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NOTES ON LATTICE ORDERED ALGEBRAS

Rus.en Yılmaz

Communicated by V. Drensky

Abstract. In this paper we introduce a new class of lattice ordered alge-
bra, which will be called a pseudo-almost f -algebra; namely, a lattice ordered
algebra A in which a ∧ b = 0 in A implies ab ∧ ba = 0. We present some
fundamental properties of pseudo-almost f -algebras and consider their rela-
tionships with various type of lattice ordered algebras; mainely, f -algebras,
almost f -algebras and d-algebras.

1. Introduction. The importance of the certain lattice ordered algebras
in the theory of vector lattices has steadily grown and much attention has been
paid to the classes of f -algebras, almost f -algebras and d-algebras. Very little
attention has been paid to lattice ordered algebras which differ from any of these
certain lattice ordered algebras. Henriksen [7] recently indicated his idea to see
workers in lattice ordered algebras to start paying much more attention to lattice
ordered algebras rather than f -algebras. In order to contribute to this idea, there
have recently been some researches in this direction. Papers [5] and [6] introduce
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new classes of lattice ordered algebras so-called a pseudo f -algebra (a lattice
ordered algebra A having the property that ab = 0 if a∧ b is a nilpotent element
of A) and generalized almost f -algebra (a lattice ordered algebra A such that ab
is an annihilator of A if a∧b = 0), respectively. As a consequence of results given
in [5] and [6], we see that the implications

f -algebra ⇒ pseudo f -algebra ⇒ almost f -algebra ⇒ generalized almost f -algebra

hold, but not conversely. So various other classes of lattice ordered algebras
have recently been getting attention, which offers an interesting side road. In
this aspect the present paper introduces a “new” class of lattice ordered algebra
which is a wider class than each of an almost f -algebra and a d-algebra, but is in
general independent from a generalized almost f -algebra by examples below. A
lattice ordered algebra A in which a ∧ b = 0 in A implies ab ∧ ba = 0 is called a
pseudo-almost f -algebra, which need not be an almost f -algebra or a d-algebra.

In this work we mainly focus on properties of pseudo-almost f -algebras
and their relations with the other classes of lattice ordered algebras.

For the elementary theory of ℓ-spaces and terminology not explained here
we refer to [1, 9, 11].

2. Definitions and properties. A lattice ordered space is said to be
Archimedean if for each non zero a ∈ A the set {na : n = ±1,±2, . . .} has no
upper bound in A. All ℓ-spaces and ℓ-algebras under consideration are supposed
to be Archimedean. A (real) vector lattice (briefly, an ℓ-space) or a Riesz space
A is said to be a lattice ordered algebra (briefly, an ℓ-algebra) or a Riesz algebra
if it is a linear algebra (associative, but not necessarily commutative or unital)
such that if a, b ∈ A+, then ab ∈ A+. An ℓ-algebra A is said to be a f -algebra if
a∧ b = 0 in A implies ac∧ b = ca∧ b = 0 for all c ∈ A+. An ℓ-algebra A for which
a ∧ b = 0 in A implies ab = 0 is called an almost f -algebra. We call an ℓ-algebra
A a d-algebra if a ∧ b = 0 in A implies ac ∧ bc = ca ∧ cb = 0 for all c ∈ A+.

The class of f -algebras, as given here, first appeared in a paper by Birkhoff
and Pierce [3] in 1956, to be followed a decade later by the class of almost f -
algebras introduced by Birkhoff [4]. Prior to that, in 1962 Kudláček [8] introduced
the notion of d-algebras. In this paper we present their connections with pseudo-
almost f -algebras. Although these various classes of algebras are distinct, there
are relations between them; for example, from the definitions it is obvious that
every f -algebra is both an almost f -algebra and a d-algebra, but not conversely.
We next discuss some properties of these classes of ℓ-algebras. Every Archimedean
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f -algebra is automatically associative and every almost f -algebra (and so an f -
algebra) is commutative, but not necessarily associative. Archimedean almost
f -algebras have positive squares (i.e., a2 ≥ 0 for all a), whereas d-algebras do
not have these properties. Almost f -algebras and d-algebras share the property
that |a2| = |a|2 for all a. An almost f -algebra and a d-algebra are in general
independent. However, if some conditions are imposed, then we have the following
relationships between the two classes. Any d-algebra which is commutative or has
positive squares is an almost f -algebra. Moreover, under certain conditions, these
three classes of ℓ-algebras turn out to be the same; that is, in any semi-prime
(associative) ℓ-algebra the classes of f -algebras, almost f -algebras and d-algebras
are equivalent. In particular, this holds for an (associative) ℓ-algebra with unit
element e > 0. More details about these classes of ℓ-algebras can be found in [2].
In general, Archimedean pseudo-almost f -algebras need not be commutative,
associative and have positive squares, as will be illustrated in the examples given
below. Other relationships are investigated in the next section.

