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Abstract. This paper discusses the problem of boundedness and com-
pactness for weighted composition operators defined on a Müntz subspace
of L1([0, 1]). We compute the essential norm of such operators when the
symbol ϕ of the composition operator satisfies a special condition (condi-
tion (B)). As a corollary, we obtain the exact values of essential norms of
composition and multiplication operators. This completes the correspond-
ing results of the first named author in the framework of Müntz subspaces
of C([0, 1]).

1. Introduction and notations. Throughout the paper, L1 =
L1([0, 1]) denotes the Banach space of complex-valued measurable functions on

[0, 1] with the norm ‖f‖1 =

∫ 1

0
|f(x)|dx < ∞. In the whole paper ϕ denotes a

measurable self-map of [0, 1], we set Eϕ = ϕ−1({1}). The composition operator
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Cϕ is defined by Cϕ(f) = f ◦ ϕ. Given ψ ∈ L∞([0, 1]), we shall also consider the
multiplication operator Tψ defined by Tψ(f) = f · ψ.

The essential norm of an operator T is its distance to the space of compact
operators and is denoted by: ‖T‖e = inf ‖T − S‖ where S runs over the class of
compact operators.

Let Λ be an increasing sequence of positive numbers satisfying
∑

λ∈Λ

1/λ <

∞ and consider the closed space M1
Λ, spanned by the monomials 1 and xλ, where

λ ∈ Λ. By the famous theorem of Müntz, M1
Λ is not all of L1. Except in Prop.2.1.

stating Müntz’s theorem, we shall assume that the condition
∑

λ∈Λ

1/λ < ∞ is

fulfilled.

In this paper, we show that for functions ϕ satisfying some specific condi-
tions (for instance condition (B), see definition below), the composition operator
Cϕ from M1

Λ to L1 is well-defined. Under that condition, our main result gives
a precise estimate of the essential norm of Tψ ◦ Cϕ acting on M1

Λ in terms of the
values of ϕ and ψ. As a corollary we deduce the exact value of the essential norm
of Cϕ acting on M1

Λ, and that the essential norm of Tψ (associated to a function
ψ, continuous at point 1) acting on M1

Λ is |ψ(1)|.

To know more on the geometry of Müntz spaces, see the monographs of
Gurariy and Lusky [9], P. Borwein and T. Erdélyi [4] (see also [1, 2]).

The present work extends some results of the first named author [3].
Several papers appeared recently related to this topic: let us mention [2], [5],
[8] and more recently [13]. It is worth mentioning especially the results of [5]:
the authors obtain there some interesting and sharp results in the framework of
L1, but in a slightly different direction (they study Carleson’s type embeddings).
Hence these results are rather distinct from ours, although some of the results of
[3] are partially recovered in [5].

2. Preliminary results. In this section we recall some properties of the
geometry of Müntz spaces, which we shall use later. We list them as propositions.

The Müntz spaces have appeared naturally posterior to Müntz’s theorem in 1914
(see [12]) which characterizes a sequence Λ = (λn)n so that the closed span M∞

Λ

of the monomials 1, xλ, where λ ∈ Λ, is not all of C([0, 1]). The next proposition
is an L1 version of the Müntz Theorem.

Proposition 2.1 ([9, p. 180]). Let Λ = (λk)
∞
k=0, where 0 = λ0 <

λ1 < · · · , be an increasing sequence of nonnegative real numbers.
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Then the Müntz space M(Λ) = span{xλk : k = 0, 1, . . . }, associated to Λ,
is a dense subset of L1 if and only if

∞
∑

k=1

1

λk
= ∞.

Moreover, if
∞
∑

k=1

1/λk <∞ and if λ /∈ Λ, then xλ /∈M1
Λ.

Thanks to this result and since our framework is Müntz proper subspaces

of L1, we shall assume in the sequel of the paper that the condition
∑

λ∈Λ\{0}

1/λ <

∞ is fulfilled.

The next proposition due to Clarkson and Erdös [6] (see also [9], p.81)
and Schwartz [15, 16], gives us a characterization of Müntz spaces which reveals
both the originality and richness of these spaces, see also [7] for the full version
of this proposition.

Proposition 2.2 ([6, 15, 16]). Assume the gap condition inf{λk+1 −λk :
k ∈ N} > 0 holds. Then, for every function f ∈ L1 we have:

The function f belongs to M1
Λ if and only if there exists a sequence (ak)k∈N

such that, for every x ∈ [0, 1), we have f(x) =

∞
∑

k=0

akx
λk .

If the gap condition does not hold, then every function f ∈ L1 belonging
to the closure of span{xλk ; k = 0, 1, . . . } can still be represented as an analytic
function on {z ∈ C \ (−∞, 0] : |z| < 1} restricted to (0, 1).

Note that the preceding two propositions are still valid for M∞
Λ (respec-

tively Mp
Λ, 1 ≤ p < ∞) the closure of M(Λ) in C[0, 1] (respectively Lp[0, 1]) and

were first proved for the case of M∞
Λ .

In the sequel, we shall write ‖p‖K = sup
t∈K

|p(t)|, where K ⊂ [0, 1) is com-

pact.

