Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

EMPIRICAL BAYES TWO-SIDED TEST
 FOR THE PARAMETER OF LINEAR EXPONENTIAL DISTRIBUTION FOR RANDOM INDEX*

Huang Juan
Communicated by S. T. Rachev

Abstract

In the case of random index, the empirical Bayes two-side test rule for the parameter of linear exponential distribution is constructed. The asymptotically optimal property for the proposed EB test is obtained under suitable conditions. It is shown that the convergence rates of the proposed EB test rules can arbitrarily close to $O\left(n^{-\frac{1}{2}}\right)$.

1. Introduction. Estimation and test of empirical Bayes (EB) have been investigated in many papers, in the particular for the exponential and scale exponential family, the readers are referred to literature (see $[2,4,5,6,8]$). Recently, Empirical Bayes test for the parameter of linear exponential distribution have been discussed [9, 10]. Usually, EB approaches are concerned with nonrandom index of size of the historical samples. In fact, we may meet the problem

[^0]that size of the historical samples is a random index which takes positive integer valued random variable. Study on limit theory with random index has been acquired some results [11]. Up to now, Empirical Bayes test problem for the parameter of distribution family for random index hasn't been studied. Differing from the previous many study, in the case of random index, we will renew to construct empirical Bayes test rule for the parameter of linear exponential distribution is constructed.

Let X have a conditional density function for given $\theta^{[1]}$

$$
\begin{equation*}
f(x \mid \theta)=(\mu x+\theta) \exp \left\{-\theta x-\frac{1}{2} \mu x^{2}\right\} \tag{1.1}
\end{equation*}
$$

where μ is a known constant and θ is an unknown parameter. Denote sample space $\Omega=\{x \mid x>0\}$ and parameter space $\Theta=\left\{\theta>0 \mid \int_{\Omega} f(x \mid \theta) d x=1\right\}$.

In this paper, we discuss the following two-sided test problem

$$
\begin{equation*}
H_{0}: \theta_{1} \leq \theta \leq \theta_{2} \Leftrightarrow H_{1}: \theta<\theta_{1} \text { or } \theta>\theta_{2} \tag{1.2}
\end{equation*}
$$

where θ_{1} and θ_{2} are given positive constant, taking $\theta_{0}=\frac{\theta_{1}+\theta_{2}}{2}$ and $\gamma_{0}=\frac{\theta_{2}-\theta_{1}}{2}$, then two-sided test problem of (1.2) is equivalent with

$$
\begin{equation*}
H_{0}^{*}:\left|\theta-\theta_{0}\right| \leq \gamma_{0} \Leftrightarrow H_{1}^{*}:\left|\theta-\theta_{0}\right|>\gamma_{0} \tag{1.3}
\end{equation*}
$$

For hypothesis test problem (1.3), we have loss function
$L_{i}\left(\theta, d_{i}\right)=(1-i) a\left[\left(\theta-\theta_{0}\right)^{2}-\gamma_{0}^{2}\right] I_{\left[\left|\theta-\theta_{0}\right|>\gamma_{0}\right]}+i a\left[\gamma_{0}^{2}-\left(\theta-\theta_{0}\right)^{2}\right] I_{\left[\left|\theta-\theta_{0}\right| \leq \gamma_{0}\right]}, \quad i=0,1$
where $a>0, d=\left\{d_{0}, d_{1}\right\}$ is action space, d_{0} and d_{1} imply acceptance and rejection of H_{0}^{*}.

Assume that the prior distribution $G(\theta)$ of θ is unknown, we obtain randomized decision function

$$
\begin{equation*}
\delta(x)=P\left(\text { accept } H_{0}^{*} \mid X=x\right) \tag{1.4}
\end{equation*}
$$

Then, the Bayes risk function of $\delta(x)$ is shown by

$$
\begin{align*}
R(\delta(x), G(\theta)) & =\int_{\Theta} \int_{\Omega}\left[L_{0}\left(\theta, d_{0}\right) f(x \mid \theta) \delta(x)+L_{1}\left(\theta, d_{1}\right) f(x \mid \theta)(1-\delta(x))\right] d x d G(\theta) \tag{1.5}\\
& =a \int_{\Omega} \beta(x) \delta(x) d x+C_{G}
\end{align*}
$$

where

$$
\begin{equation*}
C_{G}=\int_{\Theta} L_{1}\left(\theta, d_{1}\right) d G(\theta), \beta(x)=\int_{\Theta}\left[\left(\theta-\theta_{0}\right)^{2}-\gamma_{0}^{2}\right] f(x \mid \theta) d G(\theta) \tag{1.6}
\end{equation*}
$$

