Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

NOTE ON A PAPER OF ELABBASY AND HASSAN

E. M. Elabbasy, Sh. R. Elzeiny, T. S. Hassan
Communicated by I. D. Iliev

Abstract

We give a correction to the proof of Theorem 2.3 in the paper of E. M. Elabbasy and T. S. Hassan, Serdica Math. J. 34 (2008), 531-542.

Introduction. In the paper [1], the authors established some new sufficient conditions for oscillation of all solutions of nonlinear neutral delay differential equations. The results extended and improved some of the well known results in the literature. They considered the first order neutral delay differential equation
(E) $\quad[x(t)-q(t) x(t-\sigma(t))]^{\prime}+f(t, x(t-\tau(t)))=0$, for $t \geq t_{0}>0$,
subject to the conditions

$$
\begin{align*}
& \sigma, \tau \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), \mathbb{R}^{+}=(0, \infty), \\
& \lim _{t \rightarrow \infty}(t-\sigma(t))=\infty, \lim _{t \rightarrow \infty}(t-\tau(t))=\infty, \tag{1.5}
\end{align*}
$$

[^0]\[

$$
\begin{equation*}
q \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), 0 \leq q_{1} \leq q(t) \leq q_{2} \leq 1 \tag{1.6}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\left.f \in C\left[t_{0}, \infty\right) \times \mathbb{R}, \mathbb{R}\right), \mathbb{R}=(-\infty, \infty), u f(u) \geq 0 \tag{1.7}
\end{equation*}
$$

Moreover, there exist

$$
\begin{equation*}
p \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), \quad \text { and } g \in C(\mathbb{R}, \mathbb{R}) \tag{1.8}
\end{equation*}
$$

such that

$$
\begin{equation*}
g^{\prime}(u) \geq 0, \quad f(t, u) \geq p(t) g(u), \quad \text { and } \quad|g(u)-u| \leq M|u|^{1+r} \tag{1.9}
\end{equation*}
$$

for $u \in(-\epsilon, \epsilon), \epsilon>0, M \geq 0, r>0, u g(u)>0$ for $u \neq 0$.
E. M. Elabbasy et al. [1] proved that if $\tau(t)=\tau>0$,

$$
0<\frac{1}{a} \leq \int_{t-\tau}^{t} p(s) d s, \text { for } t \geq t_{0}
$$

and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} p(t) \exp \left(a \int_{t-\sigma+\tau}^{t} p(s) d s\right) d t=\infty \tag{2.10}
\end{equation*}
$$

then every solution of equation (E) oscillates.
Remark 1.1. In page 538 , line 5 of paper [1], the authors assumed that the limits of integration are T and N, where

$$
T \leq N \text { such that } 0<N-\tau<T
$$

Unfortunately, τ takes very small value $(\tau \rightarrow 0)$. So, if N tends to infinity, also T will tend to infinity, and the limits of integration become incorrect (please, see the $R . H . S$ of the inequality in page 539 , line 3 , in [1], and (2.10)). Therefore, the proof of Theorem 2.3, in [1] is incorrect.

We present the correct proof in the section below.
2. The correct proof. In this section, we prove Theorem 2.3 in the paper of E. M. Elabbasy and T. S. Hassan [1].

Proof. Proceeding as in the proof of Theorem 2.3 in [1], one obtains the following estimate

$$
\lambda(t) A(t)-\frac{1}{2} p(t) \int_{t-\tau}^{t} \lambda(s) d s \geq \frac{1}{2} p(t) A(t)
$$

where

$$
A(t)=\exp \left(a \int_{t-\tau}^{t} p(s) d s\right)
$$

Integrating from T to N where $N>T+\tau$ yields

$$
\int_{T}^{N} \lambda(t) A(t) d t-\frac{1}{2} \int_{T}^{N}\left(p(t) \int_{t-\tau}^{t} \lambda(s) d s\right) d t \geq \frac{1}{2} \int_{T}^{N} p(t) A(t) d t
$$

Interchanging the order of integration, we get

$$
\begin{aligned}
\int_{T}^{N}\left(p(t) \int_{t-\tau}^{t} \lambda(s) d s\right) d t & \geq \int_{T}^{N-\tau}\left(\lambda(s) \int_{s-\tau}^{s} p(t) d t\right) d s \\
& \geq \int_{T}^{N-\tau}\left(\lambda(t) \int_{s-\tau}^{s} p(s) d s\right) d t
\end{aligned}
$$