Proposition 2.3 (See [4, p. 185, E.8.a]). For every ε ∈ (0, 1), there is a
constant γ(ε,Λ) depending only on ε and (λi)

∞
i=0 such that

‖p‖[0,1−ε] ≤ γ(ε,Λ)

∫ 1

1−ε
|p(x)|dx

for every p ∈ span{xλ0, xλ1 , . . . }.
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Proposition 2.3 (Bounded Bernstein-Type Inequality. See [4, p. 178,
E.3.d.]). For every ε ∈ (0, 1), there is a constant cε depending only on ε, and
(λi)

∞
i=0 (but not on the number of terms in p) such that

‖p′‖[0,1−ε] ≤ cε‖p‖L1

for every p ∈ span{xλ0, xλ1 , . . . }.

Actually the version given in [4] uses a majorization with ‖p‖L2
. Never-

theless, it is easy to adapt the proof to obtain the version given above.
Combining Proposition 2.3 and the Arzela-Ascoli theorem (see, for exam-

ple, [14]), we deduce the next useful corollary.

Corollary 2.5. Given a sequence (fn)n≥1 in the unit ball of M1
Λ, there is

a subsequence of (fn)
∞
n=1 uniformly converging on every compact subset of [0, 1).

P r o o f. Let (fn)
∞
n=1 ⊂ span{xλ0 , xλ1 , . . . } such that ‖fn‖1 ≤ 1. Let

ε > 0. By the preceding proposition, (fn)n is bounded and equicontinuous on
[0, 1 − ε]. Then by the Arzela-Ascoli theorem, it has a uniformly convergent
subsequence on [0, 1 − ε].
By induction, we construct infinite sets Sn of integers, N ⊃ S1 ⊃ S2 ⊃ · · · , such

that (fn)n converges uniformly on

[

0, 1 −
1

j

]

when n→ ∞ in Sj. Now using the

diagonal process, we obtain an infinite set S such that (fn)n converges uniformly
on every compact subset of [0, 1[ when n→ ∞ in S. �

Corollary 2.6. Let (fn)
∞
n=1 ⊂ M1

Λ be a convergent sequence to f , then
(fn)n converges uniformly to f on every compact subset of [0, 1[.

3. Bounded operators. In this section, we consider the composition
operators defined on Müntz spaces M1

Λ. Recently (see [2]), the first named author
studied these operators acting on M∞

Λ and gave a precise estimate of the essential
norm of weighted composition operators acting on M∞

Λ in terms of the values of
ϕ and ψ (see Theorem 5.1, [2]). A wide literature is interested in these opera-
tors. They were studied in the case of Banach spaces like Hardy spaces, Bergman
spaces, Bergman-Orlicz spaces and Hardy-Orlicz spaces studied in [10],[11]. We
are interested in the continuity, compactness and the computation of essential
norm of these operators.

In general a composition operator does not map a Müntz space into itself
(actually, except in very special cases, it nearly never happens). For this reason
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we shall consider operators from Müntz spaces to the whole space L1([0, 1]). It
turns out that a Müntz space is mapped (via a composition operator) into another
Müntz space. This phenomenon is specified in [2] (see Lemma 3.1, 3.2, 3.3 and
Theorem 3.4). These results were proved for Müntz spaces M∞

Λ but are still valid
on M1

Λ.

We first give some simple examples of smooth functions ϕ with various
behavior.

Example 3.1. If ϕ is C1-diffeomorphism from [0, 1] (onto itself), the
operator Cϕ is bounded and satisfies:

‖Cϕ(f)‖1 ≤ ‖1/ϕ′‖∞‖f‖1 and ‖Cϕ(f)‖1 ≥
‖f‖1

‖ϕ′‖∞
·

Clearly Cϕ is not a compact operator.

Example 3.2. Let ϕ0(t) = 1 − t. Then Cϕ0
is an isometry. Indeed:

‖Cϕ0
(f)‖1 =

∫ 1

0
|f(1 − t)| dt =

∫ 1

0
|f(u)|du = ‖f‖1

(we could also observe that this follows from the preceding remark as well).

Proposition 3.3. If Cϕ : MΛ → L1 is well defined on M 1
Λ , then

mϕ({1}) = 0, where mϕ is the pull back measure of the Lebesgue measure m
associated to ϕ.

P r o o f. Consider the function f(x) =

∞
∑

n=1

xλn . Thanks to the Müntz

condition on Λ, we have

∞
∑

n=1

‖xλn‖1 =

∞
∑

n=1

1

λn + 1
<∞

hence f ∈M1
Λ.

Suppose that Cϕ : M 1
Λ 7→ L 1, then ‖Cϕ(f)‖1 < ∞. On the other hand,

we have

‖Cϕ(f)‖1 ≥

∫

{ϕ−1({1})}

∞
∑

n=1

ϕ(x)λndx = ∞.mϕ({1}).

This requires that mϕ({1}) = 0. �
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Generally, the condition mϕ({1}) = 0 is not sufficient. In fact, even the
condition cardϕ−1({1}) <∞ is not sufficient to get that Cϕ is well-defined: this
follows from Example 3.7 and Lemma 3.6.

Lemma 3.4. Let ϕ : [0, 1] −→ [0, 1] be measurable and Cϕ : M1
Λ −→ L1,

then Cϕ is bounded as soon as Cϕ is defined.

