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EMPIRICAL BAYES TWO-SIDED TEST

FOR THE PARAMETER OF LINEAR EXPONENTIAL

DISTRIBUTION FOR RANDOM INDEX*

Huang Juan

Communicated by S. T. Rachev

Abstract. In the case of random index, the empirical Bayes two-side test
rule for the parameter of linear exponential distribution is constructed. The
asymptotically optimal property for the proposed EB test is obtained under
suitable conditions. It is shown that the convergence rates of the proposed
EB test rules can arbitrarily close to O(n−

1

2 ).

1. Introduction. Estimation and test of empirical Bayes (EB) have
been investigated in many papers, in the particular for the exponential and scale
exponential family, the readers are referred to literature (see [2, 4, 5, 6, 8]). Re-
cently, Empirical Bayes test for the parameter of linear exponential distribution
have been discussed [9, 10]. Usually, EB approaches are concerned with non-
random index of size of the historical samples. In fact, we may meet the problem
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that size of the historical samples is a random index which takes positive inte-
ger valued random variable. Study on limit theory with random index has been
acquired some results [11]. Up to now, Empirical Bayes test problem for the para-
meter of distribution family for random index hasn’t been studied. Differing from
the previous many study, in the case of random index, we will renew to construct
empirical Bayes test rule for the parameter of linear exponential distribution is
constructed.

Let X have a conditional density function for given θ[1]

(1.1) f(x|θ) = (µx + θ) exp

{

−θx −
1

2
µx2

}

,

where µ is a known constant and θ is an unknown parameter. Denote sample

space Ω = {x | x > 0} and parameter space Θ =

{

θ > 0|

∫

Ω
f(x | θ)dx = 1

}

.

In this paper, we discuss the following two-sided test problem

(1.2) H0 : θ1 ≤ θ ≤ θ2 ⇔ H1 : θ < θ1 or θ > θ2,

where θ1 and θ2 are given positive constant, taking θ0 =
θ1 + θ2

2
and γ0 =

θ2 − θ1

2
,

then two-sided test problem of (1.2) is equivalent with

(1.3) H∗
0 : |θ − θ0| ≤ γ0 ⇔ H∗

1 : |θ − θ0| > γ0.

For hypothesis test problem (1.3), we have loss function

Li(θ, di) = (1−i)a[(θ−θ0)
2−γ2

0 ]I[|θ−θ0|>γ0]+ia[γ2
0−(θ−θ0)

2]I[|θ−θ0|≤γ0], i = 0, 1

where a > 0, d = {d0, d1} is action space, d0 and d1 imply acceptance and
rejection of H∗

0 .
Assume that the prior distribution G(θ) of θ is unknown, we obtain ran-

domized decision function

(1.4) δ(x) = P (accept H∗
0 | X = x).

Then, the Bayes risk function of δ(x) is shown by
(1.5)

R(δ(x), G(θ)) =

∫

Θ

∫

Ω
[L0(θ, d0)f(x|θ)δ(x) + L1(θ, d1)f(x|θ)(1 − δ(x))]dxdG(θ)

= a

∫

Ω
β(x)δ(x)dx + CG,
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where

(1.6) CG =

∫

Θ
L1(θ, d1)dG(θ), β(x) =

∫

Θ
[(θ − θ0)

2 − γ2
0 ]f(x|θ)dG(θ).

The marginal density function of X is given by

fG(x) =

∫

Θ
f(x|θ)dG(θ) =

∫

Θ
(µx + θ) exp

(

−θx −
1

2
µx2

)

dG(θ).

Let

pG(x) =

∫

Θ
exp

(

−θx −
1

2
µx2

)

dG(θ).

Hence, p
(1)
G (x) = −

∫

Θ
(µx+θ) exp

(

−θx −
1

2
µx2

)

dG(θ) = −fG(x), where

p
(1)
G (x) is derivative of pG(x), then

(1.7)

∫ ∞

x

fG(x)dx = pG(x).

By (1.6) and simple calculation, we have

(1.8) β(x) = f
(2)
G (x) + Q(x)f

(1)
G (x) − µQ(x)pG(x) + S(x)fG(x),

where Q(x) = 2µx + 2θ0, S(x) = µ2x2 + 2µθ0x + 3µ + θ2
0 − γ2

0 , and f
(1)
G (x) and

f
(2)
G (x) are first and second order derivative of fG(x).