The marginal density function of X is given by

$$
f_{G}(x)=\int_{\Theta} f(x \mid \theta) d G(\theta)=\int_{\Theta}(\mu x+\theta) \exp \left(-\theta x-\frac{1}{2} \mu x^{2}\right) d G(\theta)
$$

Let

$$
p_{G}(x)=\int_{\Theta} \exp \left(-\theta x-\frac{1}{2} \mu x^{2}\right) d G(\theta)
$$

Hence, $p_{G}^{(1)}(x)=-\int_{\Theta}(\mu x+\theta) \exp \left(-\theta x-\frac{1}{2} \mu x^{2}\right) d G(\theta)=-f_{G}(x)$, where $p_{G}^{(1)}(x)$ is derivative of $p_{G}(x)$, then

$$
\begin{equation*}
\int_{x}^{\infty} f_{G}(x) d x=p_{G}(x) \tag{1.7}
\end{equation*}
$$

By (1.6) and simple calculation, we have

$$
\begin{equation*}
\beta(x)=f_{G}^{(2)}(x)+Q(x) f_{G}^{(1)}(x)-\mu Q(x) p_{G}(x)+S(x) f_{G}(x) \tag{1.8}
\end{equation*}
$$

where $Q(x)=2 \mu x+2 \theta_{0}, S(x)=\mu^{2} x^{2}+2 \mu \theta_{0} x+3 \mu+\theta_{0}^{2}-\gamma_{0}^{2}$, and $f_{G}^{(1)}(x)$ and $f_{G}^{(2)}(x)$ are first and second order derivative of $f_{G}(x)$.

Using (1.5), Bayes test function is obtained as follows

$$
\delta_{G}(x)= \begin{cases}1, & \beta(x) \leq 0 \tag{1.9}\\ 0, & \beta(x)>0\end{cases}
$$

Further, we can get minimum Bayes risk

$$
\begin{equation*}
R(G)=\inf _{\delta} R(\delta, G)=R\left(\delta_{G}, G\right)=a \int_{\Omega} \beta(x) \delta_{G}(x) d x+C_{G} \tag{1.10}
\end{equation*}
$$

When the prior distribution of $G(\theta)$ is known and $\delta(x)=\delta_{G}(x), R(G)$ is achieved. However, where $G(\theta)$ is unknown, so $\delta_{G}(x)$ can not be made use of, we need to introduce EB method.

The rest of this paper is structured as follows. Section 2 presents an EB test. In section 3, we obtain asymptotic optimality and the optimal rate of convergence of the EB test.
2. Construction of $E B$ test function for random index. Under the following condition, we need to construct $E B$ test function. We make the following assumptions: let $\left(X_{1}, \theta_{1}\right), \ldots,\left(X_{\tau_{n}}, \theta_{\tau_{n}}\right)$ and (X, θ) be independent random vectors, the $\theta_{i}\left(i=1, \ldots, \tau_{n}\right)$ and θ are independently identically distributed (i.i.d.) and have the common prior distribution $G(\theta)$. Let $X_{1}, X_{2}, \ldots, X_{\tau_{n}}, X$ be mutually independent random variable sequence with the common marginal density function $f_{G}(x)$, where $X_{1}, X_{2}, \ldots, X_{\tau_{n}}$ are historical samples and X is present sample and τ_{n} is a discrete random index which takes positive integer values with known distribution. Assume $f_{G}(x) \in C_{s, \alpha}, x \in R^{1}$, where $C_{s, \alpha}=\{g(x) \mid g(x)$ is probability density function and has continuous s-th order derivative $g^{(s)}(x)$ with $\left|g^{(s)}(x)\right| \leq \alpha, s \geq 3, \alpha$ and s are natural numbers $\}$. First construct estimator of $\beta(x)$.