In this paper we also deal with quotient ℓ-algebras. A two-sided algebra
ideal in an ℓ-algebra which is also a solid linear subspace is called an lattice
ideal (briefly, ℓ-ideal). If A is an Archimedean ℓ-space and I is a solid subspace
in A then the quotient ℓ-space A/I of all equivalence classes modulo I is an ℓ-
space with respect to the partial ordering, [a] ≤ [b] whenever there exist elements
a1 ∈ [a] and b1 ∈ [b] such that a1 ≤ b1 (see, for example, [9, Theorem 18.9]).
Moreover, [x]∧ [y] = [x∧y] and [x]∨ [y] = [x∨y] for all x, y ∈ A. In general, A/I
is not Archimedean even if A is Archimedean ([9, Example 60.1]). The necessary
and sufficient conditions for A/I to be Archimedean is that I is uniformly closed
([9, Example 60.2]). If A is an algebra and I is an algebra ideal in A, then
[x] · [y] = [xy] for all x, y ∈ A. Hence, in the case that I = N(A), the nilpotent
elements of A, the space A/N(A) is semi-prime. (An element a in an algebra A
is said to be nilpotent if ak = 0 for some positive integer k, and an algebra A is
called semi-prime if N(A) = {0}.)

We are now in a position to introduce a new class of ℓ-algebra and establish
some relation with the other main classes of ℓ-algebras.

Definition 2.1. An ℓ-algebra A is said to be a pseudo-almost f -algebra
if

a ∧ b = 0 in A implies ab ∧ ba = 0.

Theorem 2.2. (1) Every almost f -algebra (and so pseudo f -algebra) is
a pseudo-almost f -algebra.
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(2) Every d-algebra is a pseudo-almost f -algebra.

P r o o f. (1) Let A be an almost f -algebra and a ∧ b = 0 in A. It follows
from a, b ∈ A+ that ab, ba ∈ A+, and so 0 ≤ ab∧ ba ≤ ab = 0; that is, ab∧ ba = 0.

(2) Let A be an d-algebra and a ∧ b = 0 in A. Now a2, b2 ∈ A+, and so

0 ≤ ab ∧ ba ≤ (a2 + ab) ∧ (ba + b2) = a(a + b) ∧ b(a + b)

≤ (a ∧ b)(a + b) = 0.

Thus ab ∧ ba = 0, as required.

We now give two examples to show that the classes of almost f -algebras,
d-algebras and pseudo-almost f -algebras are all distinct. Here although ℓ-algebras
are supposed to be associative, we also discuss the case for non-associativity.

Example 2.3. Let A = R
4 be with the usual operations of addition,

scalar multiplication and partial ordering. We define multiplication by

(a1, a2, a3, a4)(b1, b2, b3, b4) = (a2b2 + a3b3, a2b2, a3b3, a3b4).

It can easily be verified that A is an Archimedean associative pseudo-almost f -
algebra. However, it is neither an almost f -algebra nor a d-algebra; for, if a =
(1, 0, 1, 0), b = (0, 1, 0, 1) and c = (1, 1, 1, 1), then a∧b = 0 but ab = (0, 0, 0, 1) and
ca∧ cb = (1, 0, 0, 0). A is not semi-prime since (1, 0, 0, 0)2 = 0 but (1, 0, 0, 0) 6= 0.
A is not positive squares; for, (0, 0, 1,−1)2 = (0, 0, 1,−1)(0, 0, 1,−1) = (1, 0, 1,−1).
We observe that A does not have a unit element, either. It can easily be checked
that the nilpotent elements of A are given by

N(A) = {(α, 0, 0, β) ∈ A : α, β ∈ R}.