Using (1.5), Bayes test function is obtained as follows

(1.9) δG(x) =

{

1, β(x) ≤ 0,
0, β(x) > 0.

Further, we can get minimum Bayes risk

(1.10) R(G) = inf
δ

R(δ,G) = R(δG, G) = a

∫

Ω
β(x)δG(x)dx + CG.

When the prior distribution of G(θ) is known and δ(x) = δG(x), R(G) is
achieved. However, where G(θ) is unknown, so δG(x) can not be made use of, we
need to introduce EB method.

The rest of this paper is structured as follows. Section 2 presents an
EB test. In section 3, we obtain asymptotic optimality and the optimal rate of
convergence of the EB test.
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2. Construction of EB test function for random index. Un-
der the following condition, we need to construct EB test function. We make the
following assumptions: let (X1, θ1), . . . , (Xτn

, θτn
) and (X, θ) be independent ran-

dom vectors, the θi (i = 1, . . . , τn) and θ are independently identically distributed
(i.i.d.) and have the common prior distribution G(θ). Let X1,X2, . . . ,Xτn

,X be
mutually independent random variable sequence with the common marginal den-
sity function fG(x), where X1,X2, . . . ,Xτn

are historical samples and X is present
sample and τn is a discrete random index which takes positive integer values with
known distribution. Assume fG(x) ∈ Cs,α, x ∈ R1, where Cs,α = {g(x)|g(x) is

probability density function and has continuous s-th order derivative g(s)(x) with
|g(s)(x)| ≤ α, s ≥ 3, α and s are natural numbers}. First construct estimator of
β(x).

Let Kr(x) (r = 0, 1, . . . , s − 1) be a Borel measurable real function van-
ishing off (0, 1) such that

(A1)
1

t!

∫ 1

0
vtKr(v)dv =

{

(−1)t, t = r,

0, t 6= r, t = 0, 1, . . . , s − 1.

Denote f
(0)
G (x) = fG(x), f

(r)
G (x) is the r order derivative of fG(x)

(r = 0, 1, . . . , s−1). Similar to Prakasa [7], kernel estimation of f
(r)
G (x) is defined

by

(2.1) f (r)
τn

(x) =
1

τnh
(1+r)
n

τn
∑

j=1

Kr

(

x − Xj

hn

)

,

where hn is smoothing bandwidth and lim
n→∞

hn = 0.

As pG(x) =

∫ ∞

x

fG(x)dx = E{I(Xi>x)}, hence, pG(x) is defined as follows

(2.2) pG(x) =
1

τn

τn
∑

i=1

I(Xi>x).

Thus, estimator of β(x) is obtained by

(2.3) βτn
(x) = f (2)

τn
(x) + Q(x)f (1)

τn
(x) − µQ(x)pτn

(x) + S(x)fτn
(x).

Hence, EB test function is defined by

(2.4) δτn
(x) =

{

1, βτn
(x) ≤ 0,

0, βτn
(x) > 0.
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Let E denote the mathematical expectation with respect to the joint
distribution of X1,X2, . . . ,Xτn

, we get overall Bayes risk of δτn
(x)

(2.5) R(δτn
(x), G) = a

∫

Ω
β(x)E[δτn

(x)]dx + CG.

If lim
n→∞

R(δτn
, G) = R(δG, G), {δτn

(x)} is asymptotic optimality of EB

test function; if R(δτn
, G) − R(δG, G) = O(n−q), q > 0, O(n−q) is asymptotic

optimality convergence rates of EB test function of {δτn
(x)}. Before proving the

theorems, we give a series of lemmas.

Let c, c1, c2, c3, . . . , c8 be different constants in different cases even in the
same expression.

