is defined by the substitution of αi in the first equation of (6)

∑s

i=1
αi =

∑s

i=1
qs−i · αs = 1: αs =

(∑s−1

i=0
qi
)−1

=
q − 1

qs − 1
.

The equation for q can be simplified if we increase its degree

0 = (q − 1) ·
s∑

i=1

(i − 2) · qs−i = −qs +
s−1∑

i=1

qs−i − s + 2,
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0 = (q − 1)2 ·
s∑

i=1

(i − 2) · qs−i = (q − 1) · (−qs +
s−1∑

i=1

qs − s + 2)

= −qs+1 + 2qs − (s − 1) · q + s − 2 = (qs − 1) · (2 − q) − s(q − 1).

Note that q > 1 and therefore αs has another form

αs =
q − 1

qs − 1
=

2 − q

s
, in particular, q < 2.

Then we can calculate max
(6)

F (α1, . . . , αs)

s∏

i=1

α−αi
i =

∏

i<s

(qiαs)
−qiαs = q−αs ·

∑
i<s iqi

· α−αs ·
∑

i<s qi

s

= q2−s · α−1
s =

1

qs−2 · αs
=

s

qs−2 · (2 − q)
.

Here we have used the following equalities:

αs ·
∑s−1

i=1
iqi = αs ·

(
(s − 1)qs −

∑s−1

i=1
qi
)

/(q − 1)

= αs ·
(
sqs −

∑s

i=1
qi
)

/(q − 1) = αs ·
sqs

q − 1
− qαs ·

qs−1 + · · · + q + 1

q − 1

= αs ·
(

s(qs − 1)

q − 1
+

s

q − 1

)
− q

q − 1
= s +

s

q − 1
· 2 − q

s
− q

q − 1
= s − 2.

Lemma 4 is proved. �

Notation. Let q(s) be a root of the equation

Ps(x) =

s∑

i=1

(i − 2) · xs−i = −xs−1 + xs−3 + 2xs−4 + · · · + (s − 3)x + (s − 2) = 0.

Note that the another equations satisfied by q(s) have the forms:

−xs +
s−1∑

i=1

xi − s + 2 = 0 and − xs+1 + 2xs − (s − 1)x + s − 2 = 0.

Lemma 5. If s ≥ 3, then

(1) the equation Ps(x) = 0 has a unique positive solution;
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(2) The sequence q(s), s = 3, 4, . . . , belongs to [1, 2) and strictly increases;

(3) lim
s→+∞

q(s) = 2.

P r o o f. (1) Clearly, x = 0 is not a solution. We rewrite the equation in
the form

(1/x)2 + 2(1/x)3 + . . . + (s − 3) · (1/x)s−2 + (s − 2) · (1/x)s−1 = 1.

The left side is strictly increasing for positive 1/x, from 0+ to +∞, so the equality
is realized in a unique x = q(s).

(2) It is easy to calculate the values of Ps(x) at the endpoints of [1, 2]

Ps(1) =

s∑

i=1

(i − 2) · 1s−i =
s · (s − 2 − 1)

2
≥ 0,

Ps(2) =
s∑

i=1

(i − 2) · 2s−i =
−2s+1 + 2 · 2s − (s − 1) · 2 + s − 2

(2 − 1)2
= −s < 0,

so q(s) ∈ [1, 2).
As we have already shown y = 1/q(s) is a root of the equation

y2 + 2y3 + . . . + (s − 3) · ys−2 + (s − 2) · ys−1 = 1.

Similarly, z = 1/q(s + 1) is a root of the equation

z2 + 2z3 + . . . + (s − 3) · zs−2 + (s − 2) · zs−1 + (s − 1) · zs = 1.

If for some s the inequality q(s + 1)−1 ≥ q(s)−1 holds, then the expression de-
pending on z exceeds the expression depending on y, but both are equal 1. Hence
q(s + 1)−1 < q(s)−1 and q(s+1) > q(s) for all s ≥ 3.

(3) The sequence q(s) is monotone and bounded, hence q(+∞) = lim
s→+∞

q(s)

exists and belongs to (1, 2]. Then 1/q(+∞) ∈ [0.5, 1) is a solution of the equation:

1 = x2 + 2x3 + · · · + (s − 2) · xs−1 + · · · = x2/(1 − x)2.