Let $K_{r}(x)(r=0,1, \ldots, s-1)$ be a Borel measurable real function vanishing off $(0,1)$ such that

$$
\frac{1}{t!} \int_{0}^{1} v^{t} K_{r}(v) d v=\left\{\begin{align*}
(-1)^{t}, & t=r \tag{A1}\\
0, & t \neq r, t=0,1, \ldots, s-1
\end{align*}\right.
$$

Denote $f_{G}^{(0)}(x)=f_{G}(x), f_{G}^{(r)}(x)$ is the r order derivative of $f_{G}(x)$ $(r=0,1, \ldots, s-1)$. Similar to Prakasa [7], kernel estimation of $f_{G}^{(r)}(x)$ is defined by

$$
\begin{equation*}
f_{\tau_{n}}^{(r)}(x)=\frac{1}{\tau_{n} h_{n}^{(1+r)}} \sum_{j=1}^{\tau_{n}} K_{r}\left(\frac{x-X_{j}}{h_{n}}\right) \tag{2.1}
\end{equation*}
$$

where h_{n} is smoothing bandwidth and $\lim _{n \rightarrow \infty} h_{n}=0$.
As $p_{G}(x)=\int_{x}^{\infty} f_{G}(x) d x=E\left\{I_{\left(X_{i}>x\right)}\right\}$, hence, $p_{G}(x)$ is defined as follows

$$
\begin{equation*}
p_{G}(x)=\frac{1}{\tau_{n}} \sum_{i=1}^{\tau_{n}} I_{\left(X_{i}>x\right)} \tag{2.2}
\end{equation*}
$$

Thus, estimator of $\beta(x)$ is obtained by

$$
\begin{equation*}
\beta_{\tau_{n}}(x)=f_{\tau_{n}}^{(2)}(x)+Q(x) f_{\tau_{n}}^{(1)}(x)-\mu Q(x) p_{\tau_{n}}(x)+S(x) f_{\tau_{n}}(x) \tag{2.3}
\end{equation*}
$$

Hence, EB test function is defined by

$$
\delta_{\tau_{n}}(x)= \begin{cases}1, & \beta_{\tau_{n}}(x) \leq 0 \tag{2.4}\\ 0, & \beta_{\tau_{n}}(x)>0\end{cases}
$$

Let E denote the mathematical expectation with respect to the joint distribution of $X_{1}, X_{2}, \ldots, X_{\tau_{n}}$, we get overall Bayes risk of $\delta_{\tau_{n}}(x)$

$$
\begin{equation*}
R\left(\delta_{\tau_{n}}(x), G\right)=a \int_{\Omega} \beta(x) E\left[\delta_{\tau_{n}}(x)\right] d x+C_{G} \tag{2.5}
\end{equation*}
$$

If $\lim _{n \rightarrow \infty} R\left(\delta_{\tau_{n}}, G\right)=R\left(\delta_{G}, G\right),\left\{\delta_{\tau_{n}}(x)\right\}$ is asymptotic optimality of EB test function; if $R\left(\delta_{\tau_{n}}, G\right)-R\left(\delta_{G}, G\right)=O\left(n^{-q}\right), q>0, O\left(n^{-q}\right)$ is asymptotic optimality convergence rates of EB test function of $\left\{\delta_{\tau_{n}}(x)\right\}$. Before proving the theorems, we give a series of lemmas.

Let $c, c_{1}, c_{2}, c_{3}, \ldots, c_{8}$ be different constants in different cases even in the same expression.

Lemma 2.1 (Lu, [3]). Let $\left\{X_{i}, i \geq 1\right\}$ be independent identical distribution random samples, with $E X_{i}=0$ and $E\left|X_{i}\right|^{r}<\infty, r \geq 2$, then

$$
E\left|\sum_{i=1}^{n} X_{i}\right|^{r} \leq c n^{\frac{r}{2}} E\left|X_{i}\right|^{r}
$$

Lemma 2.2. $f_{\tau_{n}}^{(r)}(x)$ is defined by (2.1). Let $X_{1}, X_{2}, \ldots, X_{\tau_{n}}$ be independent identically distributed random samples. Assume (A1) holds, $\forall x \in \Omega$,
(1) If $f_{G}^{(r)}(x)$ is continuous function, $\lim _{n \rightarrow \infty} h_{n}=0$ and $\lim _{n \rightarrow \infty} \frac{1}{h_{n}^{2 r+2}} E\left(\frac{1}{\tau_{n}}\right)$ $=0$, we have

$$
\lim _{n \rightarrow \infty} E\left|f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right|^{2}=0
$$