Example 2.4. Let A = R
2 be as Example 2.3 and define multiplication

by

(a1, a2)(b1, b2) = (a1b2 + a2b2, a2b2).

It is routine to show that A is an Archimedean non-associative pseudo-almost
f -algebra. However, it is neither an almost f -algebra nor a d-algebra; for, if
a = (1, 0), b = (0, 1) and c = (1, 1), then a ∧ b = 0 but ac ∧ bc = (1, 0) and
ab = (1, 0). The Archimedean pseudo-almost f -algebra A is not commutative,
either. A straightforward calculation shows that

N(A) = {(α, 0) ∈ A : α ∈ R}.
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It follows that an Archimedean pseudo-almost f -algebra is not in general semi-
prime. We also see that the algebra under consideration does not posses the
property of being positive squares; for, if a = (−2, 1), then a2 = (−1, 1).

Remark 2.5. As observed earlier, almost f -algebras and d-algebras share
the property that |a2| = |a|2 for all a. However, in general, this property does
not hold for pseudo-almost f -algebras; for, if a = (−2, 1) in the pseudo-almost f -
algebra A in Example 2.4, then |a2| = (1, 1) whereas |a|2 = (3, 1). A generalized
almost f -algebra A has a remarkable property that a4 = (a+)4+(a−)4 ≥ 0 (hence
|a4| = |a|4) for all a ∈ A [6], which does not hold for pseudo-almost f -algebras.
This also shows that a pseudo-almost f -algebra is not necessarily a generalized
almost f -algebra. By the following example which appears in [6], we see that
these two classes are in general distinct.

Example 2.6. Let A =























0 a b c
0 0 a b
0 0 0 a
0 0 0 0









: a, b, c ∈ R
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Then A is an Archimedean commutative generalized almost f -algebra which is
not a pseudo-almost f -algebra.

We now give some characterizations of pseudo-almost f -algebras.

Theorem 2.7. In an ℓ-algebra A, the following are equivalent.
(1) A is a pseudo-almost f -algebra.
(2) a ⊥ b implies ab ⊥ ba = 0 for all a, b ∈ A.
(3) (a − a ∧ b)(b − a ∧ b) ∧ (b − a ∧ b)(a − a ∧ b) = 0 for all a, b ∈ A.
(4) a+a− ∧ a−a+ = 0 for all a ∈ A.

P r o o f. The implications (1) ⇔ (2) ⇔ (3) are clear. (We note that, for
(3), (a−a∧ b)∧ (b−a∧ b) = (a∧ b)− (a∧ b) = 0, which holds for any ℓ-algebra.)

(3) ⇒ (4). Letting b = 0 in (3), we have (4).
(4) ⇒ (1). Suppose that a∧b = 0 and let c = a−b. Then c+ = a and c− =

b by the decomposition property of ℓ-spaces (see, for example, [1, Theorem 1.3]).
Hence, by (4), ab ∧ ba = 0. This completes the proof. �
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Theorem 2.8. For any pseudo-almost f -algebra A, we have
(1) aa+ = (a+)2 − (a−a+ − a−a+)+ for all a ∈ A.
(2) a+a = ((a+)2 − a+a− + a−a+) ∧ (a+)2 for all a ∈ A.
(3) (a∧ b)2 = (a(a∧ b)− (a− b)+b)∨ (b(a∧ b)− (b−a)+a) for all a, b ∈ A.
(4) It follows from a ∧ b = 0 in A that ab2a ∧ ba2b = 0.

P r o o f. (1) If A is a pseudo-almost f -algebra and a ∈ A, then

aa+ = (a+)2 − a−a+ = (a+)2 − a−a+ + a−a+ ∧ a+a−

= (a+)2 + (a−a+ − a−a+) ∧ (a+a− − a−a+)

= (a+)2 − (a−a+ − a−a+)+.