P r o o f. We shall prove that the graph of Cϕ is closed.
Let (f, h) belonging to the closure of the graph of Cϕ. There exists a sequence
(fj)j ⊂ M1

Λ such that (fj)j converges to f and (Cϕ(fj))j converges to h. Ac-
cording to the Corollary 2.6, (fj)j converges uniformly to f on every compact
subset of [0, 1[, which implies that (Cϕ(fj)(x))j converges to Cϕ(f)(x) for every
x ∈ ϕ−1([0, 1[). From the above (Proposition 3.3), m(ϕ−1{1}) = 0, hence (fj◦ϕ)j
converges to f ◦ϕ almost everywhere on [0, 1]. Therefore h = f ◦ϕ (in the space
L1) and the graph of Cϕ is closed. �

Lemma 3.5. Let ϕ : [0, 1] −→ [0, 1] be measurable.
Let us assume that ‖ϕ‖∞ < 1. Then Cϕ : M1

Λ −→ L∞([0, 1]) ⊂ L1([0, 1])
is nuclear.

P r o o f. The crucial point is the following. Thanks to the Clarkson-Erdös
theorem, every function f ∈M1

Λ admits a Taylor expansion

f(x) =
∑

n≥0

αn(f)xλn

where x ∈ [0, 1) and αn(f) is uniquely defined.
Let us fix n ∈ N. The functional αn : f ∈M1

Λ −→ αn(f) ∈ C is bounded:
for instance, thanks to the heart of the proof of the Clarkson-Erdös theorem, for
each t ∈ [0, 1), there exists some Ct > 0 such that |αn(f)|tλn ≤ Ct‖f‖1 for every
n ∈ N and every f ∈ M1

Λ. In particular, fixing t ∈
(

‖ϕ‖∞, 1
)

, there exists C > 0

such that for every n ∈ N: |αn(f)| ≤ C‖f‖1t
−λn .

Now, we can write: Cϕ(f) =
∑

n≥0

αn(f)ϕλn with

∑

n≥0

‖αn‖(M1

Λ
)∗‖ϕ

λn‖∞ ≤
∑

n≥0

C

(

‖ϕ‖∞
t

)λn

<∞. 2

Lemma 3.6. Let ϕ : [0, 1] −→ [0, 1] such that the composition operator
Cϕ maps M1

Λ to L1. Assume that ϕ(α) = 1 where α ∈ [0, 1].

a. If α ∈ [0, 1) then lim sup
t→α

t>α

1 − ϕ(t)

t− α
> 0.
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b. If α ∈ (0, 1] then lim sup
t→α
t<α

1 − ϕ(t)

α− t
> 0.

c. In particular ϕ is differentiable at no point of ϕ−1({1}) ∩ (0, 1).

P r o o f. We only have to prove the first item (the second is similar and
the last one easily follows from a. and b.).

Assume that the conclusion does not hold: for every ε ∈ (0, 1) there exists
a ∈ (α, 1) such that

∀t ∈ (α, a) 1 − ϕ(t) ≤ ε(t− α).

Then for every integer j ≥ 1, we have

‖Cϕ‖ ≥

∫ 1

0
(λj + 1)|ϕ(x)|λj dx ≥

∫ a

α

(λj + 1)
(

1 − ε(x− α)
)λj dx

=
1

ε

(

1 −
(

1 − ε(a− α)
)λj+1

)

.

For j large enough we get ‖Cϕ‖ ≥
1

2ε
which contradicts the hypothesis of bound-

edness of Cϕ. �

Example 3.7. The following remark shows that some simple smooth
maps ϕ do not necessarily define a bounded operator Cϕ on M1

Λ. For instance,
the operator associated to the symbol ϕ(x) = 1 − (1 − x)2 does not induce a
bounded operator: ϕ “touches” the “delicate” end point 1 only when x = 1 (but
too smoothly since ϕ′(1) = 0).

Remark 3.8. Let ϕ : [0, 1] −→ [0, 1] be a differentiable function.
Assume that Cϕ : M1

Λ −→ L1 is bounded. Then

ϕ−1({1}) ⊂ {0, 1} with [ϕ(x0) = 1 =⇒ ϕ′(x0) 6= 0].

Indeed, since Cϕ is a bounded operator and 1 belongs to the range of ϕ,
the first conclusion follows from Lemma 3.6.

In the sequel, we concentrate our attention on weighted composition op-
erators with a specific condition which shall ensure the boundedness of the asso-
ciated composition operators.

Let us precise our framework. In the sequel, for convenience, we recall
that we denote ϕ−1({1}) by Eϕ. The following condition on ϕ is a smoothness
condition.
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Definition 3.9. Let ϕ : [0, 1] −→ [0, 1] be a measurable function. We
say that ϕ satisfies condition (R), if

• For every x ∈ ϕ−1({1}), the (restricted) functions ϕ|[x,1) and ϕ|(0,x] are C1

at the point x, with ϕ′
l(x) > 0 and ϕ′

r(x) < 0

• supϕ(K) < 1 for every closed subset K of [0, 1] \Eϕ, where K = [0, 1] \Ω,

with Ω =
⋃

ϕ(x)=1

(x− εx, x+ εx),

where ϕ′
r(x) and ϕ′

l(x) stand for the right and left derivative of ϕ at the point x.