(2) If $f_{G}(x) \in C_{s, a}, h_{n}=n^{-\frac{1}{2+2 s}}, E\left(\frac{1}{\tau_{n}}\right)=o\left(n^{-\gamma}\right)$, where $\gamma=\frac{s-1}{s+1}$, $s \geq 2$, for $0<\lambda \leq 1$, we get

$$
E\left|f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right|^{2 \lambda} \leq c \cdot n^{-\frac{\lambda(s-r)}{1+s}}
$$

Proof. Proof of (1):

$$
\begin{equation*}
E\left|f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right|^{2} \leq 2\left|E f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right|^{2}+2 \operatorname{Var}\left(f_{\tau_{n}}^{(r)}(x)\right):=2\left(I_{1}^{2}+I_{2}\right) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
E f_{\tau_{n}}^{(r)}(x) & =E\left\{E\left[\left.\frac{1}{m h_{n}^{1+r}} \sum_{i=1}^{m} K_{r}\left(\frac{x-X_{i}}{h_{n}}\right) \right\rvert\, \tau_{n}=m\right]\right\} \\
& =E\left\{\frac{1}{h_{n}^{1+r}} E\left[\left.K_{r}\left(\frac{x-X_{i}}{h_{n}}\right) \right\rvert\, \tau_{n}=m\right]\right\} \\
& =h_{n}^{-(1+r)} E\left[K_{r}\left(\frac{x-X_{1}}{h_{n}}\right)\right] \\
& =h_{n}^{-(1+r)} \int_{0}^{\infty} K_{r}\left(\frac{x-y}{h_{n}}\right) f_{G}(y) d y \\
& =h_{n}^{-r} \int_{0}^{1} K_{r}(u) f_{G}\left(x-h_{n} u\right) d u
\end{aligned}
$$

We obtain the following Taylor expansion of $f_{G}\left(x-h_{n} u\right)$ in x
$f_{G}\left(x-h_{n} u\right)-f_{G}(x)=\frac{f_{G}^{\prime}(x)}{1!}\left(-h_{n} u\right)+\frac{f_{G}^{\prime \prime}(x)}{2!}\left(-h_{n} u\right)^{2}+\cdots+\frac{f_{G}^{(s)}\left(x-\xi h_{n} u\right)}{s!}\left(-h_{n} u\right)^{s}$,
where $0<\xi<1$.
Since $f_{G}(x)$ is continuous in x and $(A 1)$, it is easy to see that

$$
\begin{aligned}
0 & \leq \lim _{n \rightarrow \infty}\left|E f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right|=\lim _{n \rightarrow \infty}\left|\frac{1}{h_{n}^{r}} \int_{0}^{1} K_{r}(u) f_{G}\left(x-b_{n} u\right) d u-f_{G}^{(r)}(x)\right| \\
& \leq \frac{1}{r!} \int_{0}^{1} u^{r}\left|K_{r}(u)\right| \lim _{n \rightarrow \infty}\left|f_{G}^{(r)}\left(x-\xi h_{n} u\right)-f_{G}^{(r)}(x)\right| d u=0
\end{aligned}
$$

we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{1}^{2}=\lim _{n \rightarrow \infty}\left|E f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right|^{2}=0 \tag{2.7}
\end{equation*}
$$

by Lemma 2.1, we get

$$
\begin{aligned}
I_{2} & =\frac{1}{h_{n}^{2 r+2}} D\left[\frac{1}{\tau_{n}} \sum_{i=1}^{\tau_{n}} K_{r}\left(\frac{x-X_{i}}{h_{n}}\right)\right] \\
& =\frac{1}{h_{n}^{2 r+2}} E\left[\frac{1}{\tau_{n}} \sum_{i=1}^{\tau_{n}}\left(K_{r}\left(\frac{x-X_{i}}{h_{n}}\right)-E K_{r}\left(\frac{x-X_{i}}{h_{n}}\right)\right)\right]^{2} \\
& =\frac{1}{h_{n}^{2 r+2}} E\left\{\frac{1}{m^{2}}\left[\left.E\left(\sum_{i=1}^{m} K_{r}\left(\frac{x-X_{i}}{h_{n}}\right)-E K_{r}\left(\frac{x-X_{i}}{h_{n}}\right)\right)^{2} \right\rvert\, \tau_{n}=m\right]\right\} \\
& \leq c \frac{1}{h_{n}^{2 r+2}} E\left\{\frac{1}{m}\left[\left.E\left(K_{r}\left(\frac{x-X_{1}}{h_{n}}\right)\right)^{2} \right\rvert\, \tau_{n}=m\right]\right\} \\
& \leq c \frac{1}{h_{n}^{2 r+2}} E\left(\frac{1}{\tau_{n}}\right) .
\end{aligned}
$$

