Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

MATRIX COEFFICIENTS OF THE IRREDUCIBLE UNITARY REPRESENTATION OF $S U(n, 1)$

Fouzia El Wassouli

Communicated by V. Drensky

Abstract

This paper is devoted to presenting an explicit expression for the A-radial part of matrix coefficients of the irreducible unitary representations in terms of Gaussian hypergeometric series and some involved expressions of binomial coefficients

1. Introduction. Let G be the Lie group and (T, V) be a unitary representation of G on a complex Hilbert space V. Then, for arbitrary vectors e_{n} and e_{m} in an orthogonal basis $\left\{e_{i}\right\}$ of V, the following functions

$$
\begin{gathered}
t_{n m}: \quad G \longrightarrow \mathbb{C} \\
g \longmapsto\left\langle T(g) e_{n}, e_{m}\right\rangle
\end{gathered}
$$

[^0]are called matrix coefficients of the representation (T, V). They satisfy the Schur orthogonality relation
\[

\left\langle t_{n m}, t_{k l}\right\rangle_{L^{2}(G)}= $$
\begin{cases}0, & e_{n} \neq e_{k} \\ \frac{1}{\operatorname{dim}(V)}\left\langle e_{n}, e_{m}\right\rangle \overline{\left\langle e_{k}, e_{l}\right\rangle}, & e_{n}=e_{k}\end{cases}
$$
\]

The matrix coefficients of irreducible representations of finite groups and their profound role in harmonic analysis and physics are well known to any one who has any connection to harmonic analysis and physics. They play a prominent role in the representation theory of these groups as developed by Burnside, Frobenius, and Schur. Among the problems raised, there is the one related to finding explicit analytic formulas for them but this problem remained open except for certain cases.

Moreover, the beautiful formulas for the A-radial part of the the matrix coefficients for the higher rank Lie groups in the literature found by the specialists of representation theory are formulated unopened to avoid certain combinatorial complexity and the formulas are sometimes not effectively computable.

In this paper we want to have an explicit formula for the A-radial part of the matrix coefficients of the unitary irreducible representation $\left(T_{h}, \mathcal{H}_{h}\right)$ of $S U(n, 1), h \geq \frac{1}{2}$, where \mathcal{H}_{h} is the weighted Bergmun space on the unit ball. We described them uniformly in terms of standard integrals with respect to the standard Cartan decomposition of the group $S U(n, 1)$. More precisely, the main results of this paper can be stated as follow:

Let $\left\{\phi_{p}^{h} \mid p \in \mathbb{N}^{n}\right\}$ be an orthonormal basis of \mathcal{H}_{h}

$$
\begin{array}{r}
\phi_{p}^{h}(z)=\left[\frac{\Gamma(2 h+|p|)}{p!\Gamma(2 h)}\right]^{\frac{1}{2}} z_{1}^{p_{1}} \cdots z_{n}^{p_{n}}, p=\left(p_{1}, \ldots, p_{n}\right), p!=p_{1}!\cdots p_{n}! \\
\text { and }|p|=p_{1}+\cdots+p_{n}
\end{array}
$$

According to the Cartan decomposition of $G=K A K$ (i.e. $g=k_{1} a_{t} k_{2}$), the A radial part of the matrix coefficient $t_{p q}^{h}(g)=\left\langle T_{h}(g) \phi_{p}^{h}, \phi_{q}^{h}\right\rangle_{h}$ is given by $t_{k l}^{h}\left(a_{t}\right)=$ $\left\langle T_{h}\left(a_{t}\right) \phi_{k}^{h}, \phi_{l}^{h}\right\rangle_{h}$.

Theorem 1.1. Let $h>\frac{1}{2}, k=\left(k_{1}, \ldots, k_{n}\right)$ and $l=\left(l_{1}, \ldots, l_{n}\right)$. Then for $k_{1} \geq l_{1}$, we have

$$
\begin{aligned}
t_{k l}^{h}\left(a_{t}\right) & =\frac{2(|l|+n) l!}{n} \frac{(-1)^{k_{1}-l_{1}} \Gamma(2 h)}{\Gamma(2 h+|h|+1)}\binom{k_{1}}{l_{1}} \\
& \times \cosh t^{-(2 h+|k|)+k_{1}} \tanh t^{k_{1}-l_{1}} F\left(-l_{1}, 2 h+|k|, k_{1}-l_{1}+1 ; \tanh t^{2}\right)
\end{aligned}
$$

where $\binom{n}{m}=\frac{n!}{m!(n-m)!}$ is the binomial coefficient and $F(a, b, c ; x)$ is the classical Gauss hypergeomeric function (see [2]).

