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ABSTRACT. In the case of random index, the empirical Bayes two-side test
rule for the parameter of linear exponential distribution is constructed. The
asymptotically optimal property for the proposed EB test is obtained under
suitable conditions. It is shown that the convergence rates of the proposed
EB test rules can arbitrarily close to O(n_%).

1. Introduction. Estimation and test of empirical Bayes (EB) have
been investigated in many papers, in the particular for the exponential and scale
exponential family, the readers are referred to literature (see [2, 4, 5, 6, 8]). Re-
cently, Empirical Bayes test for the parameter of linear exponential distribution
have been discussed [9, 10]. Usually, EB approaches are concerned with non-
random index of size of the historical samples. In fact, we may meet the problem
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that size of the historical samples is a random index which takes positive inte-
ger valued random variable. Study on limit theory with random index has been
acquired some results [11]. Up to now, Empirical Bayes test problem for the para-
meter of distribution family for random index hasn’t been studied. Differing from
the previous many study, in the case of random index, we will renew to construct
empirical Bayes test rule for the parameter of linear exponential distribution is
constructed.
Let X have a conditional density function for given o)

(L.1) fcwe>:<ux+-wexp{—ﬂm——§ux2},

where p is a known constant and 6 is an unknown parameter. Denote sample
space 2 = {z | z > 0} and parameter space © = < 0 > 0|/ f(z | 0)dx = 1}.
Q
In this paper, we discuss the following two-sided test problem
(1.2) H0:91§9§92<=>H1:9<91 or 9>92,

01 + 02 0y — 61
and yo = 5

where 61 and 0, are given positive constant, taking 8y =

then two-sided test problem of (1.2) is equivalent with
(1.3) HS: ’9—90‘ S’}/(){:}Hf: ’9—90‘ > Y0-
For hypothesis test problem (1.3), we have loss function

Li(0,d;) = (1=)a[(0—00)* =751 [j9—0|>0) + i[5 — (0 —00) L [jo—00| <o), & =0, 1

where @ > 0, d = {dp,d;} is action space, dy and d; imply acceptance and
rejection of Hy.

Assume that the prior distribution G(#) of # is unknown, we obtain ran-
domized decision function

(1.4) d(z) = P(accept Hj | X = x).

Then, the Bayes risk function of §(z) is shown by
(1.5)

R(d(fﬂ),G(9))=/@/Q[Lo(&do)f(fﬂ!@)d(x)+L1(9,d1)f(fr\9)(1—5(1‘))]d:€d6’(9)

~a [ fla)s(a)ds + Co.
Q
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where

(1.6) Ca = /®L1(97d1)dG(9),5($) = / [(0 — 60)* — 751f (x|0)dG(0).

S}

The marginal density function of X is given by

fa(z) = /@f(q:]&)dG(Q) = /@(W: + 0) exp <—01: - %m:?) dG(9).

Let
pa(r) = /@exp (—9:6 — %,uacQ) dG(9).

Hence, pg)(x) = —/ (ux+0) exp (—9.@ — %/LI'Q) dG(0) = — fa(z), where
(C]

pG1 (x) is derivative of pg(x), then

(1.7) / " Je(@)dr = pe(e).
By (1.6) and simple calculation, we have
(1.8) B(x) = £& (@) + Q@) ) (2) — uQ(@)pa (@) + S(x) falz),

where Q(z) = 2ux + 200, S(x) = px? + 2ubox + 3u + 02 — ~&, and fg)(x) and
fg) (x) are first and second order derivative of fg(z).
Using (1.5), Bayes test function is obtained as follows

o e { b 5

Further, we can get minimum Bayes risk
(1.10) R(G) = nf R(5.G) = R(6.G) = a / B(x)56(x)dz + Ce.
Q

When the prior distribution of G(#) is known and 6(x) = ég(z), R(G) is
achieved. However, where G(#) is unknown, so dg(x) can not be made use of, we
need to introduce EB method.

The rest of this paper is structured as follows. Section 2 presents an
EB test. In section 3, we obtain asymptotic optimality and the optimal rate of
convergence of the EB test.
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2. Construction of EB test function for random index. Un-
der the following condition, we need to construct EB test function. We make the
following assumptions: let (X1,61),..., (X, ,0:,) and (X, 0) be independent ran-
dom vectors, the 0; (i = 1,...,7,) and 0 are independently identically distributed
(ii.d.) and have the common prior distribution G(6). Let X1, Xa,...,X,,, X be
mutually independent random variable sequence with the common marginal den-
sity function fg(x), where X, Xs, ..., X, are historical samples and X is present
sample and 7, is a discrete random index which takes positive integer values with
known distribution. Assume fg(z) € Csqa, € R', where Cs, = {g(z)|g(z) is
probability density function and has continuous s-th order derivative ¢‘*)(z) with
19 (2)] < @, s > 3, & and s are natural numbers}. First construct estimator of
B(a).