when $\frac{1}{h_{n}^{2+2}} E\left(\frac{1}{\tau_{n}}\right) \rightarrow 0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{2}=0 \tag{2.9}
\end{equation*}
$$

Substituting (2.7) and (2.9) into (2.6), the proof of (1) is completed.
Proof of (2): Similar to (2.6), we can show that

$$
\begin{align*}
E\left|f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right|^{2 \lambda} & \leq 2\left[E f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right]^{2 \lambda}+2\left[\operatorname{Var} f_{\tau_{n}}^{(r)}(x)\right]^{\lambda} \tag{2.10}\\
& :=2\left(J_{1}^{2 \lambda}+J_{2}^{\lambda}\right) .
\end{align*}
$$

We obtain the following Taylor expansion of $f_{G}\left(x-h_{n} u\right)$ in x
$f_{G}\left(x-h_{n} v\right)=f_{G}(x)+\frac{f_{G}^{\prime}(x)}{1!}\left(-h_{n} v\right)+\frac{f_{G}^{\prime \prime}(x)}{2!}\left(-h_{n} v\right)^{2}+\cdots+\frac{f_{G}^{(r)}\left(x-\xi h_{n} v\right)}{r!}\left(-h_{n} v\right)^{r}$, where $0<\xi<1$.

Since $(A 1)$ and $f_{G}(x) \in C_{s, \alpha}$, we have

$$
\left|E f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right| \leq \int_{0}^{1}\left|K_{r}(v)\right| h_{n}^{s-r} v^{s}\left|\frac{f_{G}^{(s)}\left(x-\xi h_{n} v\right)}{s!}\right| d v \leq c \cdot h_{n}^{s-r}
$$

when $h_{n}=n^{-\frac{1}{2+2 s}}$, we get

$$
\begin{equation*}
J_{1}^{2 \lambda}=\left|E f_{\tau_{n}}^{(r)}(x)-f_{G}^{(r)}(x)\right|^{2 \lambda} \leq c \cdot n^{-\frac{\lambda(s-r)}{s+1}} \tag{2.11}
\end{equation*}
$$

By (2.7), when $h_{n}=n^{-\frac{1}{2+2 s}}, E\left(\frac{1}{\tau_{n}}\right)=o\left(n^{-\gamma}\right)$, where $\gamma=\frac{s-1}{s+1}$, we have

$$
\begin{equation*}
J_{2}^{\lambda} \leq c_{1}\left[\left(h_{n}^{2 r+2}\right)^{-1}\right]^{\lambda}\left[E\left(\frac{1}{\tau_{n}}\right)\right]^{\lambda} \leq c \cdot n^{-\frac{\lambda(s-r)}{1+s}} \tag{2.12}
\end{equation*}
$$

Substituting (2.11) and (2.12) into (2.9), obviously, proof of (2) is completed.

Lemma 2.3 (Van, $[2]) . R\left(\delta_{G}, G\right)$ and $R\left(\delta_{\tau_{n}}, G\right)$ are defined by (1.9) and (2.4), then

$$
0 \leq R\left(\delta_{\tau_{n}}, G\right)-R\left(\delta_{G}, G\right) \leq a \int_{\Omega}|\beta(x)| P\left(\left|\beta_{\tau_{n}}(x)-\beta(x)\right| \geq|\beta(x)|\right) d x
$$