(2) Is proved similarly.
(3) If A is a pseudo-almost f -algebra and a, b ∈ A, it follows from (a −

a∧ b)∧ (b−a∧ b) = 0 that (a−a∧ b)(b−a∧ b)∧ (b−a∧ b)(a−a∧ b) = 0. Hence

(ab − a(a ∧ b) − (a ∧ b)b + (a ∧ b)2) ∧ (ba − b(a ∧ b) − (a ∧ b)a + (a ∧ b)2) = 0,

and so ((ab− a(a∧ b)− (a∧ b)b)∧ (ba− b(a∧ b)− (a∧ b)a)) + (a∧ b)2 = 0. This
implies that

(a ∧ b)2 = (a(a ∧ b) + (a ∧ b)b − ab) ∨ (b(a ∧ b) + (a ∧ b)a − ba)

= (a(a ∧ b) + (a ∧ b − a)b) ∨ (b(a ∧ b) + (a ∧ b − b)a)

= (a(a ∧ b) − (a − b)+b) ∨ (b(a ∧ b) − (b − a)+a).

(4) Suppose that a ∧ b = 0 in a pseudo-almost f -algebra A. It follows
that ab ∧ ba = 0, and so 0 = (ab)(ba) ∧ (ba)(ab) = ab2a ∧ ba2b. �

In the end of this section we discuss quotients of ℓ-algebras. It is well-
known that, if A is an f -algebra, then A/I is an f -algebra whenever I is an
ℓ-ideal in A. Moreover, I has the property that ca ∧ b, ac ∧ b ∈ I for all c ∈ A+

whenever a∧ b ∈ I and a, b ∈ A. Likewise, a∨ b ∈ I implies that ca∨ b, ac∨ b ∈ I
for all c ∈ A+. A similar problem was considered by Bernau and Huijsmans in [2]
and they shown that, if I is an ℓ-ideal in an almost f -algebra A, then A/I is an
almost f -algebra, and furthermore, I has the property that a, b ∈ A and a∧ b ∈ I
or a∨ b ∈ I imply ab ∈ I [2, Proposition 3.6]. Analogously we prove the following
result for pseudo-almost f -algebras.

Theorem 2.9. If A is a pseudo-almost f -algebra and I is an ℓ-ideal of
A, then the following hold.

(1) A/I is a pseudo-almost f -algebra.
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(2) ab ∧ ba ∈ I whenever either a ∧ b ∈ I or a ∨ b ∈ I.

P r o o f. (1) Clearly the quotient A/I is an ℓ-algebra. In order to show
that it is a pseudo-almost f -algebra, suppose that [a] ∧ [b] = [0] in A/I. Since
a∧ b ∈ I, [a] = [a− a∧ b] and [b] = [b− a∧ b]. It follows from (a− a∧ b)(b − a∧
b) ∧ (b − a ∧ b)(a − a ∧ b) = 0 that [a] · [b] ∧ [b] · [a] = [0].

(2) Suppose that a ∧ b ∈ I. Then I = (a ∧ b) + I = a + I ∧ b + I,
i.e., [a] ∧ [b] = [a ∧ b] = [0] holds in A/I. By (1), since A/I is a pseudo-almost
f -algebra, [a] · [b] ∧ [b] · [a] = [0], which implies that ab ∧ ba ∈ I.

If a∨b ∈ I, then (−a)∧(−b) = −(a∨b) ∈ I. Hence (−a)(−b)∧(−b)(−a) ∈
I, i.e., ab ∧ ba ∈ I. �

3. The relationships. As observed in preceding section, the classes of
ℓ-algebras considered in this paper are in general distinct. For instant, a pseudo-
almost f -algebra need be neither an almost f -algebra nor a d-algebra. If some
extra condition is imposed however, then the situation improves. It was shown
by Bernau and Huijsmans in [2, Theorem 4.3] that every commutative d-algebra
is an almost f -algebra. A similar connection between almost f -algebras and
pseudo-almost f -algebras holds as given in the following theorem.

Theorem 3.1. A pseudo-almost f -algebra in which positive disjoint ele-
ments commute is an almost f -algebra. In particular, every commutative pseudo-
almost f -algebra is an almost f -algebra.