Thus, we have

$$
\int_{T}^{N} \lambda(t) A(t) d t-\frac{1}{2} \int_{T}^{N-\tau}\left(\lambda(t) \int_{s-\tau}^{s} p(s) d s\right) d t \geq \frac{1}{2} \int_{T}^{N} p(t) A(t) d t
$$

Now, we denote

$$
B(t)=\frac{1}{2} \int_{t-\tau}^{t} p(s) d s
$$

Then
(i)

$$
0<\frac{1}{2 a} \leq B(t) \leq 1
$$

as

$$
\int_{t-\tau}^{t} p(s) d s \leq 2, \quad \text { (see [1], page 537). }
$$

Since

$$
\begin{aligned}
A(t) & =\exp \left(a \int_{t-\tau}^{t} p(s) d s\right) \geq a \int_{t-\tau}^{t} p(s) d s \\
& \geq \frac{1}{2} \int_{t-\tau}^{t} p(s) d s=B(t), \quad \text { where } a \geq \frac{1}{2}
\end{aligned}
$$

then
(ii)

$$
A(t) \geq B(t), \text { for all } t \geq T
$$

and since

$$
1 \leq a \int_{t-\tau}^{t} p(s) d s \leq 2 a
$$

then

$$
\begin{equation*}
e \leq A(t)=\exp \left(a \int_{t-\tau}^{t} p(s) d s\right) \leq e^{2 a}=k \tag{iii}
\end{equation*}
$$

From $(i),(i i),(i i i)$ we obtain

$$
\begin{equation*}
0<e-1=k_{2} \leq A(t)-B(t) \leq e^{2 a}-\frac{1}{2 a}=k_{1} \tag{iv}
\end{equation*}
$$

Then

$$
\begin{aligned}
\int_{T}^{N} \lambda(t) A(t) d t-\int_{T}^{N-\tau} \lambda(t) A(t) d t & +\int_{T}^{N-\tau} \lambda(t) A(t) d t \\
& -\frac{1}{2} \int_{T}^{N-\tau}\left(\lambda(t) \int_{s-\tau}^{s} p(s) d s\right) d t \geq \frac{1}{2} \int_{T}^{N} p(t) A(t) d t
\end{aligned}
$$

Hence,

$$
\begin{aligned}
{\left[\int_{T}^{N} \lambda(t) A(t) d t-\int_{T}^{N-\tau} \lambda(t) A(t) d t\right]+\int_{T}^{N-\tau} \lambda(t)[A(t)-B(t)] d t } & \\
& \geq \frac{1}{2} \int_{T}^{N} p(t) A(t) d t
\end{aligned}
$$

and therefore

$$
\int_{N-\tau}^{N} \lambda(t) A(t) d t+\int_{T}^{N-\tau} \lambda(t)[A(t)-B(t)] d t \geq \frac{1}{2} \int_{T}^{N} p(t) A(t) d t
$$

From (iii), (iv) we obtain

$$
k \int_{N-\tau}^{N} \lambda(t) d t+k_{1} \int_{T}^{N-\tau} \lambda(t) d t \geq \frac{1}{2} \int_{T}^{N} p(t) A(t) d t
$$

and

$$
\begin{aligned}
\ln \frac{z(N-\tau)}{z(N)}-\frac{k_{1}}{k}(\ln (z(N-\tau))-\ln (z(T))) & \\
& \geq \frac{1}{2 k} \int_{T}^{N} p(t) \exp \left(a \int_{t-\tau}^{t} p(s) d s\right) d t
\end{aligned}
$$

Since, $z(t)>0$ (as in [1], page 537), we obtain by (2.10) that

$$
\lim _{t \rightarrow \infty} \frac{z(t-\tau)}{z(t)}=\infty
$$

which contradicts the fact that

$$
\lim _{t \rightarrow \infty} \frac{z(t-\tau)}{z(t)}<\infty \text { is bounded for } t>T
$$

This completes the proof of the theorem.

REFERENCES

[1] E. M. Elabbasy, T. S. Hassan. Oscillation of nonlinear neutral delay differential equations. Serdica Math. J. 34, 3 (2008), 531-542.

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt
e-mail: emelabbasy@mans.edu.eg (E. M. Elabbasy)
e-mail: tshassan@mans.edu.eg (T. S. Hassan)
Al-Baha University
Kingdom of Saudi Arabia
P. O. Box 1034
e-mail: shrelzeiny@yahoo.com (Sh. R. Elzeiny)
Receive December 19, 2014
Revised October 25, 2015

[^0]: 2010 Mathematics Subject Classification: 34K15, 34C10.
 Key words: Oscillations, first order, neutral delay differential equations.