Lemma 2.4. $P_{G}(x)$ and $p_{\tau_{n}}(x)$ are defined by (1.7) and (2.2). Let $X_{1}, X_{2}, \ldots, X_{\tau_{n}}$ be independent identical random samples, then, for $0<\lambda \leq 1$, $E\left[\left(\frac{1}{\tau_{n}}\right)^{\lambda}\right]=O\left(n^{-\lambda}\right)$, we have

$$
E\left|p_{\tau_{n}}(x)-p_{G}(x)\right|^{2 \lambda} \leq c n^{-\lambda}
$$

Proof. Since

$$
E p_{\tau_{n}}(x)=E\left\{\frac{I_{\left(X_{1}>x\right)}}{m\left(X_{1}\right)}\right\}=\int_{x}^{\infty} \frac{f_{G}(y)}{m(y)} d y=\int_{x}^{\infty} p(y) d y=p_{G}(x)
$$

we get $\phi_{\tau_{n}}$ is an unbiased estimator of $p_{G}(x)$.
Applying moment monotone inequality, we have

$$
\left(E\left|p_{\tau_{n}}(x)-p_{G}(x)\right|^{2 \lambda}\right)^{\frac{1}{2 \lambda}} \leq\left(E\left|p_{\tau_{n}}(x)-p_{G}(x)\right|^{2}\right)^{\frac{1}{2}}
$$

That is to say

$$
E\left|p_{\tau_{n}}(x)-p_{G}(x)\right|^{2 \lambda} \leq\left(E\left|p_{\tau_{n}}(x)-p_{G}(x)\right|^{2}\right)^{\lambda}:=J
$$

By Lemma 2.1, we can easily get

$$
\begin{aligned}
J & =E\left|p_{\tau_{n}}(x)-p_{G}(x)\right|^{2 \lambda} \leq E\left[E\left|p_{\tau_{n}}(x)-p_{G}(x)\right|^{2 \lambda} \mid \tau_{n}=m\right] \\
& \leq c E\left[\left(\frac{1}{\tau_{n}}\right)^{\lambda}\right] \leq c n^{-\lambda}
\end{aligned}
$$

The proof of Lemma 2.4 is completed.

3. Asymptotic optimality and convergence rates.

Theorem 3.1. $\delta_{\tau_{n}}(x)$ is defined by (2.4). Let $X_{1}, X_{2}, \ldots, X_{\tau_{n}}$ be independent identical random sample. Assume (A1) and the following regularity conditions hold.
(1) $\lim _{n \rightarrow \infty} h_{n}=0$ and $\lim _{n \rightarrow \infty} \frac{1}{h_{n}^{6}} E\left(\frac{1}{\tau_{n}}\right)=0$,
(2) $\int_{\Theta} \theta^{2} d G(\theta)<\infty$,
(3) $f_{G}^{(2)}(x)$ is continuous function of x,
we get

$$
\lim _{n \rightarrow \infty} R\left(\delta_{\tau_{n}}, G\right)=R\left(\delta_{G}, G\right)
$$

Proof. By Lemma 2.2, we have

$$
0 \leq R\left(\delta_{\tau_{n}}, G\right)-R\left(\delta_{G}, G\right) \leq a \int_{\Omega}|\beta(x)| p\left(\left|\beta_{\tau_{n}}(x)-\beta(x)\right| \geq|\beta(x)|\right) d x
$$

Witting $\Psi_{\tau_{n}}(x)=|\beta(x)| p\left(\left|\beta_{\tau_{n}}(x)-\beta(x)\right| \geq \beta(x) \mid\right)$. Hence, $\Psi_{\tau_{n}}(x) \leq$ $|\beta(x)|$.

Again by (1.6) and Fubini theorem, we can get

$$
\int_{\Omega}|\beta(x)| d x \leq\left|\theta_{0}^{2}-\gamma_{0}^{2}\right|+\int_{\Theta} \theta^{2} d G(\theta)+2\left|\theta_{0}\right| \int_{\Theta} \theta d G(\theta)<\infty
$$

Applying domain convergence theorem, then

$$
\begin{equation*}
0 \leq \lim _{n \rightarrow \infty} R\left(\delta_{\tau_{n}}, G\right)-R\left(\delta_{G}, G\right) \leq \int_{\Omega}\left[\lim _{n \rightarrow \infty} \Psi_{\tau_{n}}(x)\right] d x \tag{3.1}
\end{equation*}
$$