The first condition implies that the set Eϕ is a discrete subset of the com-
pact [0, 1], hence is at most countable (finite when ϕ is continuous). A fortiori, it
has zero Lebesgue measure, which is a necessary condition to ensure boundedness
(recall Proposition 3.3).

On the other hand, when ϕ is continuous the second condition is clearly
irrelevant.

The next Theorem gives a characterization (under condition (R)) to ob-
tain a bounded weighted composition operators on Müntz subspaces of L1. We
shall use the following function, associated to ϕ, verifying

L(x) =











































1

ϕ′
l(x)

+
1

|ϕ′
r(x)|

if x ∈ Eϕ∩]0, 1[

1

ϕ′
l(1)

if x = 1 ∈ Eϕ

1

|ϕ′
r(0)|

if x = 0 ∈ Eϕ.

Theorem 3.10. Let ϕ : [0, 1] −→ [0, 1] satisfying condition (R) and
ψ ∈ L∞ which is continuous at each point of Eϕ. Then

Tψ ◦ Cϕ : M1
Λ −→ L1 is bounded if and only if

∑

x∈Eϕ

|ψ(x)|L(x) converges.

P r o o f. Let us first assume the boundedness of Tψ ◦ Cϕ. The sequence
((λn+1)xλn)n belongs to the unit ball of M1

Λ. For each x ∈ Eϕ∩ (0, 1), according
to condition (R), and the continuity of ψ at x, there exists εx > 0 such that
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0 < ϕ′(t) < 2ϕ′
l(x) for every t ∈ [x − εx, x] ; 0 < |ϕ′(t)| < 2|ϕ′

r(x)| for every

t ∈ [x, x + εx] and |ψ(t)| ≥
1

2
|ψ(x)| for every t ∈ [x − εx, x + εx]. Moreover, we

can assume that the intervals [x− εx, x+ εx] are (pairewise) disjoint.

Fix a finite subset E of Eϕ ∩ (0, 1). Then we have

‖(λn + 1)ψ.ϕλn‖1 ≥
∑

x∈E

∫ x+εx

x−εx

(λn + 1)ϕ(t)λn |ψ(t)| dt

≥
∑

x∈E

1

2
|ψ(x)|

∫ x+εx

x−εx

(λn + 1)ϕ(t)λndt

≥
∑

x∈E

|ψ(x)|

(

1

4ϕ′
l(x)

∫ x

x−εx

(λn + 1)ϕ(t)λnϕ′(t)dt

+
1

4|ϕ′
r(x)|

∫ x+εx

x

(λn + 1)ϕ(t)λnϕ′(t)dt

)

≥
∑

x∈E

|ψ(x)|

(

1

4ϕ′
l(x)

(

1 − ϕ(x− εx)
λn+1

)

+
1

4|ϕ′
r(x)|

(

1 − ϕ(x+ εx)
λn+1

)

)

.

Letting n going to the infinity, we obtain

‖Tψ ◦ Cϕ‖ ≥
∑

x∈E

|ψ(x)|

(

1

4ϕ′
l(x)

+
1

4|ϕ′
r(x)|

)

.

Since E is arbitrary, we have the conclusion.

Now, we suppose that
∑

x∈Eϕ

|ψ(x)|L(x) converges. By assumption, for

every x ∈ Eϕ, there exists εx ∈ (0, 1/2) such that

∀t ∈ (x− εx, x) ∩ [0, 1] ,
ϕ′
l(x)

2
≤ ϕ′(t) ≤ 2ϕ′

l(x)

and

∀t ∈ (x, x+ εx) ∩ [0, 1] ,
ϕ′
r(x)

2
≥ ϕ′(t) ≥ 2ϕ′

r(x).

We fix a summable (countable) family of positive numbers ux, indexed by
Eϕ and write Ax = ux(ϕ

′
l(x) + |ϕ′

r(x)|) > 0.
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Let Ω =
⋃

x∈Eϕ

(x−εx, x+εx). We can choose εx small enough to ensure that

this is a union of disjoint subsets and that the oscillation of ψ on (x− εx, x+ εx)
is less than Ax. Now, K = [0, 1] \ Ω is a closed set disjoint from Eϕ, hence
M = maxϕ(K) < 1. Using Proposition 2.3, we obtain

‖ψ.Cϕ(f)‖1 ≤ ‖ψ‖∞.‖f‖[0,M ] +
∑

x∈Eϕ

(

∫ x+εx

x−εx

|ψ(t)|.|f(ϕ(t))| dt

)

≤ γ(M)‖ψ‖∞ ‖f‖1 +
∑

x∈Eϕ

(

2(|ψ(x)| +Ax)

ϕ′
l(x)

∫ 1

ϕ(x−εx)
|f(u)| du

+
2(|ψ(x)| +Ax)

|ϕ′
r(x)|

∫ 1

ϕ(x+εx)
|f(u)| du

)

.

Thus Tψ ◦ Cϕ is bounded and

‖Tψ ◦ Cϕ‖ ≤ γ(M)‖ψ‖∞ + 2
∑

x∈Eϕ

|ψ(x)|

(

1

ϕ′
l(x)

+
1

|ϕ′
r(x)|

)

+ 2
∑

x∈Eϕ

ux. 2

Let us mention that, without any assumption of continuity on ψ, a suffi-
cient condition for the boundedness of the weighted composition operator is that
ψ lies in L∞ and the boundedness of Cϕ (see the condition below).