Consequently, 1/q(+∞) = 0.5 and q(+∞) = 2.
This limit can be calculated also ina different way. The number q(4) is

the positive root of the equation

−x3 + x + 2 = x + (2 − x3) = 0,
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so 2 − q(4)3 < 0 and for s ≥ 4 we have q(s) >
3
√

2.

Now, from the equation −q(s)s+1 + 2q(s)s − (s − 1) · q(s) + s − 2 = 0 we
obtain and evaluate

0 < 2 − q(s) =
(s − 1) · q(s) − s + 2

q(s)s
<

(s − 1) · 2 − s + 2

2s/3
=

s

2s/3
→ 0.

This gives us the value of the required limit. Lemma 5 is proved. �

Let F (s) = max(6) F (α1, . . . , αs) and αi(s), i = 1, . . . , s, be the extreme
values of the variables.

Lemma 6.

(1) lim
s→+∞

F (s) = 4;

(2) 3 = F (3) < · · · < F (s) < F (s + 1) < · · · < 4;

(3) lim
s→+∞

αi(s) = 2−i.

P r o o f. According to Lemma 5, lim
s→+∞

q(s) = 2, and by Lemma 4:

αs(s) =
q(s) − 1

q(s)s − 1
, αi(s) = q(s)s−i · αs(s), F (s) = q(s)2−s · αs(s)

−1.

(1) Then

lim
s→+∞

F (s) = lim
s→+∞

q(s)2

q(s) − 1
· q(s)s − 1

q(s)s
= lim

q→2

q2

q − 1
= 4.

(2) By Corollary 1, the sequence F (s) strictly increases. Therefore it
holds:

sup
s≥0

F (s) = lim
s→+∞

F (s) = 4.

(3) Using part 1, we deduce

lim
s→+∞

αi(s) = lim
s→+∞

q(s) − 1

q(s)i
· q(s)s

q(s)s − 1
= lim

q→2

q − 1

qi
= 2−i.

Lemma 6 is proved. �

Now the proposition from the previous section follows from Lemmas 2–6.
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5. On the algebraicity of exponents.
Remark. According to Lemma 4, F (s) is algebraic. As we have already

proved, F (3) = 3. Using linear algebra or the Gröbner elimination of variables we
can show that F (4) ≈ 3.61 . . . and F (5) ≈ 3.83 . . . are roots of the polynomials

4x3 − 11x2 − 8x − 16 and 27x4 − 94x3 − 15x2 − 50x − 125, respectively.

For larger s the algebraic expression for F (s) is less elementary. For example,
F (6) ≈ 3.92 . . . is a root of

256x5 − 1077x4 + 360x3 − 108x2 − 432x − 1296.

An explicit equation for F (s), for all s > 3, can be found using the idea
of the Cayley-Hamilton theorem:

Lemma 7. Let q ∈ Φ be a root of the polynomial P (x) ∈ Φ[x] of degree
d and let r = R(q), where R(x) ∈ Φ[x]. Then

(1) r is algebraic over Φ of degree not greater than d;

(2) r is a root of the characteristic polynomial of the linear operator of multi-
plication by R(x) in the algebra Φ[x]/(P (x));

(3) if P (x) = P1(x) · P2(x) is a product of two nontrivial relatively prime poly-
nomials over Φ, then the characteristic polynomial (from the previous item)
is reducible.

P r o o f. (1) The powers Ri(x), i = 0, . . . , d are linearly dependent modulo
P (x). Therefore, there exists a nontrivial linear combination:

a0 · R0(x) + · · · + ad · Rd(x) = P (x) · S(x), where S(x) ∈ Φ[x]

with ai ∈ Φ. Hence

a0 · r0 + · · · + ad · rd = a0 · R0(q) + · · · + ad · Rd(q) = P (q) · S(q) = 0,

and r is a root of the polynomial a0 · x0 + · · · + ad · xd.

(2) Let ϕ be the linear operator of multiplication by R(x) in the algebra
Φ[x]/(P (x))

ϕ(T (x)) = R(x) · T (x) (mod P (x)), T (x) ∈ Φ[x],
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and let χϕ(t) = det(ϕ − Id ·t) be its characteristic polynomial. By the Cayley-
Hamilton theorem we have:

χϕ(ϕ) = 0 : χϕ(R(x)) = χϕ(R(x)) · 1 = 0 (mod P (x)).