If Theorem 3.1 holds, we only need to prove $\lim _{n \rightarrow \infty} \Psi_{\tau_{n}}(x)=0$ a.s.x, By Markov's and Jensen's inequations, then

$$
\begin{aligned}
\Psi_{\tau_{n}}(x) & \leq\left[E\left|f_{\tau_{n}}^{(2)}(x)-f_{G}^{(2)}(x)\right|^{2}\right]^{\frac{1}{2}}+|Q(x)|\left[E\left|f_{\tau_{n}}^{(1)}(x)-f_{G}^{(1)}(x)\right|^{2}\right]^{\frac{1}{2}} \\
& +\mu\left|Q(x)\left[E\left|p_{\tau_{n}}(x)-p_{G}(x)\right|^{2}\right]^{\frac{1}{2}}+|S(x)|\left[E\left|f_{\tau_{n}}(x)-f_{G}(x)\right|^{2}\right]^{\frac{1}{2}}\right.
\end{aligned}
$$

Again by Lemma 2.1 (1) and Lemma 2.4, for fixed $x \in \Omega$, when $r=0,1,2$
and $\lambda=1$, we get

$$
\begin{align*}
0 \leq & \lim _{n \rightarrow \infty} \Psi_{\tau_{n}}(x) \\
\leq & {\left[\lim _{n \rightarrow \infty} E\left|f_{\tau_{n}}^{(2)}(x)-f_{G}^{(2)}(x)\right|^{2}\right]^{\frac{1}{2}} } \\
& +|Q(x)|\left[\lim _{n \rightarrow \infty} E\left|f_{\tau_{n}}^{(1)}(x)-f_{G}^{(1)}(x)\right|^{2}\right]^{\frac{1}{2}} \tag{3.2}\\
& +\mu|Q(x)|\left[\lim _{n \rightarrow \infty} E\left|p_{n}(x)-p_{G}(x)\right|^{2}\right]^{\frac{1}{2}} \\
& +|S(x)|\left[\lim _{n \rightarrow \infty} E\left|f_{\tau_{n}}(x)-f_{G}(x)\right|^{2}\right]^{\frac{1}{2}}=0
\end{align*}
$$

Substituting (3.2) into (3.1), proof of Theorem 3.1 is completed.

Theorem 3.2. $\delta_{\tau_{n}}(x)$ is defined by (2.4). Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identical random samples. Assume (A1) and the following regularity conditions hold.
(4) $f_{G}(x) \in C_{s . \alpha}$, where $s \geq 3$,
(5) $h_{n}=n^{-\frac{1}{2+2 s}}, E\left(\frac{1}{\tau_{n}}\right)=o\left(n^{-\gamma}\right)$, where $\gamma=\frac{s-1}{s+1}$,
(6) for $0<\lambda \leq 1$ and $m=0,1,2, \int_{\Omega} x^{m \lambda}|\beta(x)|^{1-\lambda} d x<\infty$.
we have

$$
R\left(\delta_{\tau_{n}}, G\right)-R\left(\delta_{G}, G\right)=O\left(n^{-\frac{\lambda(s-4)}{2(s+2)}}\right)
$$

Proof. By Lemma 2.2 and Markov's inequations, then

$$
\begin{aligned}
0 \leq R\left(\delta_{\tau_{n}}, G\right)-R\left(\delta_{G}, G\right) & \leq c_{1} \int_{\Omega}|\beta(x)|^{1-\lambda} E\left|f_{\tau_{n}}^{(2)}(x)-f_{G}^{(2)}(x)\right|^{\lambda} d x \\
& +c_{2} \int_{\Omega}|\beta(x)|^{1-\lambda}|Q(x)|^{\lambda} E\left|f_{\tau_{n}}^{(2)}(x)-f_{G}^{(2)}(x)\right|^{\lambda} d x \\
& +c_{3} \int_{\Omega}|\beta(x)|^{1-\lambda} \mu^{\lambda}|Q(x)|^{\lambda} E\left|p_{\tau_{n}}(x)-p_{G}(x)\right|^{\lambda} d x \\
& +c_{4} \int_{\Omega}|\beta(x)|^{1-\lambda}|S(x)|^{\lambda} E\left|f_{\tau_{n}}(x)-f_{G}(x)\right|^{\lambda} d x \\
& =A_{n}+B_{n}+C_{n}+D_{n}
\end{aligned}
$$