Corollary 3.11. Let ϕ : [0, 1] −→ [0, 1] satisfying condition (R). Then

Cϕ : M1
Λ −→ L1 is bounded if and only if

∑

x∈Eϕ

(

1

ϕ′
l(x)

−
1

ϕ′
r(x)

)

converges.

Moreover, in this case,

(i) If ϕ−1({1}) is not empty then there exists some constants k1 and k2 > 0
such that k1‖f‖1 ≤ ‖Cϕ(f)‖1 ≤ k2‖f‖1.

(ii) Cϕ is compact if and only if Cϕ is nuclear if and only if ‖ϕ‖∞ < 1.

P r o o f. The first part obviously follows from Theorem 3.10.

Now, let us prove (i). Let us assume that x0 ∈ ϕ−1({1}) with x0 > 0 (else
it is easy to adapt the argument). There exists δ, ε0 > 0 such that 0 < ϕ′(x) < δ
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for every t ∈ (x0 − ε0, x0). We have

‖Cϕ(f)‖1 ≥

∫ x0

x0−ε0

|f(ϕ(t))|dt ≥
1

δ

∫ x0

x0−ε0

|f(ϕ(t))|ϕ′(t) dt

=
1

δ

∫ 1

ϕ(x0−ε0)
|f(y)| dy ≥

1

δ.γ(ϕ(x0 − ε0))
‖f‖1

thanks to Proposition 2.3.

The assertion (ii) is clear: if ‖ϕ‖∞ < 1, then Cϕ is bounded and nuclear,
thanks to Lemma 3.4. If Cϕ is nuclear, it is compact. Finally, if Cϕ is (bounded
and) compact, it clearly follows from (i) that ϕ−1({1}) must be empty, hence
ϕ([0, 1]) ⊂ [0, 1[, so ϕ([0, 1]) ⊂ [0, α] where α < 1. �

In the rest of the paper, our functions ϕ and ψ shall satisfy the following
condition, which ensures boundedness of the associated weighted composition
operator (thanks to Theorem 3.10):

Definition 3.12. Let ϕ : [0, 1] −→ [0, 1] be a measurable function. We
say that (ϕ,ψ) satisfies condition (B), if

• ϕ satisfies condition (R).

• ψ ∈ L∞ and is continuous at each point of Eϕ.

•
∑

x∈Eϕ

|ψ(x)|L(x) converges.

In the sequel, we shall simply say that ϕ satisfies condition (B) when
(ϕ, 1I) satisfies condition (B) (i.e. ψ = 1I).

4. Compact operators. We characterize the compactness of weighted
composition operators Tψ ◦ Cϕ whose associated symbols satisfy condition (B).

Theorem 4.1. Let (ϕ,ψ) satisfies condition (B).
Then the operator Tψ ◦Cϕ : M1

Λ −→ L1 is compact if and only if ψ|Eϕ
= 0.

By convention ψ|{∅} = 0.

P r o o f. Assume that ψ|Eϕ
= 0.

Let (fn)n ⊂ M1
Λ such that ‖fn‖1 ≤ 1. By Corollary 2.5, there is a

subsequence (fnk
)k that converges to f uniformly on every compact subset of
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[0, 1), where f belongs to the unit ball of M1
Λ. Then f ◦ ϕ is defined almost

everywhere on [0, 1], becausem(ϕ−1({1})) = 0 and f is defined almost everywhere
on [0, 1].

Let h = (f ◦ ϕ) · ψ. The function h is a well defined measurable function
on [0, 1]. We claim that ‖Tψ ◦ Cϕ(fnk

) − h‖1 → 0 when k → +∞, so that
h = lim

k→∞
Tψ ◦ Cϕ(fnk

) belongs to L1 and hence Tψ ◦ Cϕ is compact.

Indeed, let ε > 0. We can find a compact subset K of [0, 1]\Eϕ such that
|ψ|Kc| < ε. Then, writing A = supϕ(K) < 1:

‖Tψ ◦ Cϕ(fnk
) − h‖1 =

∫ 1

0
|fnk

(ϕ(x))ψ(x) − h(x)|dx

≤ ‖fnk
− f‖[0,A] · ‖ψ‖∞ + 2‖Cϕ‖ · sup

x∈Kc

|ψ(x)|

which implies that there exists some k0 ∈ N such that

‖Tψ ◦ Cϕ(fnk
) − h‖1 ≤ (1 + 2‖Cϕ‖)ε for every k ≥ k0

and thus ‖Tψ ◦ Cϕ(fnk
) − h‖1 → 0 when k → +∞.

Conversely, assume now that Tψ ◦ Cϕ is compact.

The sequence ((λn+1)xλn)n belongs to the unit ball ofM1
Λ, therefore there

exists h ∈ L1 and a subsequence nk such that lim
k→∞

‖Tψ◦Cϕ((λnk
+1)xλnk )−h‖1 =

0. Without loss of generality we may assume that (λnk
+ 1)ψϕλnk converges to h

almost everywhere (a.e.) on [0, 1]. Now, since ϕ(x) < 1 a.e. (and ψ is bounded)
we infer h(x) = 0 a.e. and therefore

∫ 1

0
(λnk

+ 1)ϕ(x)λnk |ψ(x)|dx −→
k→∞

0.