For $l_{1}>k_{1}$, we replace k_{1} and l_{1} by l_{1} and k_{1}, respectively.
This paper is organized as follows:
In Section 2, we review the basis results on $S U(n, 1)$. Section 3 is devoted to the proof of main result.
2. The group $S U(n, 1)$ and its unitary irreducible representation. We review some basic definitions and known results of harmonic analysis on the unit ball B^{n} in \mathbb{C}^{n} which will be needed in the sequel (refereing to [1] for more details on this subject). More precisely, we recall the Cartan decomposition of $S U(n, 1)$. Also, we give an unitary irreductible representation of $S U(n, 1)$.

Let $S U(n, 1)$ be the group consisting of all matrices g in $S L(n+1, \mathbb{C})$ which leave invariant the quadratic form on \mathbb{C}^{n+1}

$$
\left(z_{1}, \ldots, z_{n+1}\right) \longrightarrow z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}-z_{n+1}^{2}
$$

For any matrix g we denote by $g^{*}=\bar{g}^{t}$ its conjugate transpose. Then the group $S U(n, 1)$ can be realized as

$$
S U(n, 1)=\left\{g \in S L(n+1, \mathbb{C}) \mid g^{*} J g=J\right\}, \quad J=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -1
\end{array}\right)
$$

Thus writing $g \in S U(n, 1)$ as $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, with $\left\{\begin{array}{l}A^{*} A-C^{*} C=I_{n} \\ A^{*} B=C^{*} D \\ B^{*} B-D^{*} D=1 .\end{array}\right.$ We denote by K a maximal compact subgroup of $S U(n, 1)$
$K=\left\{\left.\left(\begin{array}{cc}M & 0 \\ 0 & N\end{array}\right) \right\rvert\, M \in U(n), N \in \mathbb{C}\right.$ and $\left.\operatorname{det}(M) \operatorname{det}(N)=1\right\}=S(U(n) \times U(1))$ and

$$
A=\left\{a_{t}=\left(\begin{array}{ccc}
\cosh t & 0 & \sinh t \\
0 & I_{n-1} & 0 \\
\sinh t & 0 & \cosh t
\end{array}\right), \quad t \in \mathbb{R}\right\}
$$

Then the Cartan decomposition of $S U(n, 1)$ is $S U(n, 1)=K A K$.
Let $\mathcal{H}_{h}, h>\frac{1}{2}$ be the weighted Bergman space of index h

$$
\mathcal{H}_{h}=\left\{f: B^{n} \longrightarrow \mathbb{C} \quad \text { analytic }\left.\left|C_{h} \int_{B^{n}}\left(1-|z|^{2}\right)^{2 h-n-1}\right| f(z)\right|^{2} d \mu(z)<\infty\right\}
$$

where $d \mu(z)$ being the Lebesgue measure on B^{n} and $C_{h}=\frac{\Gamma(2 h)}{n!\Gamma(2 h-n)}$.
For any multi-index $p=\left(p_{1}, \ldots, p_{n}\right)$ of non negative integers, we write $|p|=p_{1}+\cdots+p_{n}$ and $p!=p_{1}!\cdots p_{n}!$.

For any $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, we write $z^{p}=z_{1}^{p_{1}} z_{2}^{p_{2}} \cdots z_{n}^{p_{n}}$. The standard orthonormal basis of \mathcal{H}_{h} is $\left\{\phi_{p}^{h} \mid p \in \mathbb{N}^{n}\right\}$ where

$$
\phi_{p}^{h}(z)=\left[\frac{\Gamma(|p|+2 h)}{p!\Gamma(2 h)}\right]^{\frac{1}{2}} z^{p}
$$

We denote by \langle,\rangle_{h} the inner product of \mathcal{H}_{h}

$$
\langle\phi, \psi\rangle_{h}=C_{h} \int_{B^{n}}\left(1-|z|^{2}\right)^{2 h-(n+1)} \phi(z) \overline{\psi(z)} d \mu(z)
$$

For any $g \in S U(n, 1)$, we define the operator $T_{h}(g)$ on \mathcal{H}_{h} by

$$
\begin{aligned}
& T_{h}(g) F(z)=(C z+D)^{-2 h} F(g \cdot z)=(C z+D)^{-2 h} F\left((A z+B)(C z+D)^{-1}\right) \\
& g^{-1}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)
\end{aligned}
$$

Then $\left(T_{h}, \mathcal{H}_{h}\right)$ is an irreducible unitary representation of $S U(n, 1)$.
Now, we consider the coefficient matrix $t_{p q}^{h}=\left\langle T_{h}(g) \phi_{p}^{h}, \phi_{q}^{h}\right\rangle_{h}$ of the group $S U(n, 1)$ according to the above orthonormal basis.