Lemma 2.1 (Lu, [3]). Let {Xi, i ≥ 1} be independent identical distribu-

tion random samples, with EXi = 0 and E|Xi|
r < ∞, r ≥ 2, then

E|

n
∑

i=1

Xi|
r ≤ cn

r

2 E|Xi|
r.

Lemma 2.2. f (r)
τn

(x) is defined by (2.1). Let X1,X2, . . . ,Xτn
be inde-

pendent identically distributed random samples. Assume (A1) holds, ∀x ∈ Ω,

(1) If f
(r)
G (x) is continuous function, lim

n→∞
hn = 0 and lim

n→∞

1

h2r+2
n

E

(

1

τn

)

= 0, we have

lim
n→∞

E|f (r)
τn

(x) − f
(r)
G (x)|2 = 0.

(2) If fG(x) ∈ Cs,a, hn = n
− 1

2+2s , E

(

1

τn

)

= o(n−γ), where γ =
s − 1

s + 1
,

s ≥ 2, for 0 < λ ≤ 1, we get

E|f (r)
τn

(x) − f
(r)
G (x)|2λ ≤ c · n−

λ(s−r)
1+s .

P r o o f. Proof of (1):

(2.6) E|f (r)
τn

(x)−f
(r)
G (x)|2 ≤ 2|Ef (r)

τn
(x)−f

(r)
G (x)|2+2V ar(f (r)

τn
(x)) := 2(I2

1 +I2),



266 Huang Juan

where

Ef (r)
τn

(x) = E

{

E

[

1

mh1+r
n

m
∑

i=1

Kr

(

x − Xi

hn

)

|τn = m

]}

= E

{

1

h1+r
n

E

[

Kr

(

x − Xi

hn

)

|τn = m

]}

= h−(1+r)
n E

[

Kr

(

x − X1

hn

)]

= h−(1+r)
n

∫ ∞

0
Kr

(

x − y

hn

)

fG(y)dy

= h−r
n

∫ 1

0
Kr(u)fG(x − hnu)du.

We obtain the following Taylor expansion of fG(x − hnu) in x

fG(x−hnu)−fG(x) =
f ′

G(x)

1!
(−hnu)+

f ′′
G(x)

2!
(−hnu)2+· · ·+

f
(s)
G (x − ξhnu)

s!
(−hnu)s,

where 0 < ξ < 1.

Since fG(x) is continuous in x and (A1), it is easy to see that

0 ≤ lim
n→∞

|Ef (r)
τn

(x) − f
(r)
G (x)| = lim

n→∞

∣

∣

∣

∣

1

hr
n

∫ 1

0
Kr(u)fG(x − bnu)du − f

(r)
G (x)

∣

∣

∣

∣

≤
1

r!

∫ 1

0
ur|Kr(u)| lim

n→∞

∣

∣

∣
f

(r)
G (x − ξhnu) − f

(r)
G (x)

∣

∣

∣
du = 0,

we have

(2.7) lim
n→∞

I2
1 = lim

n→∞

∣

∣

∣
Ef (r)

τn
(x) − f

(r)
G (x)

∣

∣

∣

2
= 0.
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by Lemma 2.1, we get

(2.8)

I2 =
1

h2r+2
n

D

[

1

τn

τn
∑

i=1

Kr

(

x − Xi

hn

)

]

=
1

h2r+2
n

E

[

1

τn

τn
∑

i=1

(

Kr

(

x − Xi

hn

)

− EKr

(

x − Xi

hn

))

]2

=
1

h2r+2
n

E







1

m2



E

(

m
∑

i=1

Kr

(

x − Xi

hn

)

− EKr

(

x − Xi

hn

)

)2

|τn = m











≤ c
1

h2r+2
n

E

{

1

m

[

E

(

Kr

(

x − X1

hn

))2

|τn = m

]}

≤ c
1

h2r+2
n

E

(

1

τn

)

.

when
1

h2r+2
n

E

(

1

τn

)

→ 0, we have

(2.9) lim
n→∞

I2 = 0.

Substituting (2.7) and (2.9) into (2.6), the proof of (1) is completed.
Proof of (2): Similar to (2.6), we can show that

(2.10)
E|f (r)

τn
(x) − f

(r)
G (x)|2λ ≤ 2[Ef (r)

τn
(x) − f

(r)
G (x)]2λ + 2[V arf (r)

τn
(x)]λ

:= 2(J2λ
1 + Jλ

2 ).