So there is an S(x) ∈ Φ[x], such that χϕ(R(x)) = P (x) · S(x) and

χϕ(r) = χϕ(R(q)) = P (q) · S(q) = 0.

(3) According to the Chinese Remainder Theorem,

Φ[x]/(P (x)) ∼= Φ[x]/(P1(x)) ⊕ Φ[x]/(P2(x)).

Consequently, over the field Φ there is a decomposition:

χϕ(t) = χϕ1(t) · χϕ2(t),

where ϕi is the operator of multiplication by R(x) in the algebra Φ[x]/(Pi(x)).
Lemma 7 is proved. �

Calculation. Now we shall find a polynomial with integer coefficients,
which annihilates F (s), s ≥ 4. First we take the polynomials from Lemma 4

P (x) = (x − 1)2 ·
s∑

i=1

(i − 2) · xs−i = −xs+1 + 2xs − (s − 1) · x + s − 2,

R(x) = xs−2 · (2 − x).

We write the matrix of the operator of multiplication by R(x) in the algebra
Φ[x]/(P (x)) with respect to the basis {1, x, . . . , xs}. It has a regular diagonal
form

Aϕ,s =




0 0 2 − s 0 0 . . . . . . . . . 0

0 0 s − 1 2 − s 0
. . . . . . . . . 0

0 0 0 s − 1 2 − s
. . .

. . . . . . 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0 s − 1 2 − s 0 0

0 0
. . .

. . .
. . . 0 s − 1 2 − s 0

2 0 0
. . .

. . .
. . . 0 s − 1 2 − s

−1 2 0 0
. . .

. . .
. . . 0 s − 1

0 −1 0 0 0
. . .

. . .
. . . 0




.
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This (s + 1) × (s + 1) matrix has a similar form for s = 4

Aϕ,4 =




0 0 −2 0 0
0 0 3 −2 0
2 0 0 3 −2

−1 2 0 0 3
0 −1 0 0 0




.

The characteristic polynomial of ϕ has the form

χϕ,s(t) = det




A 0 C . . . 0 0 0
0 A B . . . 0 0 0
0 0 A . . . 0 0 0
...

...
...

. . .
...

...
...

2 0 0 . . . A B C
−1 2 0 . . . 0 A B

0 −1 0 . . . 0 0 A




, where





A = −t
B = s − 1
C = 2 − s

.

We compute it, expanding the determinant along the rows (or the columns)
containing not more than 2 non-zero elements. When s ≥ 5, we obtain

χϕ,s(t) = (−1)sA · ∆(s − 1) + 2(−1)sA2 · ∆(s − 2) + (−1)s−1A2C · ∆(s − 3)

+ 2(−1)s−1A3C · ∆(s − 4) + As+1 + Cs−2(4A + 2B + C).

Here ∆(n) denotes the determinant of the regular n × n matrix of the form

∆(n) = det




B C . . . 0 0
A B . . . 0 0
...

...
. . .

...
...

0 0 . . . B C
0 0 . . . A B




.

It is defined by the recurrence relation

∆(n) = B ·∆(n− 1)−AC ·∆(n− 2): ∆(0) = 1, ∆(1) = B, ∆(2) = B2 −AC.

Hence we obtain an expression for the generating function of the sequence (∆(n))

(1 − B · z + AC · z2) ·
∑

n≥0

∆(n) · zn = ∆(0) + (∆(1) − B · ∆(0)) · z
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+
∑

n≥2

(∆(n) − B · ∆(n − 1) + AC · ∆(n − 2)) · zn = 1.

Consequently,

∑

n≥0

∆(n) · zn =
1

(1 − B · z + AC · z2)
=

1

(1 − z · (B − AC · z))

=
∑

k≥0

zk · (B − AC · z)k =
∑

k≥0

zk ·
k∑

m=0

(
k

m

)
· zm · (−AC)m · Bk−m

=
∑

k≥0

k∑

m=0

zk+m ·
(

k

m

)
· (−AC)m · Bk−m

=
∑

n≥0

zn ·
[n/2]∑

m=0

(
n − m

m

)
· zm · (−AC)m · Bn−2m.

Hence we obtain the following explicit expression for ∆(n)

∆(n)=

[n/2]∑

m=0

(
n−m

m

)
·zm·(−AC)m·Bn−2m=

n∑

m=0

(
n−m

m

)
·zm·(−AC)m·Bn−2m.