Since $T_{h}\left(g_{1} g_{2}\right)=T_{h}\left(g_{1}\right) T_{h}\left(g_{2}\right), \quad g_{1}, g_{2} \in S U(n, 1)$, we have

$$
t_{p q}^{h}\left(g_{1} g_{2}\right)=\sum_{k \in \mathbb{N}^{n}} t_{p k}^{h}\left(g_{1}\right) t_{k q}^{h}\left(g_{2}\right)
$$

According to the Cartan decomposition $S U(n, 1)=K A K$ each element g in $S U(n, 1)$ can be written as $g=k_{1} a_{t} k_{2}$. Henceforth

$$
t_{p q}^{h}(g)=\sum_{\substack{k \in \mathbb{N}^{n} \\ l \in \mathbb{N}^{n}}} t_{p k}^{h}\left(k_{1}\right) t_{k l}^{h}\left(a_{t}\right) t_{l q}^{h}\left(k_{2}\right)
$$

3. Proof of Theorem 1.1. Now we compute for

$$
a_{t}=\left(\begin{array}{ccc}
\cosh t & 0 & \sinh t \\
0 & I_{n-1} & 0 \\
\sinh t & 0 & \cosh t
\end{array}\right)
$$

the matrix coefficient

$$
\begin{aligned}
&\left\langle T_{h}\left(a_{t}\right) \phi_{k}^{h}, \phi_{l}^{h}\right\rangle_{h} \\
&= C_{h} \int_{B^{n}}\left(1-|z|^{2}\right)^{2 h-(n+1)}\left(\cosh t-z_{1} \sinh t\right)^{-2 h} \phi_{k}^{h}\left(a_{t} . z\right) \overline{\phi_{l}^{h}(z)} d \mu(z) \\
&= C_{h} \int_{B^{n}}\left(1-|z|^{2}\right)^{2 h-(n+1)}\left(\cosh t-z_{1} \sinh t\right)^{-(2 h+|k|)} \\
& \quad \times\left(z_{1} \cosh t-\sinh t\right)^{k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}} \bar{z}^{l} d \mu(z) \\
&= C_{h}(\cosh t)^{-(2 h+|k|)+k_{1}} \int_{B^{n}}\left(1-|z|^{2}\right)^{2 h-(n+1)}\left(1-z_{1} \tanh t\right)^{-(2 h+|k|)} \\
& \quad \times\left(z_{1}-\tanh t\right)^{k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}} \bar{z}^{l} d \mu(z)
\end{aligned}
$$

Since $\left|z_{1} \tanh t\right|<1$, we can use the binomial formula

$$
(1-x)^{-\alpha}=\sum_{k \in \mathbb{N}} \frac{(\alpha)_{k}}{k!} x^{k},|x|<1
$$

to rewrite the above integral as

$$
\begin{aligned}
& \left\langle T_{h}\left(a_{t}\right) \phi_{k}^{h}, \phi_{l}^{h}\right\rangle_{h}= \\
\times & C_{h}(\cosh t)^{-(2 h+|k|)+k_{1}} \\
\times & \frac{(2 h+|k|)_{p}}{p!} \int_{B^{n}}\left(1-|z|^{2}\right)^{2 h-(n+1)}\left(-z_{1} \tanh t\right)^{p} \\
& \times \sum_{q=0}^{k_{1}} \frac{k_{1}!(-\tanh t)^{q}}{q!\left(k_{1}-q\right)!} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}} \bar{z}^{l} d \mu(z) \\
= & C_{h}(\cosh t)^{-(2 h+|k|)+k_{1}} \sum_{p \in \mathbb{N}} \sum_{q=0}^{k_{1}} \frac{(-1)^{q+p}(2 h+|k|)_{p} k_{1}!(\tanh t)^{p+q}}{p!q!\left(k_{1}-q\right)!} \\
\times & \int_{B^{n}}\left(1-|z|^{2}\right)^{2 h-(n+1)} z_{1}^{p-q+k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}} \bar{z}^{l} d \mu(z) .
\end{aligned}
$$