Let x0 ∈ Eϕ, so according to condition (B), and the continuity of ψ at x0, there

exists ε0 > 0 such that 0 < ϕ′(x) < 2ϕ′
l(x0) and |ψ(x)| ≥

1

2
|ψ(x0)| for all

x ∈ [x0 − ε0, x0] (if x0 = 0 we work on the right of x0). Then we have

∫ 1

0
(λnk

+ 1)ϕ(x)λnk |ψ(x)|dx ≥
1

2
|ψ(x0)|

∫ x0

x0−ε0

(λnk
+ 1)ϕ(x)λnk dx

≥
|ψ(x0)|

4ϕ′
l(x0)

∫ x0

x0−ε0

(λnk
+ 1)ϕ(x)λnkϕ′(x)dx.
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So we obtain,

∫ 1

0
(λnk

+ 1)ϕ(x)λnk |ψ(x)|dx ≥
|ψ(x0)|

4ϕ′
l(x0)

(

1 − ϕ(x0 − ε0)
λnk

+1
)

−→
k→∞

|ψ(x0)|

4ϕ′
l(x0)

.

This imposes ψ(x0) = 0. �

Corollary 4.2. Let ϕ : [0, 1] −→ [0, 1] satisfying the condition (B), and
ψ a continuous function. Then we have:

(1) Cϕ is compact on M1
Λ if and only if ‖ϕ‖∞ < 1.

(2) Tψ is compact on M1
Λ if and only ψ(1) = 0.

P r o o f. Applying Theorem 4.1 with ψ = 1I, we get Tψ ◦Cϕ = Cϕ and, Cϕ
is compact if and only if 1|Eϕ

= 0, equivalently Eϕ = ∅ equivalently ‖ϕ‖∞ < 1
which gives (1).

We now apply Theorem 4.1 with ϕ(x) = x to get Tψ ◦ Cϕ = Tψ and then Tψ is
compact if and only if ψ|Eϕ

= ψ|{1} = ψ(1) = 0 which proves (2). �

5. Essential norm. Recall that the essential norm of an operator
T : X → Y is

‖T‖e = inf
{

‖T − S‖ : S is a compact operator from X to Y
}

.

Clearly an operator is compact if and only if its essential norm vanishes.
The next result gives the exact value of the essential norm of the weighted

composition operator Tψ ◦ Cϕ. The estimation uses the functions fn(x) =
(λn + 1)xλn .

Theorem 5.1. Let (ϕ,ψ) satisfies condition (B). Then we have

‖Tψ ◦ Cϕ‖e = lim
n→∞

‖Tψ ◦ Cϕ(fn)‖1 =
∑

x∈Eϕ

|ψ(x)|L(x).

P r o o f. Let ε > 0. For every x ∈ Eϕ, there exists εx > 0 such that
(of course, if x = 0 or x = 1, we have to replace (x − εx, x + εx) by (0, ε0) or
(1 − ε1, 1)):
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(i) For every t ∈ (x− εx, x+ εx), we have |ψ(x) − ψ(t)| < ε.

(ii) For every t ∈ (x− εx, x), we have ϕ′(t) > 0.

(ii) For every t ∈ (x, x+ εx), we have ϕ′(t) < 0.

(iv) The intervals (x − εx, x + εx) (where x runs over Eϕ) are disjoints and
included in [0, 1].

For any x0 ∈ Eϕ, we write Jx0
= (x0 − εx0

, x0 + εx0
) ∩ [0, 1].

Let Ω =
⋃

x0∈Eϕ

Jx0
. This is an open subset of [0, 1]. The set K = [0, 1] \Ω

is compact and, thanks to condition (R), we have s = supϕ(K) < 1.

Step I. We first claim that lim
n→∞

‖Tψ ◦ Cϕ(fn)‖1 =
∑

x0∈Eϕ

|ψ(x0)|L(x0).

Indeed

‖Tψ ◦ Cϕ(fn)‖1 =

∫

K

|fn(ϕ(t))ψ(t)| dt +

∫

Ω
|fn(ϕ(t))ψ(x)| dt.

On K, some uniform majorizations give:

∫

K

|fn(ϕ(t))ψ(t)| dt ≤ ‖ψ‖∞sup
u≤s

|fn(u)|

and the right hand side converges to 0.

Next, we claim that

(1) lim
n→∞

‖Tψ ◦ Cϕ(fn)‖1 =
∑

x0∈Eϕ

lim
n→∞

∫

Jx0

fn(ϕ(t))|ψ(t)| dt

and that it suffices to show that, for each x0 ∈ Eϕ,

(2) lim
n→∞

∫

Jx0

|fn(ϕ(t))ψ(t)| dt = |ψ(x0)|L(x0).

We first give now the details for (2). Let x0 ∈ Eϕ \ {0, 1} (and the computation
easily adapts when x0 = 0 or 1): for every t ∈ Jx0

, we have

(1 − ε)|ψ(x0)| ≤ |ψ(t)| ≤ (1 + ε)|ψ(x0)|,
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which implies

(1 − ε)|ψ(x0)|

∫

Jx0

|fn(ϕ(t))| dt ≤

∫

Jx0

|fn(ϕ(t))ψ(t)| dt

≤ (1 + ε)|ψ(x0)|

∫

Jx0

|fn(ϕ(t))| dt.