Here we have assumed that
(

k

m

)
=

k · (k − 1) · . . . · (k − m + 1)

m!
= 0, for integers 0 ≤ k < m.

In particular,
(

s − m

m

)
= 0 for the integer s with s ≥ m > [s/2] ≥ 0.

We now return to the expression for χϕ,s(t). Using the above recursion,
we find the formula which holds also for s ≥ 4

χϕ,s(t) = As+1 + Cs−2 · (4A + 2B + C) + (−1)sA · (4A + B) · ∆(s − 2)

+ (−1)s−1A2 · ∆(s − 3).

Substituting the value of ∆(n) and the expressions for A, B, C, after some
simplifications, we have an expression:

χϕ,s(t) = (−t)s+1 + (2 − s)s−2 · (s − 4t)
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− (−1)st · s ·
∑

0≤m≤[s/2]

tm ·
(

s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m)(s − m − 1)
.

The number q(s)s−2 · (2 − q(s)) is a root of the polynomial (−1)s+1 · χϕ,s(t)

(s − 2)s−2·(4t − s) + t·s ·
∑

0≤m≤[s/2]

tm·
(

s − m

m

)
·(2 − s)m·(s − 1)s−2m

(s − m)(s − m − 1)
+ ts+1.

According to Lemma 7, this polynomial has another double root corresponding
x = 1

t = 1s−2 · (2 − 1) = 1.

To get rid of the factor (t − 1)2 in (−1)s+1 · χϕ,s(t), we need preliminary
combinatorial formulas.

Lemma 8. The following formulas hold for s ≥ 4, but some of them are
true after reductions for smaller s:

1)

(
s − m

m

)
=

4m

2s
·
∑

u≥0

(
s + 1

2u + 1

)
·
(

u

m

)
, and actually we have m ≤ u ≤ [s/2];

2)
∑

σ≥m≥0

(
σ − m

m

)
·
(

2 − s

(s − 1)2

)m

=
(s − 2)σ+1 − 1

(s − 3) · (s − 1)σ
;

3)
∑

s≥m≥0

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m =

(s − 2)s+1 − 1

s − 3
;

4)
∑

s>m≥0

m ·
(

s − m

m

)
· (2 − s)m · (s − 1)s−2m

s − m
=

(s − 2) · (1 − (s − 2)s−1)

s − 3
;

5)
∑

s>m≥0

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

s − m
=

(s − 2)s + 1

s
;

6)
s−2∑

m=0

m·(m − 1)·
(

s−m

m

)
· (2 − s)m·(s − 1)s−2m

(s − m)·(s − m − 1)
=

(s − 2)2·((s − 2)s−3 − 1)

s − 3
;
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7)
∑

s−1>m≥0

m ·
(

s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)
= −(s − 2)s−2 − 1;

8)
∑

s−1>m≥0

m·
(

s−m

m

)
·(2 − s)m·(s − 1)s−2m

s − m − 1
=

1 − (s − 2)s−2·(s2 − 3s + 1)

s − 3
;

9)
∑

s−1>m≥0

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

s − m − 1
= (s − 3) · (s − 2)s−2;

10)
∑

s−1>m≥0

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)
=

(s − 4) · (s − 2)s−2 − 1

s
.

P r o o f. 1) The binomial coefficients are involved in the series in two
variables

∑

s≥0

ys
s∑

m=0

(
s−m

m

)
xm =

∑

k,m≥0

(
k

m

)
xmyk+m =

∑

k≥0

yk
∑

m≥0

(
k

m

)
xmym

=
∑

k≥0

yk·(1+xy)k=
1

1−y−xy2
=

1

2
√

1+4x
·
(

1 +
√

1 + 4x

1− 1+
√

1+4x
2 y

− 1 −
√

1 + 4x

1−1−
√

1+4x
2 y

)

=
1√

1 + 4x
·
∑

s≥0

((
1 +

√
1 + 4x

2

)s+1

−
(

1 −
√

1 + 4x

2

)s+1
)

ys.