By Lemma 2.2 (2) and condition (6), we get

$$
\begin{align*}
A_{n} & \leq c_{1} n^{-\frac{\lambda(s-2)}{2(s+1)}} \int_{\Omega}|\beta(x)|^{1-\lambda} d x \leq c_{5} n^{-\frac{\lambda(s-2)}{2(s+1)}} \tag{3.4}\\
B_{n} & \leq c_{2} n^{-\frac{\lambda(s-2)}{2(s+2)}} \int_{\Omega}|\beta(x)|^{1-\lambda}|Q(x)|^{\lambda} d x \leq c_{6} n^{-\frac{\lambda(s-2)}{2(s+1)}} \tag{3.5}\\
D_{n} & \leq c_{4} n^{-\frac{\lambda s}{2(s+1)}} \int_{\Omega}|\beta(x)|^{1-\lambda}|S(x)|^{\lambda} d x \leq c_{8} n^{-\frac{\lambda s}{2(s+1)}} . \tag{3.6}
\end{align*}
$$

Using Lemma 2.4 and condition (6), we can obtain

$$
\begin{equation*}
C_{n} \leq c_{3} n^{-\frac{\lambda}{2}} \mu^{\lambda} \int_{\Omega}|\beta(x)|^{1-\lambda}|Q(x)|^{\lambda} d x \leq c_{7} n^{-\frac{\lambda}{2}} \tag{3.7}
\end{equation*}
$$

Substituting (3.4)-(3.7) into (3.3), we have

$$
R\left(\delta_{\tau_{n}}, G\right)-R\left(\delta_{G}, G\right)=O\left(n^{-\frac{\lambda(s-2)}{2(s+1)}}\right)
$$

Proof of Theorem 3.2 is completed.
Remark. When $\lambda \rightarrow 1, O\left(n^{-\frac{\lambda(s-2)}{2(s+1)}}\right)$ is arbitrarily close to $O\left(n^{-\frac{1}{2}}\right)$.

REFERENCES

[1] L. L. Wei, W. X. Zhang. Bayesian procedure in classification problem with linear exponential hazard function. Acta Math. Sci. Ser. A Chin. Ed. 23, 4 (2003), 436-443 (in Chinese).
[2] J. C. Van Houwelingen. Monotone empirical Bayes test for the continuous one-parameter exponential family. Ann. Statist. 4, 5 (1976), 981-989.
[3] Ch. Lu, L. Zhengyan. Foundations of Probability Limit Theory, Higher Education Press, 9, 1999.
[4] M. V. Johns Jr., J. Van Ryzin. Convergence rates for empirical Bayes two-action problems. II. Continuous case. Ann. Math. Statist. 43 (1972), 934-947.
[5] L. S. Wei. The empirical Bayes test problem for scale exponential family: in the case of NA samples. Acta Math. Appl. Sinica 23, 3 (2000), 403-412 (in Chinese).
[6] T. Ch. Liang. On optimal convergence rate of empirical Bayes tests. Statist. Probab. Lett. 68, 2 (2004), 189-198.
[7] B. L. S. Prakasa Rao. Nonparametric Functional Estimation. Probability and Mathematical Statistics. Orlando, Florida, etc., Academic Press, 1983, 522 pp.
[8] Sh. G. Gupta, J. Li. On empirical Bayes procedures for selecting good populations in a positive exponential family. J. Stat. Plann. Inference 129, 1-2 (2005), 3-18.
[9] J. Chen, C. Liu. Empirical Bayes test problem for the parameter of linear exponential distribution. Journal of Systems Science and Mathematical Sciences 5 (2008), 616-626.
[10] N. Y. Li, J. Huang. Empirical Bayes two-sided test problem for the parameter of linear exponential distribution: in the case of ϕ-mixing random samples. Appl. Math. J. Chinese Univ. Ser. A 23, 2 (2008), 213-218 (in Chinese).
[11] G. M. Zhuang, Z. X. Peng, J. W. Xia. Limit distribution of the maximum of a weakly dependent Gaussian sequence with random index. Acta Math. Appl. Sin. 31, 6 (2008), 1068-1079 (in Chinese).

School of Science
Guangdong Ocean University
Zhanjiang, China, 524088
e-mail: huangjuan401178@163.com
October 30, 2013

[^0]: 2010 Mathematics Subject Classification: 62C12, 62F15.
 Key words: random index, empirical Bayes test, asymptotic optimality, convergence rates.
 *The research is supported by National Statistics Research Projects(2012LY178) and Guangdong Ocean University of Humanities and Social Sciences project(C13112).