We obtain the following Taylor expansion of fG(x − hnu) in x

fG(x−hnv) = fG(x)+
f ′

G(x)

1!
(−hnv)+

f ′′
G(x)

2!
(−hnv)2+· · ·+

f
(r)
G (x − ξhnv)

r!
(−hnv)r,

where 0 < ξ < 1.
Since (A1) and fG(x) ∈ Cs,α, we have

|Ef (r)
τn

(x) − f
(r)
G (x)| ≤

∫ 1

0
|Kr(v)|hs−r

n vs

∣

∣

∣

∣

∣

f
(s)
G (x − ξhnv)

s!

∣

∣

∣

∣

∣

dv ≤ c · hs−r
n .

when hn = n
− 1

2+2s , we get

(2.11) J2λ
1 = |Ef (r)

τn
(x) − f

(r)
G (x)|2λ ≤ c · n−

λ(s−r)
s+1 .
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By (2.7), when hn = n− 1
2+2s , E

(

1

τn

)

= o(n−γ), where γ =
s − 1

s + 1
, we

have

(2.12) Jλ
2 ≤ c1

[

(h2r+2
n )−1

]λ
[

E

(

1

τn

)]λ

≤ c · n−
λ(s−r)

1+s .

Substituting (2.11) and (2.12) into (2.9), obviously, proof of (2) is com-
pleted. �

Lemma 2.3 (Van, [2]). R(δG, G) and R(δτn
, G) are defined by (1.9) and

(2.4), then

0 ≤ R(δτn
, G) − R(δG, G) ≤ a

∫

Ω
|β(x)|P (|βτn

(x) − β(x)| ≥ |β(x)|)dx.

Lemma 2.4. PG(x) and pτn
(x) are defined by (1.7) and (2.2). Let

X1,X2, . . . ,Xτn
be independent identical random samples, then, for 0 < λ ≤ 1,

E

[

(

1

τn

)λ
]

= O(n−λ), we have

E|pτn
(x) − pG(x)|2λ ≤ cn−λ.

P r o o f. Since

Epτn
(x) = E

{

I(X1>x)

m(X1)

}

=

∫ ∞

x

fG(y)

m(y)
dy =

∫ ∞

x

p(y)dy = pG(x),

we get φτn
is an unbiased estimator of pG(x).

Applying moment monotone inequality, we have

(

E|pτn
(x) − pG(x)|2λ

)
1
2λ

≤
(

E|pτn
(x) − pG(x)|2

)
1
2 .

That is to say

E |pτn
(x) − pG(x)|2λ ≤

(

E|pτn
(x) − pG(x)|2

)λ
:= J.

By Lemma 2.1, we can easily get

J = E|pτn
(x) − pG(x)|2λ ≤ E[E|pτn

(x) − pG(x)|2λ|τn = m]

≤ cE

[

(

1

τn

)λ
]

≤ cn−λ.

The proof of Lemma 2.4 is completed. �
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3. Asymptotic optimality and convergence rates.

Theorem 3.1. δτn
(x) is defined by (2.4). Let X1,X2, . . . ,Xτn

be in-

dependent identical random sample. Assume (A1) and the following regularity

conditions hold.

(1) lim
n→∞

hn = 0 and lim
n→∞

1

h6
n

E

(

1

τn

)

= 0,

(2)

∫

Θ
θ2dG(θ) < ∞,

(3) f
(2)
G (x) is continuous function of x,

we get

lim
n→∞

R(δτn
, G) = R(δG, G).

P r o o f. By Lemma 2.2, we have

0 ≤ R(δτn
, G) − R(δG, G) ≤ a

∫

Ω
|β(x)|p(|βτn

(x) − β(x)| ≥ |β(x)|)dx.

Witting Ψτn
(x) = |β(x)|p(|βτn

(x) − β(x)| ≥ β(x)|). Hence, Ψτn
(x) ≤

|β(x)|.

Again by (1.6) and Fubini theorem, we can get

∫

Ω
|β(x)|dx ≤ |θ2

0 − γ2
0 | +

∫

Θ
θ2dG(θ) + 2|θ0|

∫

Θ
θdG(θ) < ∞.