P r o o f. This follows immediately from the definition of a pseudo-almost
f -algebra; for, ab = ab ∧ ba = 0 whenever a ∧ b = 0 in A. �

Theorem 3.2. Let A be an ℓ-algebra with unit element e > 0, then the
following statements are equivalent.

(1) A is a pseudo-almost f -algebra.

(2) e is a weak order unit (i.e., |a| ∧ e = 0 implies a = 0 for all a ∈ A).

P r o o f. (1) ⇒ (2). Let a be an element of A such that |a| ∧ e = 0. Then
|a|e ∧ e|a| = 0 since A is a pseudo-almost f -algebra. Thus |a| = 0, and so a = 0.

(2) ⇒ (1). If A is an ℓ-algebra with unit element e > 0 which is also a weak
order unit, then A is an f -algebra [2, Corollary 1.10], and so it is a pseudo-almost
f -algebra. �

The equivalences (1) ⇔ (2) ⇔ (3) in the next theorem are a combination
of the results given in [2] for semi-prime ℓ-algebras. In particular, this is true for
ℓ-algebras with unit element e > 0. We here give a direct and short proof.
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Theorem 3.3. Let A be a semi-prime ℓ-algebra, which is associative.
Then the following statements are equivalent.

(1) A is an f -algebra.

(2) A is a d-algebra.

(3) A is an almost f -algebra.

(4) A is a generalized almost f -algebra.

In particular, every semi-prime generalized almost f -algebra is a pseudo-
almost f -algebra.

P r o o f. As already observed, (1) ⇒ (2) and (1) ⇒ (3) ⇒ (4) hold for an
arbitrary ℓ-algebra.

(2) ⇒ (3). Let A be a d-algebra and a ∧ b = 0 in A+. Then (ab)2 = 0 by
Theorem 5.1 of [2], which implies that ab = 0 since A is semi-prime. Hence A is
an almost f -algebra.

(3) ⇒ (1). Suppose that a ∧ b = 0 in A. For all c ∈ A+,

0 ≤ (ca ∧ b)2 = (ca ∧ b)(ca ∧ b) ≤ (ca)b = c(ab) = 0;

that is, (ca∧b)2 = 0, which implies that ca∧b = 0 since A is semi-prime. Similarly
ac ∧ b = 0 for all c ∈ A+.

(4) ⇒ (1). If a∧b = 0 in A and c ∈ A+, then c(ab) = 0 and (ab)c = 0 since
A is a generalized almost f -algebra. It follows from 0 ≤ (ca ∧ b)2 ≤ c(ab) = 0
and 0 ≤ (ca ∧ b)2 ≤ (ab)c = 0 that ca ∧ b = ac ∧ b = 0, as required. �

As in the proof of Theorem 3.2, it can be seen that if A is an ℓ-algebra
with unit element e > 0, then A is an almost f -algebra if and only if e is a
weak order unit [2, Theorem 1.9]. On the other hand, since every f -algebra A
with a unit element is semi-prime (see, for example, [10, Theorem 142.5]), in an
ℓ-algebra A with unit element e > 0 the classes of f -algebras, almost f -algebras
and d-algebras are equivalent, by Theorem 3.3. Thus summarizing our results
gives the following relations amount the various classes of ℓ-algebras.

Corollary 3.4. In an (associative) ℓ-algebra A with unit element e > 0,
the following statements are equivalent.

(1) A is an f -algebra.

(2) A is an almost f -algebra.

(3) A is a d-algebra.

(4) A is a generalized almost f -algebra.

(5) A is a pseudo-almost f -algebra.

(6) e is a weak order unit.
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Remark 3.5. Recall that, by definition, an ℓ-algebra is supposed to
be associative, however in some literatures it is not necessarily assumed to be
associative in advance. In the preceding theorem we therefore emphasize the
associativity of the ℓ-algebra A which plays an important role. Indeed, the ℓ-
algebra A in the example given in [2, Remark 1.12] satisfies all the properties
of an Archimedean semi-prime almost f -algebra apart from the associativity.
Nevertheless, A is neither an f -algebra nor a d-algebra.
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