It follows

s∑

m=0

(
s−m

m

)
xm=

1√
1+4x

·
((

1 +
√

1 + 4x

2

)s+1

−
(

1 −
√

1 + 4x

2

)s+1
)

=
1

2s+1 ·
√

1 + 4x
·
∑

k≥0

(
s + 1

k

)
· (
√

1 + 4x)k · (1k − (−1)k)

=
1

2s·
√

1+4x
·
∑

u≥0

(
s + 1

2u + 1

)
·(
√

1+4x)2u+1 =
1

2s
·
∑

u≥0

(
s + 1

2u + 1

)
·(1 + 4x)u

=
1

2s
·
∑

u≥0

(
s + 1

2u + 1

)∑

m≥0

(
u

m

)
·4mxm =

1

2s
·
∑

m≥0

4mxm
∑

u≥0

(
s + 1

2u + 1

)
·
(

u

m

)
.
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The comparison of the coefficients of xm gives us the desired equality 1).

Note that these binomial coefficients are involved in the interesting series

∑

s≥m≥0

(
s − m

m

)
·(−1)m =

2√
3
· sin (s + 1)π

3
,

∑

s≥m≥0

(
s − m

m

)
= Fs,

where Fs are the Fibonacci numbers 1, 1, 2, 3, . . . .

To obtain the equality 2) we use the previous identity

σ∑

m=0

(
σ−m

m

)
·
(

2−s

(s−1)2

)m

=
∑

m≥0

4m

2σ
·
∑

u≥0

(
σ+1

2u+1

)
·
(

u

m

)
·
(

2−s

(s−1)2

)m

=
1

2σ
·
∑

u≥0

(
σ+1

2u+1

)
·
∑

m≥0

(
u

m

)
·
(

8−4s

(s−1)2

)m

=
1

2σ
·
∑

u≥0

(
σ+1

2u+1

)
·
(

1+
8−4s

(s−1)2

)u

=
1

2σ
·
∑

u≥0

(
σ + 1

2u + 1

)
·
(

s − 3

s − 1

)2u

=
1

2σ
·s − 1

s − 3
·
∑

u≥0

(
σ + 1

2u + 1

)
·
(

s − 3

s − 1

)2u+1

=
1

2σ+1
·s − 1

s − 3
·
((

1 +
s − 3

s − 1

)σ+1

−
(

1 − s − 3

s − 1

)σ+1
)

=
(s − 2)σ+1 − 1

(s − 3)·(s − 1)σ
.

To prove 3) we use 2), assuming that σ = s

s∑

m=0

(
s−m

m

)
·(2−s)m·(s−1)s−2m=(s−1)s·

s∑

m=0

(
s−m

m

)
·
(

2−s

(s−1)2

)m

=
(s − 2)s+1 − 1

s − 3
=

s∑

k=0

(s − 2)k.

Similarly, to prove 4) we use 2) for σ = s − 2

∑

s>m≥0

m

s − m
·
(

s − m

m

)
· (2 − s)m · (s − 1)s−2m

=
∑

s>m≥1

(
s − m − 1

m − 1

)
· (2 − s)m · (s − 1)s−2m

= (s − 1)s−2 · (2 − s) ·
∑

s−1>m≥0

(
s − 2 − m

m

)
·
(

2 − s

(s − 1)2

)m



236 O. A. Bogdanchuk, S. P. Mishchenko, A. B. Verëvkin

=
(s − 2) · (1 − (s − 2)s−1)

s − 3
.

To prove 5) we use the formulas 3) and 4), and the equality

1

s − m
=

1

s
·
(

1 +
m

s − m

)
.

The identity 6) is similar to 4), with the additional substitution σ = s−4.
To prove 7) we use the formulas 4) and 6), if we observe that

m

(s − m) · (s − m − 1)
=

1

s − 2
·
(

m

s − m
+

m · (m − 1)

(s − m) · (s − m − 1)

)
.

To prove 8) we use the formula 6) and 7), applying the equality

m

s − m − 1
= (s − 1) · m

(s − m) · (s − m − 1)
− m · (m − 1)

(s − m) · (s − m − 1)
.

To prove 9) we use the formulas 3) and 8), and the equality

1

s − m − 1
=

1

s − 1
·
(

1 +
m

s − m − 1

)
.

The identity 10) follows from 5) and 9), due to the equality:

1

(s − m) · (s − m − 1)
=

1

s − m − 1
− 1

s − m
.