Since

$$
\int_{B^{n}}\left(1-|z|^{2}\right)^{2 h-(n+1)} z_{1}^{p-q+k_{1}} z_{2}^{k_{2}} \cdots z_{n}^{k_{n}} \bar{z}^{l} d \mu(z)
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(1-r^{2}\right)^{2 h-(n+1)} r^{2 n-1+|l|+|k|+p-q} d r \int_{\partial B^{n}} w_{1}^{p-q+k_{1}} w_{2}^{k_{2}} \cdots w_{n}^{k_{n}} \bar{w}^{l} d w \\
& =\frac{\Gamma(2 h-n) \Gamma(|l|+n+1)}{\Gamma(2 h+|l|+1)} \int_{\partial B^{n}} w_{1}^{p-q+k_{1}} w_{2}^{k_{2}} \cdots w_{n}^{k_{n}} \bar{w}^{l} d w
\end{aligned}
$$

the integral in the above sum equals $\frac{\Gamma(2 h-n) \Gamma(|l|+n+1)}{\Gamma(2 h+|l|+1)} \frac{2(n-1)!l!}{(n-1+|l|)!}$ when

$$
\left\{\begin{array}{l}
p-q+k_{1}=l_{1} \\
k_{j}=l_{j},
\end{array} \quad j=2, \ldots, n\right.
$$

and vanishes otherwise. Thus

$$
\begin{aligned}
& \left\langle T_{h}\left(a_{t}\right) \phi_{k}^{h}, \phi_{l}^{h}\right\rangle_{h} \\
= & C_{h}(\cosh t)^{-(2 h+|k|)+k_{1}} \frac{2(|l|+n) \Gamma(n) l!\Gamma(2 h-n)}{\Gamma(2 h+|l|+1)} \\
& \times \sum_{p \in \mathbb{N}} \sum_{q=0}^{k_{1}} \frac{(-1)^{p+k_{1}-l_{1}}(2 h+|k|)_{p} k_{1}!}{p!q!\left(k_{1}-q\right)!}(\tanh t)^{p+q} \\
= & 2 C_{h}(\cosh t)^{-(2 h+|k|)+k_{1}} \frac{(-1)^{k_{1}-l_{1}}(|l|+n) \Gamma(n) l!\Gamma(2 h-n)}{\Gamma(2 h+|l|+1)}(\tanh t)^{k_{1}-l_{1}} \\
& \times \sum_{p \in \mathbb{N}} \frac{(-1)^{p}(2 h+|k|)_{p} k_{1}!}{p!\left(p+k_{1}-l_{1}\right)!\left(l_{1}-p\right)!}(\tanh t)^{2 p}
\end{aligned}
$$

with $k_{j}=l_{j}, j=2, \ldots, n$.
Henceforce, by using the following equality

$$
\frac{(-1)^{p}\left(k_{1}-l_{1}\right)!l_{1}!}{\left(l_{1}-p\right)!\left(k_{1}+p-l_{1}\right)!}=\frac{\left(-l_{1}\right)_{p}}{\left(k_{1}-l_{1}+1\right)_{p}}
$$

we have

$$
\begin{aligned}
t_{k l}^{h}\left(a_{t}\right)= & \left\langle T_{h}\left(a_{t}\right) \phi_{k}^{h}, \phi_{l}^{h}\right\rangle_{h}=\frac{2(|l|+n) l!}{n} \frac{(-1)^{k_{1}-l_{1}} \Gamma(2 h)}{\Gamma(2 h+|h|+1)}\binom{k_{1}}{l_{1}} \\
& \times \cosh t^{-(2 h+|k|)+k_{1}}(\tanh t)^{k_{1}-l_{1}} \sum_{p \in \mathbb{N}} \frac{(2 h+|k|)_{p}\left(-l_{1}\right)_{p}}{p!\left(k_{1}-l_{1}+1\right)_{p}}(\tanh t)^{2 p} \\
= & \frac{2(|l|+n) l!}{n} \frac{(-1)^{k_{1}-l_{1}} \Gamma(2 h)}{\Gamma(2 h+|h|+1)}\binom{k_{1}}{l_{1}} \\
& \times \cosh t^{-(2 h+|k|)+k_{1}}(\tanh t)^{k_{1}-l_{1}} F\left(-l_{1}, 2 h+|k|, k_{1}-l_{1}+1 ;(\tanh t)^{2}\right) .
\end{aligned}
$$