Making on each (left-right) sub-interval of Jx0
the (natural) change of

variables, we have

∫

Jx0

|fn(ϕ(t))| dt =

∫ 1

ϕ(x0−δ)
(λn+1)uλn

du

ϕ′(ϕ−1(u))
−

∫ 1

ϕ(x0+δ)
(λn+1)uλn

du

ϕ′(ϕ−1(u))
,

but (1 − ε)ϕ′
l(x0) ≤ ϕ′(ϕ−1(u)) ≤ (1 + ε)ϕ′

l(x0) for every u ∈ [ϕ(x0 − δ), 1], and
−(1−ε)ϕ′

r(x0) ≤ −ϕ′(ϕ−1(u)) ≤ −(1+ε)ϕ′
r(x0) for every u ∈ [ϕ(x0 +δ), 1] hence

∫

Jx0

|fn(ϕ(t))| dt ≥
1

1 + ε

(

1

ϕ′
l(x0)

∫ 1

ϕ(x0−δ)
(λn + 1)uλndu

+
1

|ϕ′
r(x0)|

∫ 1

ϕ(x0+δ)
(λn + 1)uλndu

)

and

∫

Jx0

|fn(ϕ(t))| dt ≤
1

1 − ε

(

1

ϕ′
l(x0)

∫ 1

ϕ(x0−δ)
(λn + 1)uλndu

+
1

|ϕ′
r(x0)|

∫ 1

ϕ(x0+δ)
(λn + 1)uλndu

)

Collecting the quantities and letting n → ∞, we obtain that for n large
enough

1 − 2ε

1 + ε
|ψ(x0)|L(x0) ≤

∫

Jx0

|fn(ϕ(t))ψ(t)| dt ≤
1 + 2ε

1 − ε
|ψ(x0)|L(x0)

and, since ε is chosen arbitrarily small, claim (2) is justified.
Concerning claim (1), let us first point out that

lim
n→∞

‖Tψ ◦ Cϕ(fn)‖1 = lim
n→∞

∑

x0∈Eϕ

∫

Jx0

fn(ϕ(t))|ψ(t)| dt
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Now, it suffices to apply the Lebesgue domination theorem (with respect to the
counting measure). The domination is justified by the previous estimates. Indeed,
for each x0 ∈ Eϕ, we have

∫

Jx0

fn(ϕ(t))|ψ(t)| dt ≤
1

1 − ε

(

1

ϕ′
l(x0)

+
1

|ϕ′
r(x0)|

)

which is summable thanks to condition (B).

Step II. We claim now that ‖Tψ ◦ Cϕ‖e ≤ lim
n→∞

‖Tψ ◦ Cϕ(fn)‖1.

There exists a function h, which is continuous at each point x0 ∈ Eϕ. and
such that the restricted functions satisfy h|Eϕ

= 0 and h|K = 1; with h taking
its valued in [0, 1]. Indeed, for instance, define h(t) = |t−x0|/εx0

when t belongs
to Jx0

and h = 1 on K.

Let ψε = h · ψ. We have

‖Tψ ◦ Cϕ − Tψε
◦ Cϕ‖ = sup

‖f‖1≤1

∫

Ω
(1 − h)|ψ(x)||f(ϕ(x))|dx

≤ sup
‖f‖1≤1

∑

x0∈Eϕ

∫

Jx0

|ψ(x)||f(ϕ(x))|dx

≤
∑

x0∈Eϕ

sup
‖f‖1≤1

‖ψ‖Jx0

∫

Jx0

|f(ϕ(x))|dx.

If x ∈ Jx0
, then |x− x0| < εx0

so ‖ψ‖Jx0
= sup

x∈Jx0

|ψ(x)| ≤ |ψ(x0)| + ε.

On the other hand, using the computation in step I, we get

∫

Jx0

|f(ϕ(x))|dx ≤
1

1 − ε
L(x0)‖f‖1.

We obtain

‖Tψ ◦ Cϕ − Tψε
◦ Cϕ‖ ≤

1

1 − ε

∑

x0∈E

(|ψ(x0)| + ε)L(x0).

Now, since (ψε)|E = 0 and is continuous at each point of Eϕ, thanks to
Theorem 4.1, we know that Tψε

◦ Cϕ is compact.

Hence, ‖Tψ ◦Cϕ‖e = inf{‖Tψ ◦Cϕ−S‖ : S is a compact operator on M1
Λ}
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≤ ‖Tψ ◦ Cϕ − Tψε
◦ Cϕ‖

≤
1

1 − ε

∑

x0∈E

(|ψ(x0)| + ε)L(x0)

Since ε is arbitrary we get

‖Tψ ◦ Cϕ‖e ≤
∑

x0∈E

|ψ(x0)|L(x0) = lim
n→∞

‖Tψ ◦ Cϕ(fn)‖1.

Step III. It remains to prove ‖Tψ ◦ Cϕ‖e ≥ lim
n→∞

‖Tψ ◦ Cϕ(fn)‖1.

If Eϕ = ∅, we have ‖ϕ‖∞ < 1 and Cϕ is compact, as well as Tψ ◦ Cϕ,
therefore ‖Tψ ◦ Cϕ‖e = 0 = lim

n→∞
‖Tψ ◦ Cϕ(fn)‖1.