Let K,(x) (r =0,1,...,s — 1) be a Borel measurable real function van-
ishing off (0,1) such that

T, —
(A1) E/O “KT(“)d”_{ 0, t#£rt=01,... 51

Denote féo)(ac) = fa(x), fg)(m) is the r order derivative of fg(x)

(r=0,1,...,s—1). Similar to Prakasa [7], kernel estimation of fg)(q:) is defined
by

Tn

1 z—X;
(r) _ - } : K J
(2]‘) f’?’n (l‘) - h(1+T) s ( hn ) 9

where h,, is smoothing bandwidth and lim A, = 0.
n—oo

As pg(z) = / fa(w)dx = E{I(x,>4}, hence, pg(x) is defined as follows

1 &
(22) pG(l') = 7__ ZI(X1>$)
moi=1

Thus, estimator of () is obtained by

(2.3)  Br.(2) = fP (@) + Q) fV (2) — nQ(2)p-, (z) + S(x) fr, (2).

Hence, EB test function is defined by

o =0 s
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Let E denote the mathematical expectation with respect to the joint
distribution of Xi, Xy, ..., X,,, we get overall Bayes risk of J,, ()

n

(2.5) R(5,, (2), —a/ﬁ 2)|dz + Cg.

If lim R(0,,,G) = R(dg,G), {0-,(z)} is asymptotic optimality of EB

test function; if R(d;,,G) — R(0g,G) = O(n™ %), ¢ > 0, O(n™?) is asymptotic
optimality convergence rates of EB test function of {J., (x)}. Before proving the
theorems, we give a series of lemmas.

Let ¢, c1,c0,c3,...,cg be different constants in different cases even in the
same expression.

Lemma 2.1 (Lu, [3]). Let {X;,i > 1} be independent identical distribu-
tion random samples, with EX; =0 and E|X;|" < oo, r > 2, then

n
E|Y X" < en2E|X;|".
=1

Lemma 2.2. fT(Z:)(ac) is defined by (2.1). Let X1, Xo,...,X,, be inde-
pendent identically distributed random samples. Assume (A1) holds, Vx € ),

1 1
(1) If fg)( ) is continuous function, hm hn, =0 and hm h2T+2E (E)
=0, we have

Tim B|f{)(z) - £ @) = 0.

(2) If fa(x) € Csq, by = n72+128,E (—) = o(n™7), where v = 52 ,
s
§>2, for0 < A <1, we get

A(s—r)

EIfD(@) = 1§ @) < con” i

Proof. Proof of (1):

(2.6) EIf0 (@)~ £ (2)2 < 2B (2)— £§ @) P+2Var(F) () = 2(1}+ 1),
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where

:h7(1+7')E K ‘r—Xl
n T hn
—aan [T T —
=104 [T r (5 fatway
0 n

=h," /01 K, (u)fa(z — hyu)du.

We obtain the following Taylor expansion of fg(z — hyu) in z

&)@ = ehyu)
s!

fe(x)
1

fe(x)
2l

fa(x—hpu)—fa(z) = (—hpu)+ (—hpu)? 4+ (—hpu)?®,

where 0 < £ < 1.

Since fa(z) is continuous in x and (A1), it is easy to see that

1
0 < Jim (B~ 1§ @) = tim | [ Kl = badu = 1§ @)

1t . . .
< [ i) i [5G - ha) - £ du =0,

we have

. 2 _ 1 oy P _
(2.7) lim I7 = lim |Ef)"(z) — fo'(x) 0.
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by Lemma 2.1, we get
1 1 & z—X;
negr 2 (5)
- 2
1 1 n l‘—Xl' J/‘—Xi
=—==F|— K, - FK,
et [ (0 () - (559))

1
——F (—) — 0, we have
T)

n

(2.9) lim I = 0.

n—oo

Substituting (2.7) and (2.9) into (2.6), the proof of (1) is completed.
Proof of (2): Similar to (2.6), we can show that

Elff (@) - fO @) <2qABfD @) - 5 (@) + 2Var fO ()

2.10
(2.10 =2(JP + J3).

We obtain the following Taylor expansion of fg(z — h,u) in =

/ " () _
fola—hat) = fo@)+ TED o) LD ey T 2Dy
where 0 < £ < 1.
Since (A1) and fo(z) € Cs.q, we have
1 ()¢ _
B — 1@ < [ e | I gy <
0 .

_1
when h,, =n 2+2s, we get

A(s—r)

(2.11) TP = [Bf(x) — 5 @) <con” o
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1 -1
By (27), When hn = niﬁl%, E <—> = 0(7’]/_’)/)7 Where /y — 8—7 we
h Tn S + 1
ave
A
1 A(s=r)
(2.12) J) < e [(hfj”)*l]A [E (—)} <c-n iFs .
Tn

Substituting (2.11) and (2.12) into (2.9), obviously, proof of (2) is com-
pleted. O

Lemma 2.3 (Van, [2]). R(dg,G) and R(0,,,G) are defined by (1.9) and
(2.4), then

0 < R(5,,.G) — R(66,C / 1B@)|P(B, () — B(x)] > |8(x)])dz.