Applying domain convergence theorem, then

(3.1) 0 ≤ lim
n→∞

R(δτn
, G) − R(δG, G) ≤

∫

Ω
[ lim
n→∞

Ψτn
(x)]dx,

If Theorem 3.1 holds, we only need to prove lim
n→∞

Ψτn
(x) = 0 a.s.x,

By Markov’s and Jensen’s inequations, then

Ψτn
(x) ≤

[

E
∣

∣

∣
f (2)

τn
(x) − f

(2)
G (x)

∣

∣

∣

2
]

1
2

+ |Q(x)|

[

E
∣

∣

∣
f (1)

τn
(x) − f

(1)
G (x)

∣

∣

∣

2
]

1
2

+µ|Q(x)
[

E |pτn
(x) − pG(x)|2

]
1
2

+ |S(x)|
[

E |fτn
(x) − fG(x)|2

]
1
2
.

Again by Lemma 2.1 (1) and Lemma 2.4, for fixed x ∈ Ω, when r = 0, 1, 2
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and λ = 1, we get

(3.2)

0 ≤ lim
n→∞

Ψτn
(x)

≤
[

lim
n→∞

E|f (2)
τn

(x) − f
(2)
G (x)|2

]
1
2

+ |Q(x)|
[

lim
n→∞

E|f (1)
τn

(x) − f
(1)
G (x)|2

]
1
2

+ µ|Q(x)|
[

lim
n→∞

E|pn(x) − pG(x)|2
]

1
2

+ |S(x)|
[

lim
n→∞

E|fτn
(x) − fG(x)|2

]
1
2

= 0.

Substituting (3.2) into (3.1), proof of Theorem 3.1 is completed. �

Theorem 3.2. δτn
(x) is defined by (2.4). Let X1,X2, . . . ,Xn be in-

dependent identical random samples. Assume (A1) and the following regularity

conditions hold.

(4) fG(x) ∈ Cs.α, where s ≥ 3 ,

(5) hn = n− 1
2+2s , E

(

1

τn

)

= o(n−γ), where γ =
s − 1

s + 1
,

(6) for 0 < λ ≤ 1 and m = 0, 1, 2,

∫

Ω
xmλ|β(x)|1−λdx < ∞.

we have

R(δτn
, G) − R(δG, G) = O

(

n
−

λ(s−4)
2(s+2)

)

.
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P r o o f. By Lemma 2.2 and Markov’s inequations, then

(3.3)

0 ≤ R(δτn
, G) − R(δG, G) ≤ c1

∫

Ω
|β(x)|1−λE|f (2)

τn
(x) − f

(2)
G (x)|λdx

+ c2

∫

Ω
|β(x)|1−λ|Q(x)|λE|f (2)

τn
(x) − f

(2)
G (x)|λdx

+ c3

∫

Ω
|β(x)|1−λµλ|Q(x)|λE|pτn

(x) − pG(x)|λdx

+ c4

∫

Ω
|β(x)|1−λ|S(x)|λE|fτn

(x) − fG(x)|λdx

= An + Bn + Cn + Dn.

By Lemma 2.2 (2) and condition (6), we get

An ≤ c1n
−

λ(s−2)
2(s+1)

∫

Ω
|β(x)|1−λdx ≤ c5n

−
λ(s−2)
2(s+1) .(3.4)

Bn ≤ c2n
−λ(s−2)

2(s+2)

∫

Ω
|β(x)|1−λ|Q(x)|λdx ≤ c6n

−λ(s−2)
2(s+1) .(3.5)

Dn ≤ c4n
− λs

2(s+1)

∫

Ω
|β(x)|1−λ|S(x)|λdx ≤ c8n

− λs

2(s+1) .(3.6)

Using Lemma 2.4 and condition (6), we can obtain

(3.7) Cn ≤ c3n
−λ

2 µλ

∫

Ω
|β(x)|1−λ|Q(x)|λdx ≤ c7n

−λ

2 .

Substituting (3.4)–(3.7) into (3.3), we have

R(δτn
, G) − R(δG, G) = O

(

n
−

λ(s−2)
2(s+1)

)

.

Proof of Theorem 3.2 is completed. �

Remark. When λ → 1, O

(

n
−λ(s−2)

2(s+1)

)

is arbitrarily close to O
(

n− 1
2

)

.
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