We may now assume that Eϕ 6= ∅. Let S : M1
Λ −→ L1 be a compact

operator.
We want to show that ‖Tψ ◦ Cϕ − S‖ ≥ lim

n→∞
‖Tψ ◦ Cϕ(fn)‖1.

Since S is compact and ‖fn‖∞ = 1, then there exists a subsequence
{fnj

}∞j=1 and f ∈ L1 such that lim
j→∞

‖S(fnj
) − f‖1 = 0.

We have lim sup
j→∞

‖(Tψ ◦ Cϕ − S)(fnj
)‖1 ≥ lim

n→∞
‖Tψ ◦ Cϕ(fn)‖1.

Indeed,

‖(Tψ ◦ Cϕ − S)(fnj
)‖1 ≥ ‖Tψ ◦ Cϕ(fnj

) − f‖1 − ‖S(fnj
) − f‖1,

which implies that

lim sup
j→∞

‖(Tψ ◦ Cϕ − S)(fnj
)‖1 ≥ lim sup

j→∞
‖Tψ ◦ Cϕ(fnj

) − f‖1.

So it suffices to show that lim sup
j→∞

‖Tψ ◦ Cϕ(fnj
) − f‖1 ≥ lim

n→∞
‖Tψ ◦

Cϕ(fn)‖1.

Let ε > 0. Since f ∈ L1, there exists δ > 0 such that

∫

U

|f(x)|dx ≤ ε

where U = (Eϕ + (−δ, δ)) ∩ [0, 1], thus

‖Tψ ◦ Cϕ(fnj
) − f‖1 ≥

∫

U

|Tψ ◦ Cϕ(fnj
)|dx−

∫

U

|f(x)|dx

≥

∫

U

|Tψ ◦ Cϕ(fnj
)|dx− ε

≥ ‖Tψ ◦ Cϕ(fnj
)‖1 − ‖ψ‖∞

(

sup
t∈ϕ([0,1]\U)

fnj
(t)
)

− ε



258 Ihab Al Alam, Pascal Lefèvre

According to step I, the sequence (‖Tψ ◦ Cϕ(fn)‖1)n is convergent. On
the other hand, (fn) is uniformly convergent to 0 on compact subsets of [0, 1).
So letting j → ∞, we get

lim sup
j→∞

‖Tψ ◦ Cϕ(fnj
) − f‖1 ≥ lim

n→∞
‖Tψ ◦ Cϕ(fn)‖1 − ε.

Since ε is arbitrary, we deduce that

lim sup
j→∞

‖Tψ ◦ Cϕ(fnj
) − f‖1 ≥ lim

n→∞
‖Tψ ◦ Cϕ(fn)‖1.

which proves the last step and completes the proof of the theorem. �

Corollary 5.2. Let ϕ : [0, 1] −→ [0, 1] be a function satisfying condition
(B) and ψ ∈ C([0, 1]).

Then,

• ‖Cϕ‖e =















0 if ‖ϕ‖∞ < 1

∑

x∈Eϕ

L(x) if ‖ϕ‖∞ = 1.

• ‖Tψ‖e = |ψ(1)|.

Remark 5.3. If we denote by ‖·‖∞e (respectively ‖·‖1
e) the essential norm

of an operator defined onM∞
Λ (respectively onM1

Λ), we note that ‖Tψ‖
∞
e = ‖Tψ‖

1
e,

contrariwise (see [2]) we have

1 = ‖Cϕ‖
∞
e 6= ‖Cϕ‖

1
e =

∑

x∈Eϕ

(

1

ϕ′
l(x)

−
1

ϕ′
r(x)

)

.

Corollary 5.4. Let ϕ : [0, 1] −→ [0, 1] be a function satisfying condition
(B), such that Cϕ is not compact (i.e. 1 ∈ Imϕ) and ψ ∈ C([0, 1]). Let Cϕ ◦ Tψ
from M1

Λ to L1, then its essential norm is

|ψ(1)| ·
∑

x∈Eϕ

(

1

ϕ′
l(x)

−
1

ϕ′
r(x)

)

.
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P r o o f. Let f ∈M1
Λ, then Cϕ ◦ Tψ(f) = (f ◦ ϕ) · (ψ ◦ ϕ) = Tψ◦ϕ ◦Cϕ(f).

Therefore Cϕ ◦ Tψ = Tψ◦ϕ ◦ Cϕ and hence by the preceding theorem, we have

‖Cϕ ◦ Tψ‖e = ‖Tψ◦ϕ ◦ Cϕ‖e = |ψ(1)|
∑

x∈Eϕ

(

1

ϕ′
r(x)

−
1

ϕ′
l(x)

)

. 2

Remark 5.5. It is easy to see that most of the results of this paper are
still valid when M1

Λ is replaced by a Banach space X satisfying : M1
Λ ⊂ X ⊂ L1

and each f ∈ X is continuously differentiable on [0, 1). Nevertheless the natural
examples of such spaces seem to be only Müntz spaces (i.e. X = M1

Λ′ with
Λ ⊂ Λ′).

Acknowledgment. We thank the referee for his very careful reading of
the paper and his valuable suggestions.

REFERE NC ES
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