Lemma 2.4. Pg(x) and p.,(z) are defined by (1.7) and (2.2). Let
X1,Xo,...,X;, be independent identical random samples, then, for 0 < A < 1,

()

Proof. Since
IX x e
B o) = B {2 = [7 Iy [y o),

we get ¢, is an unbiased estimator of pg(x).
Applying moment monotone inequality, we have

E = O0(n™), we have

Elp, () _PG(I‘)|2’\ < en~,

|

(Blpr, (2) = pa(@) ) < (Elpr, (2) - pa(2)?)
That is to say

E |p-,. (z) — pa(@)|? < (Elps, () — pa(@)?)* = J.

By Lemma 2.1, we can easily get

J = Elpr,(z) - pa(2)|** < E[Elpy, (2) — pa (@) = m]

(%)A] Con

The proof of Lemma 2.4 is completed. O

<cFE
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3. Asymptotic optimality and convergence rates.

Theorem 3.1. 4, (x) is defined by (2.4). Let X1,Xs,...,X;, be in-
dependent identical random sample. Assume (Al) and the following regularity
conditions hold.

1 1
(1) nlLHgO hy, =0 and nlLHgO h_gE (E) =0,
(2) / 62dG(0) < oo,
(C]
(3) fg) (x) is continuous function of x,

we get
lim R(4;,,G) = R(0g,G).

n—oo

Proof. By Lemma 2.2, we have
0 < R(dr,,G) — R(0a, G) < a/Q |6(2)|p(16r, (z) = B(x)] = |B(x)])dz.

Witting V. (z) = |B(x)|p(|Gr, () — B(z)] > B(x)|). Hence, ¥, (x) <

|6(z)].
Again by (1.6) and Fubini theorem, we can get
/ 18(z)|dz < 62 — 2| +/ 02dG(0) + 21901/ 0dG(6) < oco.
Q © ©
Applying domain convergence theorem, then
(3.1) 0< lim R(,,,G) — R(6e,G) < / lim O, (2)]de,
n—oo O n—oo
If Theorem 3.1 holds, we only need to prove lim ¥, (z) =0 a.s.x,
By Markov’s and Jensen’s inequations, then
1 1
() @[] (1) O &
@) <|B|f2@) - Q@) | +1e@) | E|fD@) - 1 @)

1
2

Q) [Bpn2) ~ p(@)]* + 18] [B o)  fola)]

Again by Lemma 2.1 (1) and Lemma 2.4, for fixed z € 2, when r = 0,1, 2
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and A = 1, we get

0< lim ¥, (2)
n—oo

< | lim B2 (@) - 1§ @)P)

D=

(3.2) +1Q@)| [ lim_ EIfD (@) - 1§ ()]

N

+ Q@) | lim Elpa(z) - pa(x)?]

1

+1S(@)| [ fim Blfr, (@) = fe(@)?]" =0,

Substituting (3.2) into (3.1), proof of Theorem 3.1 is completed. O

Theorem 3.2. 0., (z) is defined by (2.4). Let Xi,Xo,..., X, be in-
dependent identical random samples. Assume (Al) and the following regularity
conditions hold.

(4) fa(x) € Cs.o, where s >3,

1
(5) hy = niﬁ,E <—> =o(n~7), where vy =

Tn

s—1
s+ 1’

(6) for0 <A <1 and m=0,1,2, / 2™ B ()P dr < oo
Q

we have

A(s—4)
R(5..,G) — R(6g,G) = O <n2(5+2>> .



(3.3)

1]
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Proof. By Lemma 2.2 and Markov’s inequations, then

0 < R(6,,,G) — R(06,G) < &1 /Q 16(@)|' P EIfP () — £ (2) e
+o /Q B MQE@PEIFD (@) — 12 (@) de
e /Q 1B MAQ) P Elpr, (2) — pale) Mz

+ o4 /Q B S @) E o (2) — folo) e
=A,+B,+C,+D,.
By Lemma 2.2 (2) and condition (6), we get

_A(s=2) - A(s—2)
An < cn 2D / |B(z)|" " dx < esn 26+,
Q

(s—=2)

_)\(572) N A\ P
B < an ¥ [ 5@ Q@) s < con” .
Q
__As 1—\ A __As
D, < ¢n 20 | |B(2)| NS ()N de < egn” 26ED
Q

Using Lemma 2.4 and condition (6), we can obtain

2
2.

C, < c;;nglj\/ 18(2)|1MQ(z) P dx < ern”
Q
Substituting (3.4)—(3.7) into (3.3), we have
7)\(572)
R(67,,G) — R(d¢,G) = O <n 2(S+1>> .
Proof of Theorem 3.2 is completed. O

A(s—2)

)]
Remark. When A — 1, O (n 2<S+1>) is arbitrarily close to O (n*%>
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