This completes the proof of the lemma. �

We use the above results to remove the factor (t−1)2 from the polynomial
(−1)s+1 · χϕ,s(t)

P (t) =
(−1)s+1 · χϕ,s(t)

(t − 1)2
= (−1)s+1 · χϕ,s(t) ·

∑
k≥0

tk · (k + 1)

= −s · (s − 2)s−2 ·
∑

k≥0
tk·(k + 1) + 4 · (s − 2)s−2 ·

∑
k≥0

tk+1·(k + 1)

+
∑

k≥0

tk·(k + 1) ·
∑[s/2]

m≥0
tm+1 · s ·

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

+
∑

k≥0
tk+s+1·(k + 1) = −

∑
k≥0

tk·(k + 1) · s · (s − 2)s−2
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+
∑

k≥1
4 · tk · k · (s − 2)s−2 +

∑
k≥s

tk · (k − s)

+
∑

k≥1

∑[s/2]

m=0
tk+m · k · s ·

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

= −s · (s − 2)s−2 +
∑

k≥1
tk·(s − 2)s−2·(4·k − s·(k+1)) +

∑
k≥s

tk·(k−s)

+
∑

k≥1

tk · s ·
min([s/2], k)∑

m=0

(k − m) ·
(

s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

= −s · (s − 2)s−2 +
∑

k≥1
tk·(s − 2)s−2·(4·k − s·(k+1)) +

∑
k≥s

tk·(k−s)

+
∑[s/2]

k=1
tk · s ·

∑k

m=0
(k − m) ·

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

+
∑

k>[s/2]
tk · s ·

∑[s/2]

m=0
(k − m) ·

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

= −s · (s − 2)s−2 +
∑[s/2]

k=1
tk ·
(

(s − 2)s−2 · (4·k − s·(k + 1))

+ s ·
∑k

m=0
(k − m) ·

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

)

+
∑s−1

k>[s/2]
tk ·
(

(s − 2)s−2 · (4·k − s·(k + 1))

+ s ·
∑[s/2]

m=0
(k − m) ·

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

)

+
∑

k≥s
tk ·
(

(s − 2)s−2 · (4·k − s·(k + 1)) + k − s

+ s ·
∑[s/2]

m=0
(k − m) ·

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

)
.

Corollary 2. The number q(s)s−2 · (2− q(s)) is a root of the polynomial

P (t) = −s · (s − 2)s−2 +
∑[s/2]

k=1
tk ·
(

(s − 2)s−2 · ((4 − s)·k − s)
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+ s ·
∑k

m=0
(k − m) ·

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

)

+
∑s−1

k>[s/2]
tk · (s − k) .

And, finally, the exponent of F (s) = s/(q(s)s−2 · (2 − q(s))) is a root of
the polynomial xs−1 · P (s/x)/s obtained from the polynomial P (t) given above
by the substitution x = s/t:

(s − 2)s−2 · xs−1 −
∑[s/2]

k=1
xs−1−k · sk−1 ·

(
(s − 2)s−2 · ((4 − s)·k − s)

+ s ·
∑k

m=0
(k − m) ·

(
s − m

m

)
· (2 − s)m · (s − 1)s−2m

(s − m) · (s − m − 1)

)

−
∑s−1

k=[s/2]+1
xs−1−k · sk−1 · (s − k) .
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Mat. Zh. 25, 3 (1984), 40–54 (in Russian); English translation: Siberian
Math. Journal 25 (1984), 370–382.

[17] M. V. Zaicev. Integrality of exponents of codimension growth of finite-
dimensional Lie algebras. Izv. RAN. Ser. Mat. 66, 3 (2002), 23–48 (in
Russian); English translation in: Izv. Math. 66, 3 (2002), 463–487.

[18] M. V. Zaicev, S. P. Mishchenko. The polynomial growth of the colength
of varieties of Lie algebras. Algebra i Logika 38 (1999), 161–175 (in Russian);
English translation in: Algebra Logic 38 (1999), 84–92.

[19] M. V. Zaicev, S. P. Mishchenko. An example of a variety of Lie algebras
with a fractional exponent. J. Math. Sci. (New York). 93, 6 (1999), 977–982.

Department of Algebraic and Geometric Computations

Ulyanovsk State University

Ulyanovsk, 432970, Russia

e-mail: bogdanchuk o a@mail.ru

mishchenkosp@mail.ru

abverevkin@gmail.com Received March 29, 2013