Remark 3.1. For $k \in K=S(U(n) \times U(1))$ we are not yet able to give a simple explicit expression for the matrix coefficient $t_{p q}^{h}(k)=\left\langle T_{h}(k) \phi_{p}^{h}, \phi_{q}^{h}\right\rangle_{h}$. But we can rewrite it as a series. Indeed:

Let $k=\left(\begin{array}{cc}A & 0 \\ 0 & e^{i \theta}\end{array}\right) \in K, A=\left(a_{i j}\right)_{i, j}$ and $z=\left(z_{1}, \ldots, z_{n}\right)=r\left(w_{1}, \ldots, w_{n}\right) \in$ B^{n}. Then,

$$
A z=r\left(\begin{array}{c}
\sum_{j=1}^{n} a_{1 j} w_{j} \\
\vdots \\
\sum_{j=1}^{n} a_{n j} w_{j}
\end{array}\right)
$$

Thus
$U_{p q}^{h}(k)=e^{i \theta(2 h+|p|)} \int_{0}^{1}\left(1-r^{2}\right)^{2 h-(n+1)} r^{2 n-1+|p|+|k|} d r \int_{\partial B^{n}} \prod_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} w_{j}\right)^{p_{i}} \bar{w}^{q} d w$.
Making use of the identity

$$
\left(z_{1}+\cdots+z_{n}\right)^{m}=\sum_{k_{1}+\cdots+k_{n}=m} \frac{m!}{k_{1}!\cdots k_{n}!} z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}, \quad m \in \mathbb{N}
$$

we obtain for $p=\left(p_{1}, \ldots, p_{n}\right)$, and $q=\left(q_{1}, \ldots, q_{n}\right)$ that

$$
\begin{aligned}
t_{p q}^{h}(k)= & e^{i \theta(2 h+|p|)} \frac{\Gamma(2 h-n) \Gamma(n+|p|+1)}{\Gamma(2 h+|p|+1)} \\
& \times \sum_{\substack{\sum_{j=1}^{n} p_{i}^{j}=p_{i}, \sum_{j=1}^{n} q_{j}^{i}=q_{i}}} \frac{\left|p_{1}\right|!\cdots\left|p_{n}\right|!\prod_{1 \leq i, j \leq n} a_{i j}^{p_{i}^{j}}}{p!} \\
& \times \int_{\partial B^{n}} w_{1}^{p_{1}^{1}+p_{2}^{1}+\cdots+p_{n}^{1}} w_{2}^{p_{1}^{2}+p_{2}^{2}+\cdots+p_{n}^{2}} \cdots w_{n}^{p_{1}^{n}+p_{2}^{n}+\cdots+p_{n}^{n} \bar{w}^{q} d w} \\
= & \frac{e^{i \theta(2 h+|p|)} \Gamma(2 h) \Gamma(n+|p|+1)}{n(n-1+|p|)!\Gamma(2 h+|p|+1)} \sum_{\substack{\sum_{j=1}^{n} p_{i}^{j}=p_{i}, \sum_{j=1}^{n} q_{j}^{i}=q_{i} \\
1 \leq i, j \leq n}} \frac{\prod_{1 \leq i, j \leq n} p_{i}^{j}!}{q!p!\prod_{1 \leq i, j \leq n} a_{i j}^{p_{i}^{j}}}
\end{aligned}
$$

REFERENCES

[1] S. Helgason. Eigenspaces of the Laplacian; integral representation and irreducibility. J. Funct. Anal. 17 (1974), 328-353.
[2] A. F. Nikiforov, V. B. Uvarov. Special Functions of Mathematical Physics. Moscow, Nauka, 1978 (in Russian).

Fouzia El Wassouli
Department of Mathematics
Faculty of Sciences - Ain Chock
University Hassan II
Casablanca, Morocco
e-mail: elwassouli@gmail.com

[^0]: 2010 Mathematics Subject Classification: 32M15, 32A45, 30E20, 33C60.
 Key words: Hypergeometric function, matrix coefficients, weighted Bergman space.

